Quantum Dynamics

  • Walter Thirring


Phase space is the arena of classical mechanics. The algebra of observables in quantum mechanics is likewise constructed with position and momentum, so this section covers the properties of those operators.


Coherent State Essential Spectrum Quantum Dynamics Born Approximation Weyl Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Chapter 3, General

  1. C. Cohen-Tannoudji, B. Diu, and F. Laloe. Quantum Mechanics. New York: Wiley, 1979.Google Scholar
  2. A. Galindo and P. Pascual. Mecánica Cuántica. Madrid: Alhambra, 1978.Google Scholar
  3. G. Grawert. Quantenmechanik. Wiesbaden: Akademie Verlagsgesellschaft, 1977.Google Scholar
  4. R. Jost. Quantenmechanik, in two volumes. Zurich: Verlag des Vereins der Mathematiker und Physiker an der ETH, 1969.Google Scholar
  5. A. Messiah. Quantum Mechanics, in two volumes. Amsterdam: North-Holland, 1961–1962.Google Scholar
  6. F. L. Pilar. Elementary Quantum Chemistry. New York: McGraw-Hill, 1968.Google Scholar
  7. L. I. Schiff. Quantum Mechanics. New York, McGraw-Hill, 1968.Google Scholar
  8. B. Simon. Quantum Mechanics for Hamiltonians Defined as Quadratic Forms. Princeton: Princeton University Press, 1974.Google Scholar
  9. H. Weyl. Gruppentheorie und Quantenmechanik. Leipzig: S. Hirzel, 1931.Google Scholar


  1. A. M. Perelomov. Coherent States for Arbitrary Lie Group. Commun. Math. Phys. 26, 222–236, 1972.MathSciNetADSzbMATHCrossRefGoogle Scholar


  1. R. Jost. The General Theory of Quantized Fields. Providence: American Mathematical Society, 1965.zbMATHGoogle Scholar
  2. R. F. Streater and A. S. Wightman. PCT, Spin, Statistics, and All That. New York: Benjamin, 1964.Google Scholar

Section 3.2

  1. H. Weyl, op. cit. Google Scholar
  2. A. R. Edmonds. Angular Momentum in Quantum Mechanics. Princeton: Princeton University Press, 1974.Google Scholar


  1. P. Ehrenfest. Bemerkung über die angenäherte Gültigkeit der klassischen Mechanik innerhalb der Quantenmechanik. Z. Phys. 45, 455–457, 1927.ADSzbMATHCrossRefGoogle Scholar


  1. T. Kato. On the Eigenfunctions of Many-Particle Systems in Quantum Mechanics. Commun. on Pure and Appl. Math. 10, 151–177, 1957.zbMATHCrossRefGoogle Scholar


  1. K. Hepp. The Classical Limit for Quantum Mechanical Correlation Functions. Commun. Math. Phys. 35, 265–277, 1974.MathSciNetADSCrossRefGoogle Scholar


  1. See references for (3.1.16).Google Scholar


  1. W. O. Amrein, Ph. A. Martin, and B. Misra. On the Asymptotic Condition of Scattering Theory. Helv. Phys. Acta 43, 313–344, 1970.MathSciNetzbMATHGoogle Scholar


  1. T. Kato. Wave Operators and Similarity for some Non-Selfadjoint Operators. Math. Ann. 162, 258–279, 1966.MathSciNetzbMATHCrossRefGoogle Scholar
  2. S. Agmon. Spectral Properties of Schrödinger Operators and Scattering Theory. Ann. Scuola Norm. Sup. Pisa, Cl. di Sci., ser. IV, 2, 151–218, 1975.MathSciNetzbMATHGoogle Scholar


  1. P. Deift and B. Simon. A Time-Dependent Approach to the Completeness of Multiparticle Quantum Systems. Commun. on Pure and Appl. Math. 30, 573–583, 1977.MathSciNetzbMATHCrossRefGoogle Scholar


  1. A. Weinstein and W. Stenger. Methods of Intermediate Problems for Eigenvalues: Theory and Ramifications. New York: Academic Press, 1972.zbMATHGoogle Scholar


  1. M. F. Barnsley. Lower Bounds for Quantum Mechanical Energy Levels. J. Phys. A11, 55–68, 1978.MathSciNetADSGoogle Scholar
  2. B. Baumgartner. A Class of Lower Bounds for Hamiltonian Operators. J. Phys. A12, 459–467, 1979.MathSciNetADSGoogle Scholar
  3. R. J. Duffin. Lower Bounds for Eigenvalues. Phys. Rev. 71, 827–828, 1947.MathSciNetADSCrossRefGoogle Scholar


  1. H. Grosse, private communicationGoogle Scholar


  1. See references for (3.5.21).Google Scholar
  2. P. Hertel, H. Grosse, and W. Thirring. Lower Bounds to the Energy Levels of Atomic and Molecular Systems. Acta Phys. Austr. 49, 89–112, 1978.MathSciNetADSGoogle Scholar


  1. B. Simon. An Introduction to the Self-Adjointness and Spectral Analysis of Schrödinger Operators. In: The Schrödinger Equation, op. cit. Google Scholar

(3.5.38; 1)

  1. V. Glaser, H. Grosse, A. Martin, and W. Thirring. A Family of Optimal Conditions for the Absence of Bound States in a Potential. In: Studies in Mathematical Physics, op. cit. Google Scholar
  2. See also reference [6].Google Scholar

Section 3.6

  1. W. O. Amrein, J. M. Jauch, and K. B. Sinha. Scattering Theory in Quantum Mechanics: Physical Principles and Mathematical Methods. Lecture Notes and Supplements in Physics, vol. 16. New York: Benjamin, 1977.zbMATHGoogle Scholar
  2. M. L. Goldberger and K. M. Watson. Collision Theory. New York: Wiley, 1964.zbMATHGoogle Scholar
  3. R. G. Newton. Scattering Theory of Waves and Particles. New York: McGraw-Hill, 1966.Google Scholar
  4. W. Sandhas. The N-Body Problem, Acta Physica Austriaca Supplementum, Vol. 13, Vienna and New York: Springer, 1974.Google Scholar
  5. J. R. Taylor. Scattering Theory. New York: Wiley, 1972.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1981

Authors and Affiliations

  • Walter Thirring
    • 1
  1. 1.Institute for Theoretical PhysicsUniversity of ViennaAustria

Personalised recommendations