Skip to main content

Development of β2-receptors in infancy and childhood

  • Conference paper

Summary

At birth, intraalveolar fluid is rapidly displaced by air and excessive interstitial fluid is absorbed into the vascular system. This removal of fluid and surfactant release are presumed to be linked to pulmonary β-adrenergic stimulation. Administration of β-blockers to fetal lambs was shown to abolish the increase in surfactant release that normally accompanies labour and delivery. Similar observations have been reported in fetal rabbits. Little is known about the development of receptors in humans. Indirect evidence from functional studies in human babies suggest similar changes although the ontogeny of human pulmonary receptors remains largely unknown. During gestation both neural and non-neural receptor types change. With advancing gestational age the number of intrapulmonary β-adrenergic receptors increases nearly tenfold between the 15th gestational week and term. Receptor distribution shows a predominance in alveolar walls, bronchiolar and bronchial walls and in airway smooth muscle. It has been shown both in vitro and in vivo that exogenous glucocorticoid increases pulmonary β-receptors. Thus, glucocorticoids may be responsible for the increased pulmonary β-receptor concentration in late gestation. Glucocorticoids may increase β-adrenergic reponsiveness by both changes in receptor concentration and coupling of receptor occupancy to response.

Postnatally, several early studies failed to find bronchodilator responses to nebulized β2-agonists in infancy. It was therefore believed for many years that β-agonists were ineffective in this age group. Recent well designed studies have however shown significant bronchodilator effects and protection against bronchoconstricting agents. Clinical improvements were shown both for infants treated with β2-agents alone or in combination with steroids. Methodological aspects may be one reason for discrepancies between older and more recent data concerning bronchodilatation. It therefore seems that infants have functioning β2-receptors from birth and that stimulation of these receptors produces the same effect as in older children. Clinically, the response is often quite small and interindividual differences are seen. Preschool children show the same response to β2-adrenergic agents as do schoolchildren.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Roberts JM, Jacobs MM, Cheng JB et al (1985) Fetal pulmonary β-adrenergic receptors: Characterization in the human and in vitro modulation by glucocorticoids in the rabbit. Pediatr Pulmonol 1 [Suppl]: S 69-S 76

    CAS  Google Scholar 

  2. Walters DV, Olver RE (1978) The role of catecholamines in lung liquid absorption at birth. Pediatr Res 12: 239–43

    Article  PubMed  CAS  Google Scholar 

  3. Oyarzun MF, Clements JA (1978) Control of lung surfactant by ventilation, adrenergic mediators, and prostaglandins in the rabbit. Am Rev Respir Dis 117: 879–91

    PubMed  CAS  Google Scholar 

  4. Mettler NR, Gay ME, Schuffman S et al (1981) Beta-adrenergic induced synthesis and secretion of phosphatydilcholine by isolated pulmonary type II cells. Lab Invest 45: 575–80

    PubMed  CAS  Google Scholar 

  5. Kresch MJ, Lima DM, Lu H (1996) Developmental regulation of phospholipid secretion by fetal type II pneumocytes. Biochim Biophys Acta 1299: 39–46

    PubMed  Google Scholar 

  6. Barnes PJ, Basbaum CB (1983) Mapping of adrenergic receptors in the trachea by autoradiography. Exp Lung Res 5: 183–92

    Article  PubMed  CAS  Google Scholar 

  7. Sparrow MP, Warwick SP, Mitchell HP (1994) Foetal airway motor tone in prenatal lung development of the pig. Eur Respir J 7: 1416–24

    Article  PubMed  CAS  Google Scholar 

  8. Barnes PJ, Karliner JS, Dollery CT (1980) Human lung adrenoceptors studied by radioligand binding. Clin Sci 58: 457–62

    PubMed  CAS  Google Scholar 

  9. Schell N, Durham D, Murphree SS et al (1992) Ontogeny of β-adrenergic receptors in pulmonary arterial smooth muscle, bronchial smooth muscle, and alveolar lining cells in the rat. Am J Respir Cell Mol Biol 7: 317–24

    PubMed  CAS  Google Scholar 

  10. Barnes P, Jacobs M, Roberts JM (1984) Glucocorticoids preferentially increase fetal alveolar β-adrenoceptors: autoradiographic evidence. Pediatr Res 18: 1191–4

    Article  PubMed  CAS  Google Scholar 

  11. Carstairs JS, Nimmo AJ, Barnes PJ (1985) Autoradiographic visualization of beta-adrenergic subtypes in human lung. Am Rev Respir Dis 132: 541–7

    PubMed  CAS  Google Scholar 

  12. Davis PB, Kercsmar CM (1991) Neural control of the lung. In: Chernick V, Mellins RB (eds) Basic mechanisms of pediatric respiratory disease: cellular and integrative. BC Becker: Philadelphia, 203–20

    Google Scholar 

  13. Crane J, Pearce N, Flatt A et al (1989) Prescribed fenoterol and death from asthma in New Zealand 1981–1983: case-control study. Lancet is 917–22

    Google Scholar 

  14. Spitzer WO, Suissa S, Ernst P et al (1992) The use of β-agonists and the risk of death and near death from asthma. N Engl J Med 326: 501–6

    Article  PubMed  CAS  Google Scholar 

  15. Burrows B, Lebowitz MD (1992) The β-agonist dilemma. N Engl J Med 326: 560–61

    Article  PubMed  CAS  Google Scholar 

  16. Eggleston PA (1997) Are β-adrenergic bronchodilators safe? Pediatrics 99: 729–30

    Article  PubMed  CAS  Google Scholar 

  17. Wilson NM (1989) Wheezy bronchitis revisited. Arch Dis Child 64: 1194–99

    Article  PubMed  CAS  Google Scholar 

  18. Martinez FD, Wright AL, Taussig LM et al (1995) Asthma and wheezing in the first six years of life. N Engl J Med 332: 133–8

    Article  PubMed  CAS  Google Scholar 

  19. Schuh S, Reider MJ, Canny G et al (1990) Nebulized albuterol in acute childhood asthma: Comparison of two doses. Pediatrics 86: 509–13

    PubMed  CAS  Google Scholar 

  20. Warner JO, Neijens JH, Landau LI et al (1992) Asthma: a follow-up statement from an International Paediatric Asthma Consensus Group. Arch Dis Child 67: 240–8

    Article  Google Scholar 

  21. Clough JB (1993) Bronchodilators in infancy. Thorax 48: 308

    Article  PubMed  CAS  Google Scholar 

  22. Lenney W, Milner AD (1978) At what age do bronchodilator drugs work? Arch Dis Child 53: 532–5

    Article  PubMed  CAS  Google Scholar 

  23. Silverman M (1984) Bronchodilators for wheezy infants? Arch Dis Child 59: 84–7

    Article  PubMed  CAS  Google Scholar 

  24. Bentur I, Canny GJ, Shields MD et al (1992) Controlled trial of nebulized albuterol in children younger than 2 years of age with acute asthma. Pedia-, trics 89: 133–7

    CAS  Google Scholar 

  25. Kraemer R, Frey U, Sommer CW et al (1991) Short-term effect of albuterol, delivered via a new auxiliary device, in wheezy infants. Am Rev Respir Dis 144: 347–51

    Article  PubMed  CAS  Google Scholar 

  26. Denjean A, Guimaraes H, Migdal M et al (1992) Dose-related bronchodilator response to aerosolized salbutamol (albuterol) in ventilator-dependent infants. J Pediatr 120: 974–9

    Article  PubMed  CAS  Google Scholar 

  27. Kraemer R, Birrer P, Modelska K et al (1992) A new baby-spacer device for aerosolized bronchodilator administration in infants with bronchopulmonary diseases. Eur J Pediatr 151: 57–60

    Article  PubMed  CAS  Google Scholar 

  28. Klassen TP, Rowe PC, Sutcliffe T et al (1991) Randomized trial of salbutamol in acute bronchiolitis. J Pediatr 118: 807–11

    Article  PubMed  CAS  Google Scholar 

  29. Global initiative for asthma (1995) Global strategy for asthma management and prevention NHLBUWHO workshop report. National Institutes of Health Publication No 95–3659

    Google Scholar 

  30. Lowell DI, Lister G, von Koss H et al (1987) Wheezing in infants: the response to epinephrine. Pediatrics 79: 939–45

    PubMed  CAS  Google Scholar 

  31. Montgomery GL, Tepper RS (1990) Changes in airway reactivity with age in normal infants and young children. Am Rev Respir Dis 142: 1372–5

    PubMed  CAS  Google Scholar 

  32. Henderson AJW, Young S, Stick SM et al (1993) Effect of salbutamol on histamine induced bronchoconstriction in healthy infants. Thorax 48: 317–23

    Article  PubMed  CAS  Google Scholar 

  33. Tepper RS (1987) Airway reactivity in infants: a positive response to methacholine and metaproterenol. J Appl Physiol 62: 1155–9

    PubMed  CAS  Google Scholar 

  34. Riedel F, von der Hardt H (1986) Bronchial sensitivity to inhaled histamine in healthy, nonatopic children. Pediatr Pulmonol 2: 15–8

    Article  PubMed  CAS  Google Scholar 

  35. Seidenburg J, Mir Y, von der Hardt H (1991) Hypoxaemia after nebulized salbutamol in wheezy infants: the importance of aerosol acidity. Arch Dis Child 66: 672–5

    Article  Google Scholar 

  36. Koller DY, Herouy Y, Götz M et al (1995) Clinical value of monitoring eosinophil activity in asthma. Arch Dis Child 73: 413–417

