Skip to main content

Generalized Polynomial Remainder Sequences

  • Chapter
Book cover Computer Algebra

Part of the book series: Computing Supplementa ((COMPUTING,volume 4))

Abstract

Given two polynomials over an integral domain, the problem is to compute their polynomial remainder sequence (p.r.s.) over the same domain. Following Habicht, we show how certain powers of leading coefficients enter systematically all following remainders. The key tool is the subresultant chain of two polynomials. We study the primitive, the reduced and the improved subresultant p.r.s. algorithm of Brown and Collins as basis for Computing polynomial greatest common divisors, resultants or Sturm sequences. Habicht’s subresultant theorem allows new and simple proofs of many results and algorithms found in different ways in Computer algebra.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bareiss, E. H.: Sylvester’s Identity and Multistep Integer-Preserving Gaussian Elimination. Math. Comp. 22, 565–578 (1968).

    MATH  MathSciNet  Google Scholar 

  2. Brown, W. S., Traub, J. F.: On Euclid’s Algorithm and the Theory of Subresultants. JACM 18, 505–514 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  3. Brown, W. S.: On Euclid’s Algorithm and the Computation of Polynomial Greatest Common Divisors. JACM 18 476–504 (1971).

    Google Scholar 

  4. Brown, W. S.: The Subresultant PRS Algorithm. ACM TOMS 4 237–249 (1978).

    Article  MATH  Google Scholar 

  5. Brown, W. S.: On the Subresultant PRS Algorithm. Abstract, SYMSAC 1976, 271.

    Google Scholar 

  6. Cantor, M.: Vorlesungen über Geschichte der Mathematik, II. New York: Johnson; Stuttgart: Teubner 1963 (reprint of the 2nd edition 1900).

    Google Scholar 

  7. Collins, G. E.: Polynomial Remainder Sequences and Determinants. Am. Math. Monthly 73, 708–712 (1966).

    Article  MATH  Google Scholar 

  8. Collins, G. E.: Subresultants and Reduced Polynomial Remainder Sequences. JACM 14 128–142 (1967).

    Article  MATH  Google Scholar 

  9. Collins, G. E.: Computer Algebra of Polynomials and Rational Functions. Am. Math. Mon. 80, 725–755 (1973).

    Article  MATH  Google Scholar 

  10. Collins, G. E.: The Calculation of Multivariate Polynomial Resultants. JACM 19 515–532 (1971).

    Article  Google Scholar 

  11. Collins, G. E.: The SAC-1 Polynomial GCD and Resultant System, Univ. of Wisconsin Comp. Sci. Dept. Tech. Report No. 145, 1–93 (Feb. 1972).

    Google Scholar 

  12. Habicht, W.: Eine Verallgemeinerung des Sturmschen Wurzelzählverfahrens. Comm. Math. Helvetici 21 99–116 (1948).

    Article  MATH  MathSciNet  Google Scholar 

  13. Habicht, W.: Zur inhomogenen Eliminationstheorie. Comm. Math. Helvetici 21 79–98 (1948).

    Article  MATH  MathSciNet  Google Scholar 

  14. Hearn, A. C.: Non-modular Computation of Polynomial GCD’s Using Trial Divisions. EUROSAM 1979 227–239.

    Google Scholar 

  15. Heindel, L. E.: Integer Arithmetic Algorithms for Polynomial Real Zero Determination. JACM 18 533–548 (1971).

    Article  MATH  MathSciNet  Google Scholar 

  16. Knuth, D. E.: The Analysis of Algorithms. Proc. Internat. Congress Math. (Nice, 1970), Vol. 3, pp. 269–274. Gauthier-Villars 1971.

    Google Scholar 

  17. Knuth, D. E.: The Art of Computer Programming, Vol. II, Ist ed., Reading, Mass.: Addison-Wesley. 1969.

    MATH  Google Scholar 

  18. Knuth, D. E.: The Art of Computer Programming, Vol. II, 2nd ed., Reading, Mass.: Addison-Wesley. 1981.

    MATH  Google Scholar 

  19. Kronecker, L.: Über den Zahlbegriff, Crelle J. reine und angew. Mathematik 101, 337–355 (1887).

    Article  Google Scholar 

  20. Lauer, E.: Algorithms of Symmetrie Polynomials. SYMSAC 1976 242–247.

    Google Scholar 

  21. Lehmer, D. H.: Euclid’s Algorithm for Large Numbers. Amer. Math. Monthly 45, 227–233 (1937).

    Article  MathSciNet  Google Scholar 

  22. Loos, R.: Computing Rational Zeros of Integral Polynomials by p-adic Expansion. SIAM J. Comp, (to appear).

    Google Scholar 

  23. Moenck, R.: Fast Computation of GCD’s. Proc. Fifth Sympos. on Theory of Computing, ACM, New York, pp. 142–151 (1973).

    Google Scholar 

  24. Moses, J., Yun, D. Y. Y.: The EZ GCD Algorithm, Proc. of ACM Annual Conference, Atlanta, pp. 159–166 (August 1973).

    Google Scholar 

  25. Musser, D. R.: Multivariate Polynomial Factoring. JACM 22 291–308 (1975).

    Article  MATH  MathSciNet  Google Scholar 

  26. Nunez, P.: Livro de Algebra em Arithmatica e Geometrica, problem No. LIII, in [27].

    Google Scholar 

  27. Schönhage, A.: Schnelle Berechnung von Kettenbruchentwicklungen. Acta Inform. 1, 130–144 (1971).

    Article  Google Scholar 

  28. Stevin, S.: Les oevres mathematiques de Simon Stevin (Girärd, A., ed.). Leyden: 1634.

    Google Scholar 

  29. Strassen, V.: Private communication, 1976.

    Google Scholar 

  30. Strassen, V.: The Computational Complexity of Continued Fractions. SYMSAC 1981 51–67.

    Google Scholar 

  31. Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd ed. Berkeley: Univ. of California Press 1951.

    MATH  Google Scholar 

  32. Trager, B. M.: Algebraic Factoring and Rational Function Integration. SYMSAC 1976 219–226.

    Google Scholar 

  33. van der Waerden, B. L.: Modern Algebra, Vol. II. New York: Frederick Ungar Publ. Co. 1953.

    Google Scholar 

  34. Wang, R. S.: An Improved Multivariable Polynomial Factorising Algorithm. Math. Comp. 32, 1215–1231 (1978).

    Article  MATH  MathSciNet  Google Scholar 

  35. Weber, H.: Lehrbuch der Algebra, 2. Aufl., §54, Theorem IV. Braunschweig: 1898.

    Google Scholar 

  36. Yun, D. Y. Y.: On Square-Free Decomposition Algorithms. SYMSAC 1976 26–35.

    Google Scholar 

  37. Yun, D. Y. Y.: The Hensel Lemma in Algebraic Manipulation, Ph. D. Thesis, Dept. of Math., MAC-TR-138, M.I.T., November 1974.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer-Verlag/Wien

About this chapter

Cite this chapter

Loos, R. (1983). Generalized Polynomial Remainder Sequences. In: Buchberger, B., Collins, G.E., Loos, R., Albrecht, R. (eds) Computer Algebra. Computing Supplementa, vol 4. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7551-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7551-4_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-81776-6

  • Online ISBN: 978-3-7091-7551-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics