Skip to main content

Zusammenfassung

Nachdem in den Dreißigerjahren die Konstitution der Sterole* und Gallensäuren und anschließend bald auch die der anderen Steroide (Sexualhormone, Nebennierenrinden-Hormone, Spirostanole, Cardenolide, Bufadienolide und Steranalkaloide) in den wesentlichen Grundzügen geklärt war, hat es nicht an Versuchen gefehlt, Einblick in den Weg der Biogenese dieser Stoffklasse zu gewinnen. Solange die Technik des biologischen Experiments mit markierten Verbindungen (Isotope) wenig entwickelt war, bestand keine Aussicht, die gemachten Hypothesen durch Versuche entscheidend zu kontrollieren. So gründeten sich diese vor allem auf Ähnlichkeiten gewisser Naturstoffe im chemischen Aufbau mit den Steroiden und auch auf das gemeinsame Vorkommen in biologischem Material. Nunmehr ist es möglich geworden, diese Vorstellungen mit den Ergebnissen der Tracer-Technik zu prüfen und auf ihren Wert hinsichtlich der Klärung des vorliegenden Problems zu untersuchen. Trotzdem sind wir heute noch weit davon entfernt, ein klares Bild von der Biogenese dieser Stoffklasse zu besitzen. Es dürfte nützlich sein, das gesamte Tatsachenmaterial einmal kritisch zu sichten, um einen Überblick über den derzeitigen Stand unseres Wissens zu geben.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literaturverzeichnis

  1. Anker, H. S. and K. Bloch: The Action of Platinum on Cholesterol in Acetic Acid Solution. J. Amer. Chem. Soc. 66, 1752 (1944).

    CAS  Google Scholar 

  2. Antia, N. J., Y. Mazur, R. R. Wilson and F. S. Spring: Steroids. XI. Isolation of Cholegenin. and isoCholegenin from Ox-bile. J. Chem. Soc. (London) 1954, 1218.

    Google Scholar 

  3. Arigoni, D., O. Jeger und L. Ruzicka: Zur Kenntnis der Triterpene. 183. Mitt. Über die Konstitution und Konfiguration von Tirucallol, Euphorbol und Elemadienolsäure. Helv. Chim. Acta 38, 222 (1955).

    CAS  Google Scholar 

  4. Arigoni, D., R. Viterbo, M. Dünnenberger, O. Jeger und L. Ruzicka: Zur Kenntnis der Triterpene. 182. Mitt. Konstitution und Konfiguration von Euphol und iso-Euphenol. Helv. Chim. Acta 37, 2306 (1954).

    CAS  Google Scholar 

  5. Arigoni, D., H. Wyler und O. Jeger: Zur Kenntnis der Triterpene. 179. Mitt. Über die gegenseitigen Beziehungen bei Elemadienolsäure, Tirucalladienol und Euphorbadienol. Helv. Chim. Acta 37, 1553 (1954).

    CAS  Google Scholar 

  6. Arnaki, M. und Z. Stary: Untersuchungen über die Biosynthese der Carotinoide. Biochem. Z. 323, 376 (1952).

    CAS  Google Scholar 

  7. Arreguin, B., J. Bonner and B. J. Wood: Studies on the Mechanism of Rubber Formation in the Guayule. III. Experiments with Isotopic Carbon. Arch. Biochem. Biophys. 31, 234 (1951).

    CAS  Google Scholar 

  8. Baker, C. G. and D. M. Greenberg: Studies with Radioactive Carbon-labeled Acetate on Cholesterol Metabolism in Rats Fed p-Dimethylaminoazobenzene. Cancer Res. 9, 701 (1949).

    CAS  Google Scholar 

  9. Barton, D. H. R.: Triterpenoids. III. cycloArtenone, a Triterpenoid Ketone. J. Chem. Soc. (London) 1951, 1444.

    Google Scholar 

  10. Barton, D. H. R., D. A. J. Ives and B. R. Thomas: Triterpenoids. XVII. The Transformation of Lanostadienol (Lanosterol) into 14-Methylcholestan-3(β)-ol. J. Chem. Soc. (London) 1954, 903.

    Google Scholar 

  11. Barton, D. H. R., J. E. Page and E. W. Warnhoff: Triterpenoids. XVIII. The Constitutions of Phyllanthol and cycloArtenol. J. Chem. Soc. (London) 1954, 2715.

    Google Scholar 

  12. Bentley, H. R., J. A. Henry, ZD.S. Irvine and F. S. Spring: Triterpene Resinols and Related Acids. XXVIII. The Non-saponifiable Fraction from Strychnos nuxvomica Seed Fat: The Structure of cycloArtenol. J. Chem. Soc. (London) 1953, 3673.

    Google Scholar 

  13. Bergström, S.: The Formation of Bile Acids from Cholesterol in the Rat. Kongl. Fysiogr. Sällsk. Lund, Förhandl. 22, No. 16, p. 1 (1952).

    Google Scholar 

  14. Bloch, K.: The Biological Conversion of Cholesterol to Pregnanediol. J. Biol. Chem. 157, 661 (1945).

    CAS  Google Scholar 

  15. Bloch, K.: The Biological Synthesis of Cholesterol. Recent Progr. Hormone Res. 6, 111 (1951).

    Google Scholar 

  16. Bloch, K.: Über die Herkunft des Kohlenstoff-Atoms 7 in Cholesterin. Ein Beitrag zur Kenntnis der Biosynthese der Steroide. Helv. Chim. Acta 36, 1611 (1953).

    CAS  Google Scholar 

  17. Bloch, K., B. N. Berg and D. Rittenberg: The Biological Conversion of Cholesterol to Cholic Acid. J. Biol. Chem. 149, 511 (1943).

    CAS  Google Scholar 

  18. Bloch, K., E. Borek and D. Rittenberg: Synthesis of Cholesterol in Surviving Liver. J. Biol. Chem. 162, 441 (1946).

    CAS  Google Scholar 

  19. Bloch, K. and D. Rittenberg: On the Utilization of Acetic Acid for Cholesterol Formation. J. Biol. Chem. 145, 625 (1942).

    CAS  Google Scholar 

  20. Bloch, K. and D. Rittenberg: The Preparation of Deuterio Cholesterol, J. Biol. Chem. 149, 505 (1943).

    CAS  Google Scholar 

  21. Bloch, K. and D. Rittenberg: An Estimation of Acetic Acid Formation in the Rat. J. Biol. Chem. 159, 45 (1945).

    CAS  Google Scholar 

  22. Bonner, J. and B. Arregui:n The Biochemistry of Rubber Formation in the Guayule. I. Rubber Formation in Seedlings. Arch. Biochemistry 21, 109 (1949).

    CAS  Google Scholar 

  23. Bowers, A., T. G. Halsall and (in part) G. C. Sayer: The Chemistry of the Triterpenes and Related Compounds. XXV. Some Stereochemical Problems Concerning Polyporenic Acid C. J. Chem. Soc. (London) 1954, 3070.

    Google Scholar 

  24. Brady, R. O.: Biosynthesis of Radioactive Testosterone in vitro. J. Biol. Chem. 193, 145 (1951).

    CAS  Google Scholar 

  25. Brady, R. O. and S. Gurin: The Biosynthesis of Radioactive Fatty Acids and Cholesterol. J. Biol. Chem. 186, 461 (1950).

    CAS  Google Scholar 

  26. Brady, R. O. and S. Gurin: The Synthesis of Radioactive Cholesterol and Fatty Acids in vitro. J. Biol. Chem. 189, 371 (1951).

    CAS  Google Scholar 

  27. Buchanan, J. M., W. Sakami and S. Gurin: A Study of the Mechanism of Fatty Acid Oxidation with Isotopic Acetoacetate. J. Biol. Chem. 169, 411 (1947).

    CAS  Google Scholar 

  28. Bucher, N. L. R.: The Formation of Radioactive Cholesterol and Fatty Acids from C14-Labeled Acetate by Rat Liver Homogenates. J. Amer. Chem. Soc. 75, 498 (1953).

    CAS  Google Scholar 

  29. Bucher, N. L. R., N. H. McGovern, R. Kingston and M. H. Kennedy: Factors Affecting Biosynthesis of Cholesterol from Acetate by Rat Liver Homogenates. Federat. Proc. (Amer. Soc. exp. Biol.) 12, 184 (1953).

    Google Scholar 

  30. Byers, S. O. and M. W. Biggs: Cholic Acid and Cholesterol: Studies Concerning Possible Intraconversion. Arch. Biochem. Biophys. 39, 301 (1952).

    CAS  Google Scholar 

  31. Chaikoff, I. L., M. D. Siperstein, W. G. Dauben, H. L. Bradlow, J. F. Eastham, G. M. Tomkixs, J. R. Meier, R. W. Chen, S. Hotta and P. A. Srere: C14-Cholesterol. II. Oxidation of Carbons 4 and 26 to Carbon Dioxide by the Intact Rat. J. Biol. Chem. 194, 413 (1952).

    CAS  Google Scholar 

  32. Channon, H. J.: The Biological Significance of the Unsaponifiable Matter of Oils. I. Experiments with the Unsaturated Hydrocarbon, Squalene (Spinacene). Biochemic J. 20, 400 (1926).

    CAS  Google Scholar 

  33. Conroy, H.: Picrotoxin. II. The Skeleton of Picrotoxin. The Total Synthesis of dl-Picrotoxadiene. J. Amer. Chem. Soc. 74, 3046 (1952).

    CAS  Google Scholar 

  34. Coon, M. J.: The Metabolic Fate of the Isopropyl Group of Leucine. J. Biol. Chem. 187, 71 (1950).

    CAS  Google Scholar 

  35. Cornforth, J. W., G. D. Hunter and G. Popják: Distribution of Acetate Carbon in the Ring-structure of Cholesterol. Biochemic. J. 53, XXXIV (1953).

    Google Scholar 

  36. Cornforth, J. W., G. D. Hunter and G. Popják: Studies of Cholesterol Biosynthesis. I. A New Chemical Degradation of Cholesterol. II. Distribution of Acetate Carbon in the Ring Structure. Biochemie. J. 54, 590, 597 (1953).

    CAS  Google Scholar 

  37. Curran, G. L.: Utilization of Acetoacetic Acid in Cholesterol Synthesis by Surviving Rat Liver. J. Biol. Chem. 191, 775 (1951).

    CAS  Google Scholar 

  38. Curran, G. L. and D. Rittenberg: The Role of Ethyl Alcohol in the Biological Synthesis of Cholesterol. J. Biol. Chem. 190, 17 (1951).

    CAS  Google Scholar 

  39. Dauben, W. G., S. Abraham, S. Hotta, I. L. Chaikoff, H. L. Bradlow and A. H. Soloway: On the Incorporation of Acetate into Cholesterol. J. Amer. Chem. Soc. 75, 3038 (1953).

    CAS  Google Scholar 

  40. Fieser, L. F. and M. Fieser: Natural Products Related to Phenanthrene, 3rd ed. Amer. Chem. Soc. Monograph Series, No. 70. New York: Relnhold Publ. 1949.

    Google Scholar 

  41. Florey, K. and M. Ehrenstein: Investigations on Steroids. XXII. Studies on Ouabagenin. I. J. Organ. Chem. (USA) 19, 1174 (1954).

    CAS  Google Scholar 

  42. Fukushima, D. K. and T. F. Gallagher: Isotopic Distribution in Cholesterol after Platinum-catalyzed Hydrogen-Deuterium Exchange. J. Biol. Chem. 198, 861 (1952).

    CAS  Google Scholar 

  43. Fukushima, D. K. and R. S. Rosenfeld: Sterol and Steroid Metabolism. Chem. Pathways Metabolism 1, 349 (1954).

    CAS  Google Scholar 

  44. Gallagher, T. F., H. L. Bradlow, D. K. Fukushima, C. T. Beer, T. H. Kritchevsky, M. Stokem, M. L. Eidinoff, L. Hellman and K. Dobriner: Studies of the Metabolites of Isotopic Steroid Hormones in Man. Recent Progr. Hormone Res. 9, 411 (1954).

    Google Scholar 

  45. Gould, R. G., D. J. Campbell, C. B. Taylor, F. B. Kelly, Jr., I. Warner and C. B. Davis, Jr.: Origin of Plasma Cholesterol using Carbon14. Federat Proc. (Amer, Soc. exp. Biol.) 10, 191 (1951).

    Google Scholar 

  46. Gould, R. G., C. B. Taylor, J. S. Hagerman, I. Warner and D. J. Campbell: Cholesterol Metabolism. I. Effect of Dietary Cholesterol on the Synthesis of Cholesterol in Dog Tissue in vitro. J. Biol. Chem. 201, 519 (1953).

    CAS  Google Scholar 

  47. Gray, I., P. Adams and H. Hauptmann: The Utilization of the Branched Chain of Isobutyric Acid Studied with 14C. Experientia 6, 430 (1950).

    CAS  Google Scholar 

  48. Grob, E. C., G. G. Poretti, A. v. Muralt et W. H. Schopfer: Recherches sur la biosynthèse des caroténoïdes chez un microorganisme. Production de caroténoïdes marqués par Phycomyces blakesleeanus. Experientia 7, 218 (1951).

    CAS  Google Scholar 

  49. Guider, J. M., T. G. Halsall, R. Hodges and E. R. H. Jones: The Chemistry of the Triterpenes and Related Compounds. XXVI. The Nature of Polyporenic Acid B. J. Chem. Soc. (London) 1954, 3234.

    Google Scholar 

  50. Haines, W. J., E. D. Nielson, N. A. Drake and O. R. Woods: Biosynthesis of 17-α-Hydroxycorticosterone from Acetate. Arch. Biochem. Biophys. 32, 218 (1951).

    CAS  Google Scholar 

  51. Halsall, T. G. and R. Hodges: The Chemistry of the Triterpenes and Related Compounds. XXIV. The Conversion of Polyporenic Acid A into a Lanosterol Derivative. J. Chem. Soc. (London) 1954, 2385.

    Google Scholar 

  52. Halsall, T. G., R. Hodges and E. R. H. Jones: The Chemistry of the Triterpenes and Related Compounds. XIX. Further Evidence concerning the Structure of Polyporenic Acid A. J. Chem. Soc. (London) 1953, 3019.

    Google Scholar 

  53. Hanahan, D. J. and S. J. al-Wakil: The Biosynthesis of Ergosterol from Isotopic Acetate. Arch. Biochem. Biophys. 37, 167 (1952).

    CAS  Google Scholar 

  54. Hanahan, D. J. and S. J. Wakil: The Origin of Some of the Carbon Atoms of the Side Chain of C14-Ergosterol. J. Amer. Chem. Soc. 75, 273 (1953).

    CAS  Google Scholar 

  55. Hayano, M. and R. I. Dorfman: The Enzymatic C-11β-Hydroxylation of Steroids. J. Biol. Chem. 201, 175 (1953).

    CAS  Google Scholar 

  56. Hayano, M. and R. I. Dorfman: The Action of Adrenal Homogenates on Progesterone, 17-Hydroxy-progesterone, and 21-Desoxycortisone. Arch. Biochem. Biophys. 36, 237 (1952).

    CAS  Google Scholar 

  57. Hayano, M., R. I. Dorfman and E. Y. Yamada: The Conversion of Desoxycorticosterone to Glycogenic Material by Adrenal Homogenates. J. Biol. Chem. 193, 175 (1951).

    CAS  Google Scholar 

  58. Heard, R. D. H. and V. J. O’Donnell: Biogenesis of the Estrogens: The Failure of Cholesterol-4-C14 to give Rise to Estrone in the Pregnant Mare. Endocrinology 54, 209 (1954).

    CAS  Google Scholar 

  59. Heilbron, I. M., T. P. Hilditch and E. D. Kamm: The Unsaponifiable Matter from the Oils of Elasmobranch Fish. II. The Hydrogenation of Squalene in the Presence of Nickel. J. Chem. Soc. (London) 1926, 3131.

    Google Scholar 

  60. Heilbron, I. M., E. D. Kamm and W. M. Owens: The Unsaponifiable Matter from the Oils of Elasmobranch Fish. I. A Contribution to the Study of the Constitution of Squalene (Spinacene). J. Chem. Soc. (London) 1926, 1630.

    Google Scholar 

  61. Hirschmann, H. and F.B. Hirschmann: Steroid Excretion in a Case of Adrenocortical Carcinoma. III. The Isolation of Δ 5-Pregnenediol-3(β), 17(β)-one-20 and of 17a-Methyl-Δ5-D-homoandrostenediol-3(β), 17a(α)-one-17. J. Biol. Chem. 167, 7 (1947).

    CAS  Google Scholar 

  62. Kahnt, F. W. und A. Wettstein: Die 11-Oxydation von Desoxy-cortico-steron und Reichstein’s Substanz S mit Hilfe tierischer Organhomogenate. Bildung von Corticosteron und 17-Oxy-corticosteron. Helv. Chim. Acta 34, 1790 (1951).

    CAS  Google Scholar 

  63. Klein, H. P.: Relation of Co-enzyme A to Steroid and Total Lipid Synthesis in Yeast. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 209 (1951).

    Google Scholar 

  64. Klein, H. P. and F. Lipmann: The Relationship of Co-enzyme A to Lipide Synthesis. I. Experiments with Yeast. J. Biol. Chem. 203, 95 (1953).

    CAS  Google Scholar 

  65. Klein, H. P. and F. Lipmann: The Relationship of Co-enzyme A to Lipide Synthesis. II. Experiments with Rat Liver. J. Biol. Chem. 203, 101 (1953).

    CAS  Google Scholar 

  66. Kritchevsky, D. and I. Gray: Biosynthesis of Cholesterol from Isobutyrate. Experientia 7, 183 (1951).

    CAS  Google Scholar 

  67. Langdon, R. G. and K. Bloch: Biosynthesis of Squalene and Cholesterol. J. Amer. Chem. Soc. 74, 1869 (1952).

    CAS  Google Scholar 

  68. Langdon, R. G. and K. Bloch: The Biosynthesis of Squalene. J. Biol. Chem. 200, 129 (1953).

    CAS  Google Scholar 

  69. Langdon, R. G. and K. Bloch: The Utilization of Squalene in the Biosynthesis of Cholesterol. J. Biol. Chem. 200, 135 (1953).

    CAS  Google Scholar 

  70. Langdon, R. G. and K. Bloch: The Effect of some Dietary Additions on the Synthesis of Cholesterol from Acetate in vitro. J. Biol. Chem. 202, 77 (1953).

    CAS  Google Scholar 

  71. Lettré, H., H. H. Inhoffen und R. Tschesche: Über Sterine, Gallensäuren und verwandte Naturstoffe. Bd. I. Stuttgart: F. Enke. 1954.

    Google Scholar 

  72. Lieberman, S. and S. Teich: Recent Trends in the Biochemistry of the Steroid Hormones. Pharmacol. Rev. 5, 285 (1953).

    CAS  Google Scholar 

  73. Little, H.N. and K. Bloch: Studies on the Utilization of Acetic Acid for the Biological Synthesis of Cholesterol. J. Biol. Chem. 183, 33 (1950).

    CAS  Google Scholar 

  74. MacKenna, R. M. B., V. R. Wheatley and A. Wormall: The Composition of the Surface Skin Fat (Sebum) from the Human Forearm. J. Invest. Dermatol. 15, 33 (1950).

    CAS  Google Scholar 

  75. Mazur, Y. and F. S. Spring: Steroids. XII. The Structures of Cholegenin and isoCholegenin. J. Chem. Soc. (London) 1954, 1223.

    Google Scholar 

  76. Miescher, K. und P. Wieland: Über Steroide. 100. Mitt. Zur Biosynthese der Steroide. Helv. Chim. Acta 33, 1847 (1950).

    CAS  Google Scholar 

  77. Mondon, A.: Zur Biogenese der Steroide. Angew. Chem. 65, 333. (1953).

    CAS  Google Scholar 

  78. Mondon, A.: Zur Biogenese der Steroide. Angew. Chem. 66, 32 (1954).

    Google Scholar 

  79. Ottke, R. C., S. Simmonds and E. L. Tatum: Deuteroacetate in the Biosynthesis of Ergosterol by Neurospora. J. Biol. Chem. 186, 581 (1950).

    CAS  Google Scholar 

  80. Ottke, R. C., E. L. Tatum, I. Zabin and K. Bloch: Isotopic Acetate and Isovalerate in the Synthesis of Ergosterol by Neurospora. J. Biol. Chem. 189, 429 (1951).

    CAS  Google Scholar 

  81. Picha, G. M., F. J. Saunders and D.M. Green: An Oxydative Metabolite of Desoxycorticosterone. Science (Washington) 115, 704 (1952).

    CAS  Google Scholar 

  82. Pihl, A., K. Bloch and H. S. Anker: The Rates of Synthesis of Fatty Acids and Cholesterol in the Adult Rat Studied with the Aid of Labeled Acetic Acid. J. Biol. Chem. 183, 441 (1950).

    CAS  Google Scholar 

  83. Pincus, G., O. Hechter and A. Zaffaroni: The Effect of ACTH upon Steroidogenesis by the Isolated Perfused Adrenal Gland. Proc. 2nd Clinical ACTH Conf. Research 1, 40 (1951).

    Google Scholar 

  84. Plager, J. E. and L. T. Samuels: Synthesis of C14-17-Hydroxy-11-desoxycorticosterone and 17-Hydroxycorticosterone by Fractionated Extracts of Adrenal Hcmcgenates. Arch. Biochem. Biophys. 42, 477 (1953).

    CAS  Google Scholar 

  85. Plaut, G. W. E. and H. A. Lardy: Enzymatic Incorporation of C14-Bicarbonate into Acetoacetate in the Presence of Various Substrates. J. Biol. Chem. 192, 435 (1951).

    CAS  Google Scholar 

  86. Popják, G.: Lipid Synthesis from Small Molecules. Biochemic. J. 51, XIV (1952).

    Google Scholar 

  87. Price, T. D. and D. Rittenberg: The Metabolism of Acetone. I. Gross Aspects of Catabolism and Excretion. J. Biol. Chem. 185, 449 (1950).

    CAS  Google Scholar 

  88. Rabinovitz, M. and D.M. Greenberg: Incorporation of Radioacetate into the Cholesterol of Fetal Rat Liver Homogenates. Arch. Biochem. Biophys. 40, 472 (1952).

    CAS  Google Scholar 

  89. Rabinowitz, J. L. and S. Gurin: The Biosynthesis of Radioactive Cholesterol by Particle-free Extracts of Rat Liver. Biochim. Biophys. Acta 10, 345 (1953).

    CAS  Google Scholar 

  90. Rittenberg, D. and K. Bloch: The Utilization of Acetic Acid for the Synthesis of Fatty Acids. J. Biol. Chem. 160, 417 (1945).

    CAS  Google Scholar 

  91. Robinson, R.: Structure of Cholesterol. J. Soc. Chem. Ind. 53, 1062 (1934).

    Google Scholar 

  92. Roth, M., G. Saucy, R. Anliker, O. Jeger und H. Heusser: Über Steroide und Sexualhormone. 195. Mitt. Die Konstitution der Polyporensäure A. Helv. Chim. Acta 36, 1908 (1953).

    CAS  Google Scholar 

  93. Samuels, L. T., M. L. Helmreich, M. B. Lasater and H. Reich: An Enzyme in Endocrine Tissues which Oxydizes Δ 5-3-Hydroxy Steroids to α β-Unsaturated Ketones. Science (Washington) 113, 490 (1951).

    CAS  Google Scholar 

  94. Samuels, L. T. and C. D. West: The Intermediary Metabolism of the Non-benzoid Steroid Hormones Vitamins and Horm. 10, 251 (1952).

    CAS  Google Scholar 

  95. Savard, K., R. I. Dorfman and E. Poutasse: Biogenesis of Androgens in Human Testis. J. Clin. Endocrinol, and Metabolism 12, 935 (1952).

    Google Scholar 

  96. Schopfer, W. H. et E. C. Grob: Sur la biosynthèse du β-carotene par Phycomyces cultivé sur un milieu contenant de l’acétate de sodium comme unique source de carbone. Expenentia 8, 140 (1952).

    CAS  Google Scholar 

  97. Schwenk, E., G.J. Alexander, T. H. Stoudt and C. A. Fish: Studies on the Biosynthesis of Cholesterol. VII. Formation of Cholesterol Precursors by Yeast. Arch. Biochem. Biophys. 55, 274 (1955).

    CAS  Google Scholar 

  98. Schwenk, E. and N.T. Werthessen: Studies on the Biosynthesis of Cholesterol. III. Purification on C14-Cholesterol from Perfusions of Livers and Other Organs. Arch. Biochem. Biophys. 40, 334 (1952).

    CAS  Google Scholar 

  99. Schwenk, E. and N.T. Werthessen: Studies on the Biosynthesis of Cholesterol. IV. Higher Counting Substances Accompanying C14-Cholesterol in the Intact Rat. Arch. Biochem. Biophys. 42, 91 (1953).

    CAS  Google Scholar 

  100. Siperstein, M. D. and I. L. Chaikoff: C14-Cholesterol. III. Excretion of Carbons 4 and 26 in Feces, Urine, and Bile. J. Biol. Chem. 198, 93 (1952).

    CAS  Google Scholar 

  101. Siperstein, M. D., F.M. Harold, I. L. Chaikoff and W.G. Dauben: C14-Cholesterol. VI. Biliary End-products of Cholesterol Metabolism. J. Biol. Chem. 210, 181 (1954).

    CAS  Google Scholar 

  102. Smedley MacLean, I. and D. Hoffert: The Carbohydrate and Fat Metabolism of Yeast. III. The Nature of the Intermediate Stages. Biochemic. J. 20, 343 (1926).

    Google Scholar 

  103. Sobel, H.: Squalene in Sebum and Sebumlike Materials. J. Invest. Dermatol. 13, 333 (1949).

    CAS  Google Scholar 

  104. Sonderhoff, R. und H. Thomas: Die enzymatische Dehydrierung der Trideutero-Essigsäure. Liebigs Ann. Chem. 530, 195 (1937).

    CAS  Google Scholar 

  105. Srere, P. A., I. L. Chaikoff and W. G. Dauben: The in vitro Synthesis of Cholesterol from Acetate by Surviving Adrenal Cortical Tissue. J. Biol. Chem. 176, 829 (1948).

    CAS  Google Scholar 

  106. Srere, P.A., I. L. Chaikoff, S. S. Treitman and L. S. Burstein: The Extrahepatic Synthesis of Cholesterol. J. Biol. Chem. 182, 629 (1950).

    CAS  Google Scholar 

  107. Tamm, C.H.: Glykoside und Aglykone. 141. Mitt. Die Konstitution des Ouabagenin-monoacetonids. Helv. Chim. Acta. 38, 147 (1955).

    CAS  Google Scholar 

  108. Stoll, A. und J. Renz: Der enzymatische Abbau des Scillirosids zum Scillirosidin. Helv. Chim. Acta 33, 268 (1950).

    Google Scholar 

  109. Täufel, K., H. Thaler und H. Schreyegg: Squalen als Bestandteil des Hefefettes. Fette und Seifen 43, 26 (1936).

    Google Scholar 

  110. Thorbjarnarson, T. and J. C. Drummond: Occurrence of an Unsaturated Hydrocarbon in Olive Oil. Analyst 60, 23 (1935).

    CAS  Google Scholar 

  111. Tomking, G. M., H. Sheppard and I. L. Chaikoff: Cholesterol Synthesis by Liver. III. Its Regulation by Ingested Cholesterol. J. Biol. Chem. 201, 137 (1953).

    Google Scholar 

  112. Tomking, G. M., H. Sheppard and I. L. Chaikoff: Cholesterol Synthesis by Liver. IV. Suppression by Steroid Administration. J. Biol. Chem. 203, 781 (1953).