    Article  PubMed  CAS  Google Scholar 

  37. Wilson R, Cole PJ (1988) The role of bacterial products on ciliary function. Am Rev Respir Dis 138: 549–55

    Google Scholar 

  38. Essen-Zandvliet EE van, Hughes MD, Waalkens HJ et al (1993) Effects of 22 months of treatment with inhaled corticosteroids and/or beta-2-agonists on lung function, airway responsiveness, and symptoms in children with asthma. Am Rev Respir Dis 146: 547–51

    Google Scholar 

  39. Sanchez I, Koster J, de Powell RE et al (1993) Effect of racemic epinephrine and salbutamol on clinical score and pulmonary mechanics in infants with bronchiolitis. J Pediatrics 122: 145–51

    Article  CAS  Google Scholar 

  40. Tal A, Golan H, Grauer N et al (1996) Deposition pattern of radiolabeled salbutamol inhaled from a metered-dose inhaler by means of a spacer with mask in young children with airway obstruction. J Pediatr 128: 479–84

    Article  PubMed  CAS  Google Scholar 

  41. British Guidelines on Asthma Management (1997) Thorax 52 [Suppl ]1: S 1-S 21

    Google Scholar 

  42. Taylor DR, Sears MR, Herbison GP et al (1993) Regular inhaled β agonist in asthma: effects on exacerbations and lung functions. Thorax 48: 134–8

    Article  PubMed  CAS  Google Scholar 

  43. Kerrebijn KP, Essen-Zandvliet EEM van, Neijens HJ et al (1987) Effect of long-term treatment with inhaled corticosteroids and β-agonist on the bronchial responsiveness in children with asthma. J Allergy Clin Immunol 79: 653–59

    Article  PubMed  CAS  Google Scholar 

  44. Craig VL, Bigos D, Brilli RJ (1996) Efficacy and safety of continuous albuterol nebulization in children with status asthmaticus. Pediatr Emerg Care 12: 1–5

    PubMed  CAS  Google Scholar 

  45. O’Byrne PM (1997) Treatment of mild asthma. Lancet 349: 818

    Article  PubMed  Google Scholar 

  46. Browne GJ, Penna AS, Phung X et al (1997) Randomised trial of intravenous salbutamol in early management of acute severe asthma in children. Lancet 349: 310–314

    Google Scholar 

  47. Kerem E, Levison H, Schuh S et al (1993) Efficacy of albuterol administered by nebulizer versus spacer device in children with acute asthma. J Pediatr 123: 313–7

    Article  PubMed  CAS  Google Scholar 

  48. Jones K (1994) Salmeterol in the management of paediatric asthma. Respir Med 88: 639–43

    Article  PubMed  CAS  Google Scholar 

  49. Green CP, Price JF (1992) Prevention of exercise-induced asthma by inhaled salmeterol xinafoate. Arch Dis Child 67: 1014–7

    Article  PubMed  CAS  Google Scholar 

  50. Lenney W, Pedersen S, Boner AL et al (1995) Efficacy and safety of salmeterol in childhood asthma. Eur J Pediatr 154: 983–90

    Article  PubMed  CAS  Google Scholar 

  51. Russell G, Williams DAJ, Weller P et al (1995) Salmeterol xinafoate in children on high dose inhaled steroids. Ann Allergy, Asthma & Immunol 75: 423–8

    CAS  Google Scholar 

  52. Omlor GJ, Quinn LM, Schramm CM (1996) Ontogeny of β-adrenergic desensitization in rabbit tracheal smooth muscle. Pediatr Pulmonol 22: 255–62

    Article  PubMed  CAS  Google Scholar 

  53. Cheung D, Timmers MC, Zwinderman AH et al (1992) Long-term effects of a long-lasting β2- adrenoceptor agonist, salmeterol, on airway hyperresponsiveness in patients with mild asthma. N Engl J Med 327: 1198–203

    Article  PubMed  CAS  Google Scholar 

  54. Grove A, Lipworth BJ (1995) Bronchodilator subsensitivity to salbutamol after twice daily salmeterol in asthmatic patients. Lancet 346: 201–6

    Article  PubMed  CAS  Google Scholar 

  55. Simons FER, Gerstner TV, Cheang MS (1997) Tolerance to the bronchoprotective effect of salmeterol in adolescents with exercise-induced asthma using concurrent inhaled glucocorticoid treatment. Pediatrics 99: 655–9

    Article  PubMed  CAS  Google Scholar 

  56. Noble V, Ruggins NR, Everard MI et al (1992) Inhaled budesonide for chronic wheezing under 18 months of age. Arch Dis Child 67: 285–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag/Wien

About this paper

Cite this paper

Götz, M. (1998). Development of β2-receptors in infancy and childhood. In: Kummer, F. (eds) Treatment of Asthma: The long-acting beta-2-agonists. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7513-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7513-2_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83124-3

  • Online ISBN: 978-3-7091-7513-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics