Converter Reactors with a Thermal Neutron Spectrum

  • Günther Kessler
Part of the Topics in Energy book series (TENE)


At present, nuclear power generation is mainly based on light water reactors (LWR’s) designed as pressurized water reactors (PWR’s) or boiling water reactors (BWR’s) (see Table 1–1). LWR’s use enriched uranium fuel, which makes for greater flexibility in the choice of reactor core materials, especially allowing normal (light) water to be used as a coolant and moderator. PWR’s deliver the heat generated in their reactor core to water circulating under high pressure in primary coolant circuits. From here the heat is transferred to a secondary coolant system via a steam generator to produce steam driving a turbo-generator system. In BWR’s with direct cycle, the steam for the turbo-generator system is generated right in the reactor core and sent directly to the turbo-generator. PWR’s and BWR’s have been advanced to a high level of technical maturity in more than twenty years of development. They are built in unit sizes up to 1300 MW (e). The most important design data of large PWR and BWR power plants are listed in Table 4–1.


Fuel Element Steam Generator Reactor Core Reactor Pressure Vessel Light Water Reactor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Selected Literature

Light water reactors

  1. Druckwasserreaktor. Erlangen: Kraftwerk Union AG, K/10567 (1981).Google Scholar
  2. General Description of a Boiling Water Reactor. San Jose, Cal.: General Electric Company. 1978.Google Scholar
  3. Lamarsh, J.R.: Introduction to Nuclear Engineering. Reading, Mass.: Addison-Wesley. 1975.Google Scholar
  4. Lewis, E.E.: Nuclear Power Reactor Safety. New York: John Wiley. 1977.Google Scholar
  5. Märkl, H.: Core Engineering and Performance of KWU Pressurized Water Reactors. Erlangen: Kraftwerk Union AG. 1976.Google Scholar
  6. Nero, A.v.: A Guidebook to Nuclear Reactors. Berkeley-Los Angeles-London: University of California Press. 1979.Google Scholar
  7. Druckwasserreaktoren für Kernkraftwerke (Oldekop, W., ed.). München: Karl Thiemig. 1974.Google Scholar
  8. Sauer, A.: Siedewasserreaktoren für Kernkraftwerke. Berlin: AEG Telefunken, Handbücher Band 10. 1969.Google Scholar
  9. Smidt, D.: Reaktor-Sicherheitstechnik. Berlin-Heidelberg-New York: Springer. 1979.Google Scholar
  10. Technical Evaluation of Bids for Nuclear Power Plants - A Guide Book. Vienna: International Atomic Energy Agency, TR 204 (1981).Google Scholar

Gas cooled reactors

  1. Boyer, V.S., et al: High Temperature Reactors. In: Nuclear Energy Maturity, Proc. European Nuclear Conference, Paris, 21–25 April, 1975 (Zaleski, P., ed.). Vol. 2, pp. 191–217. Oxford: Pergamon Press. 1976.Google Scholar
  2. Dahlberg et al: HTGR Fuel and Fuel Cycle Summary Description. San Diego, Cal.: General Atomic Company, GA-A 12801 (1974).Google Scholar
  3. Development Status and Operational Features of the High Temperature Gas Cooled Reactor. Palo Alto, Cal.: Electric Power Research Institute, EPRI NP-142 (1976).Google Scholar
  4. Engelmann, P., Oehme, H.: Ziele der HTR-Entwicklung für Stromerzeugung und Prozeßwärme. Atomwirtschaft/Atomtechnik 22, 484–490 (1977).Google Scholar
  5. Fassbender, J. et al.: Zur Störfalltopologie des Hochtemperaturreaktors. Atomkernenergie/Kerntechnik 37, 81–86 (1981).Google Scholar
  6. Harder, H., et al: Das 300 MWe Thorium-Hochtemperatur-Kernkraftwerk (THTR). Atomwirtschaft/Atomtechnik 16, 238–245 (1971).Google Scholar
  7. Schulten, R., et al: The Pebble-bed High Temperature Reactor as a Source of Nuclear Process Heat. Kernforschungsanlage Jülich, Jül 1115-RG (1974).Google Scholar
  8. Wessmann, G.L., Mofette, T.R.: Safety Design Bases for HTGR. Nuclear Safety 14, 618–634 (1973).Google Scholar

Heavy water reactors

  1. Foster, J.S., Critoph, E.: The Status of the Canadian Nuclear Programme and Possible Future Strategies. Annals of Nuclear Energy, Vol. 2, pp. 689–703. Oxford: Pergamon Press. 1975.Google Scholar
  2. McIntyre, H.C.: Natural Uranium Heavy Water Reactors. Scientific American 233 (4), 17–27 (1975).CrossRefGoogle Scholar
  3. Smith, H.A.: A Review of the Development Status of CANDU Nuclear Power Plants. In: Nuclear Energy Maturity, Proc. European Nuclear Conference, Paris, 21–25 April, 1975 (Zaleski, P., ed.). Vol. 2, pp. 38–44. Oxford: Pergamon Press. 1976.Google Scholar
  4. Study of the Development Status and Operational Features of Heavy Water Reactors, Palo Alto, Cal: Electric Power Research Institute, EPRI NP-365 (1977).Google Scholar
  5. Woodhead, L.W., Ingolfsrud, L.J.: Performance of Canadian Commercial Nuclear Units and Heavy Water Plants. In: Nuclear Energy Maturity, Proc. European Nuclear Conference, Paris, 21–25 April, 1975 (Zaleski, P., ed.), Vol. 2, pp. 103–112. Oxford: Pergamon Press. 1976.Google Scholar

Near breeders and thermal breeder reactors

  1. Conceptual Design Study of a Single Fluid Molten Salt Breeder Reactor. Oak Ridge National Laboratory, ORNL-4541 (1971).Google Scholar
  2. The Development Status of Molten Salt Breeder Reactors. Oak Ridge National Laboratory, ORNL-4812 (1972).Google Scholar
  3. Perry, A.M., Weinberg, A.M.: Thermal Breeder Reactors. In: Annual Review of Nuclear Science, Vol. 22, pp. 317–354. Palo Alto, Cal: Annual Reviews Inc. 1972.Google Scholar
  4. Status and Prospects of Thermal Breeders and Their Effect on Fuel Utilization. Vienna: International Atomic Energy Agency, IAEA Technical Report Series No. 195 (1979).Google Scholar

Copyright information

© Springer-Verlag Wien 1983

Authors and Affiliations

  • Günther Kessler
    • 1
  1. 1.Institut für Neutronenphysik und ReaktortechnikKernforschungszentrum KarlsruheFederal Republic of Germany

Personalised recommendations