    Google Scholar 

  113. Tschesche, R. und F. Korte: Zum biochemischen Syntheseweg der Steroide. Angew. Chem. 64, 633 (1952)

    CAS  Google Scholar 

  114. Tschesche, R. und F. Korte: Zum biochemischen Syntheseweg der Steroide. Angew. Chem. 65, 81 (1953)

    CAS  Google Scholar 

  115. Tschesche, R. und F. Korte: Zum biochemischen Syntheseweg der Steroide. Angew. Chem. 66, 32 (1954).

    CAS  Google Scholar 

  116. Tschesche, R., M.-E. Rühsen und G. Snatzke: Zur Konstitution des Urezigenins und Xysmalogenins. Chem. Ber. (im Druck).

    Google Scholar 

  117. Tschesche, R. und G. Snatzke: Über Adynerin und Neriantin. Chem. Ber. 88, 511 (1955).

    CAS  Google Scholar 

  118. Ungar, F. and R. I. Dorfman: Incorporation of C14 in the Urinary Steroids in vivo. J. Biol. Chem. 205, 125 (1953).

    CAS  Google Scholar 

  119. Vestling, C. S. and G. F. Lata: Steroid Changes in Incubating Adrenal Homogenates. Science (Washington) 113, 582 (1951).

    CAS  Google Scholar 

  120. Voser, W., Hs. H. Günthard, H. Heusser, O. Jeger und L. Ruzicka: Zur Kenntnis der Triterpene. 175. Mitt. Ein neuer Weg zur Öffnung des Ringes C beim Lanostadienol. Helv. Chim. Acta 35, 2065 (1952).

    Google Scholar 

  121. Voser, W., M. V. Mijovic, H. Heusser, O. Jeger und L. Ruzicka: Über Steroide und Sexualhormone. 186. Mitt. Über die Konstitution des Lanostadienols (Lanosterins) und seine Zugehörigkeit zu den Steroiden. Helv. Chim. Acta 35, 2414 (1952).

    CAS  Google Scholar 

  122. Weinhouse, S.: The Structure of “Active Acetyl” and a Theory of Fatty Acid Catabolism. Arch. Biochem. Biophys. 37, 239 (1952).

    CAS  Google Scholar 

  123. Woodward, R. B. and K. Bloch: The Cyclization of Squalene in Cholesterol Synthesis. J. Amer. Chem. Soc. 75, 2023 (1953).

    CAS  Google Scholar 

  124. Wüersch, J., R. L. Huang and K. Bloch: The Orgin of the Isooctyl Side Chain of Cholesterol. J. Biol. Chem. 195, 439 (1952).

    Google Scholar 

  125. Zabin, I. and K. Bloch: The Utilization of Isovaleric Acid for the Synthesis of Cholesterol. J. Biol. Chem. 185, 131 (1950).

    CAS  Google Scholar 

  126. Zabin, I. and K. Bloch: Studies on the Utilization of Isovaleric Acid in Cholesterol Synthesis. J. Biol. Chem. 192, 267 (1951).

    CAS  Google Scholar 

  127. Zabin, I. and K. Bloch: The Utilization of Butyric Acid for the Synthesis of Cholesterol and Fatty Acids. J. Biol. Chem. 192, 261 (1951).

    CAS  Google Scholar 

  128. Zaffaroni, A., O. Hechter and G. Pincus: Adrenal Conversion of C14-Labeled Cholesterol and Acetate to Adrenal Cortical Hormones. J. Amer. Chem. Soc. 73, 1390 (1951).

    CAS  Google Scholar 

  129. Zabin, I. and K. Bloch: Conversion of C14-Labeled Acetate and Cholesterol to Adrenocortical Hormones by Perfused Adrenal Glands. Federat. Proc. (Amer. Soc. exp. Biol.) 10, 150 (1951).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1955 Wien Springer Verlag

About this chapter

Cite this chapter

Von Tschesche, R. (1955). Neuere Vorstellungen auf dem Gebiete der Biosynthese der Steroide und verwandter Naturstoffe. In: Zechmeister, L. (eds) Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products / Progres dans la Chimie des Substances Organiques Naturelŀes. Fortschritte der Chemie Organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products / Progres dans la Chimie des Substances Organiques Naturelŀes, vol 12. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7166-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7166-0_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7168-4

  • Online ISBN: 978-3-7091-7166-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics