Skip to main content

Localized Radial Basis Methods Using Rational Triangle Patches

  • Conference paper
Book cover Geometric Modelling

Part of the book series: Computing Supplement ((COMPUTING,volume 10))

Abstract

Two of the most effective methods for interpolating scattered data are the multiquadric method and the thin plate spline method. A negative aspect of these radial basis methods is that they are not local and they are computationally expensive and unstable if there are a large number of data points. We present a localized interpolation method that involves partitioning the data into arbitrary overlapping triangular regions based on arbitrary points, forming local radial basis interpolants to the data in each region, and then blending the local interpolants with rational triangle patches so that the resulting function is a locally defined C 1 interpolant. When the triangular regions form a triangulation of the scattered data locations, the resulting interpolant can be considered as a new local triangle patch method that generally has effective derivatives at the vertices and cross-boundary derivatives along the edges of the triangulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barnhill, R. E.: Representation and approximation of surfaces. In: Mathematical software III (Rice, J. R., ed.), pp. 69–120. New York: Academic Press.

    Google Scholar 

  2. Barnhill, R. E.: Surfaces in computer aided geometric design: A survey with new results. Comput. Aided Geom. Des. 2, 1–17 (1985).

    Article  MATH  Google Scholar 

  3. Barnhill, R. E., Birkhoff, G., Gordon, W. J.: Smooth interpolation in triangles. J. Approx. Theor. 8, 114–128 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnhill, R. E., Farin, G.: C 1 quintic interpolation over triangles: two explicit representations. Int. J. Num. Methods Eng. 17, 1763–1778 (1981).

    Article  MATH  Google Scholar 

  5. Carlson, R. E., Foley, T. A.: The paramter R 2 in multiquadric interpolation. Comput. Math. Appl. 27, 29–42 (1991).

    Article  MathSciNet  Google Scholar 

  6. Chiyokura, H., Kimura, F.: Design of solids with free-form surfaces. Comput. Graphics 17, 289–298 (1983).

    Article  Google Scholar 

  7. Duchon J.: Splines minimizing rotation invariant semi-norms in Sobelev spaces In: Multivariate approximation theory (Schempp, W. Zeller, K., eds.), pp. 85–100. Basel: Birkhauser 1975.

    Google Scholar 

  8. Dyn, N., Levin, D., Rippa, S.: Algorithms for the construction of data dependent triangulations. In: Algorithms for approximation II (Mason, J. C., Cox, M. G., eds.), pp. 185–192. London: Chapman and Hall 1990.

    Google Scholar 

  9. N. Dyn, Levin D., Rippa, S.: Data dependent triangulations for piecewise linear interpolation. IMA J. Numer. Anal. 10, 137–154 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  10. Farin, G.: A modified Clough-Tocher interpolant. Comput. Aided Geom. Des. 2, 19–27 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  11. Farin, G.: Curves and surfaces for computer aided geometric design. San Diego: Academic Press 1990.

    MATH  Google Scholar 

  12. Farin, G.: Surfaces over Dirichlet tessellations. Comput. Aided Geom. Des. 7, 281–292 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  13. Foley, T. A.: Interpolation and approximation of 3-D and 4-D scattered data. Comput. Math. Appl. 13, 711–740 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  14. Foley, T. A., Opitz, K.: Hybrid cubic Bézier triangle patches. In: Mathematical methods in computer aided geometric design II (Lyche, T. Schumaker, L. L., eds.), pp. 275–286. New York: Academic Press 1992.

    Google Scholar 

  15. Franke, R.: A critical comparison of some methods for interpolation of scattered data. Naval Postgraduate School, Technical Report NPS-53-79-003, 1979.

    Google Scholar 

  16. Franke, R.: Scattered data interpolation: tests of some methods. Math. Comp. 38, 181–200 (1982).

    MathSciNet  MATH  Google Scholar 

  17. Franke, R.: Smooth interpolation of scattered data by local thin plate splines Comput. Math. Appl. 8, 273–281 (1982b).

    MathSciNet  MATH  Google Scholar 

  18. Franke, R.: Recent advances in the approximation of surfaces from scattered data. In: Topics in multivariate approximation (Schumaker, L. L., Chui, C. C, Utreras, F., eds.), pp. 175–184. New York: Academic Press.

    Google Scholar 

  19. Franke, R., Nielson, G. M.: Scattered data interpolation: a tutorial and survey. In: Geometric modeling: methods and their applications (Hagen, H., Roller, D., eds.), pp. 131–160. Heidelberg: Springer.

    Google Scholar 

  20. Goodman, T.N.T., Said, H.: A C1 triangular interpolant suitable for scattered data interpolation.

    Google Scholar 

  21. Hagen, H., Schreiber, T., Gschwind, E.: Methods for surface interrogation. In: Visualization’ 90 (Kaufman, A., ed.), pp. 187–193. Los Alamitos: IEEE Press 1990.

    Google Scholar 

  22. Hardy, R. L., Multiquadric equations of topography and other irregular surfaces, J. Geophys. Res. 76, 1905–1915 (1971).

    Article  Google Scholar 

  23. Hardy, R. L.: Theory and applications of the multiquadric-biharmonic method. Comput. Math. Appl. 19, 163–208 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  24. Herron, G. F.: A characterization of certain C 1 discrete triangular interpolants. SIAM J. Numer. Anal. 22, 811–819 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  25. Hoschek, J., Lasser, D.: Grundlagen der geometrischen Datenverarbeitung. Leipzig: Teubner 1989.

    MATH  Google Scholar 

  26. Landcaster, P., Salkauskas, K.: Curve and surface fitting: an introduction. New York: Academic Press 1986.

    Google Scholar 

  27. Lawson, C. L.: Software for C 1 surface interpolation. In: Mathematical software III (Rice, J. R., ed.), pp. 161–194. New York: Academic Press 1977.

    Google Scholar 

  28. Nielson, G. M.: The side-vertex method for interpolation in triangles. J. Approx. Theor. 14, 318–336 (1979).

    Article  MathSciNet  Google Scholar 

  29. Nielson, G. M.: A method for interpolation of scattered data based upon a minimum norm network. Math. Comp. 40, 253–271 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  30. Pottmann, H.: Scattered data interpolation of scattered data based upon generalized minimum norm net works. Constr. Approx. 247-256 (1991).

    Google Scholar 

  31. Powell, M. J. D.: Radial basis functions for multivariate interpolation: a review. In: Algorithms for approximation (Mason, J. C, Cox, M. G., eds.), pp. 143–167 Oxford: Oxford University Press 1987.

    Google Scholar 

  32. Powell, M. J. D.: The theory of radial basis function approximation in 1990. In: Advances in numerical analysis II: wavelets, subdivision algorithms and radial functions (Light, W., ed.), pp. 105–210. Oxford: Oxford University Press 1991.

    Google Scholar 

  33. Schreiber, T.: A Voronoi diagram based adaptive K-means-type clustering algorithm for multidimensional weighted data. In: Computational geometry—methods, algorithms and applications (Bieri, H, Noltemeier, H., eds.), pp. 265-275. Berlin: 1991.

    Google Scholar 

  34. Schumaker, L. L.: Fitting surfaces to scattered data. In: Approximation theory (Lorentz, G. G., Chui, C. K, Schumaker, L. L., eds.) pp. 203–268. New York: Academic Press 1976.

    Google Scholar 

  35. Schumaker, L. L.: Triangulation methods. In: Topics in multivariate approximation (Chui, C, Schumaker, L. L., Utreras, F., eds.), pp. 219–232. New York: Academic Press 1987.

    Google Scholar 

  36. Zeckzer, D.: Dreiecks-basierte lokale Scattered Data Interpolation unter Verwendung radialer Basismethoden. Diplomarbeit, Fachbereich Informatik, Universität Kaiserslautern, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag/Wien

About this paper

Cite this paper

Foley, T.A., Dayanand, S., Zeckzer, D. (1995). Localized Radial Basis Methods Using Rational Triangle Patches. In: Hagen, H., Farin, G., Noltemeier, H. (eds) Geometric Modelling. Computing Supplement, vol 10. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7584-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7584-2_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82666-9

  • Online ISBN: 978-3-7091-7584-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics