Skip to main content

Zusammenspiel Motor-Treibstoff

  • Chapter
Raketentreibstoffe

Zusammenfassung

Die Entwurfsparameter für ein Fluggerät ergeben sich primär aus seiner Flugaufgabe; sie bestimmt den erforderlichen Gesamtimpuls und damit die notwendige Schubgröße. Die Dimensionen des Gerätes, die Stufenzahl und das schließliche Schubprogramm lassen sich aber erst definieren, wenn über die anzuwendenden Treibstoffe eine Entscheidung getroffen ist. Flugauftrag und Treibstoffkombination sind mithin die zwei Faktoren, welche die Motorauslegung und Motorkonstruktion bestimmen. Der Zusammenhang Treibstoff—Motor, der uns in diesem Kapitel zu beschäftigen hat, ist denkbar eng, und es gibt praktisch keinen einzigen Bestandteil des Triebwerkes, der nicht vom Treibstoff beeinflußt wäre. Ein Raketenmotor kann seine Aufgabe, die im Treibstoff vorhandene Energie möglichst vollständig in Antriebsenergie umzusetzen, nur erfüllen, wenn seine Konstruktion dem Treibstoffsystem engstens angepaßt, d. h. also sozusagen „nach Maß“auf dieses zugeschnitten wird.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

zu Kap. 8

  1. Koelle, H. H., ed.: Handbook of Astronautical Engineering, McGraw-Hill, New York, 1961.

    Google Scholar 

  2. Barrére, M., A. Jaumotte, B. Fraeijs de Veubeke und J. Vandenkerckhove: Raketenantriebe, Elsevier Publishing Comp., Amsterdam 1961.

    Google Scholar 

  3. Sutton, G.: Rocket Propulsion Elements, 3. Aufl., John Wiley & Sons, New York 1961.

    Google Scholar 

  4. Stehling, K.: Injector Spray and Hydraulic Factors in Rocket Motor Analysis, J. Am. Rock. Soc. 22, 132 bis 138 (1952).

    Article  Google Scholar 

  5. Kling, R., et R. Leloeuf: L’écoulement dans les orifices d’injection, Application aux moteurs fusées, La Recherche Aéronautique No. 35, 35–43 (Sept. Oct. 1953 ).

    Google Scholar 

  6. Kling, R., G. Chevalerias et A. Maman: L’injection par jets concourants dans les chambres de combustion de fusées liquides, La Recherche Aéronautique No. 57, 19–23, 1957.

    Google Scholar 

  7. Giffin, E., and A. Muraszew: The Atomisation of Liquid Fuels, Chapman & Hall, London 1953.

    Google Scholar 

  8. Heidmann, M. F., and J. C. Humphrey: Fluctuations in a Spray Formed by Two Impinging Jets, J. Am. Rock. Soc. 22, 127 (1952).

    Article  Google Scholar 

  9. Klein, E.: Experimentelle Untersuchung der Zerstäubung an einer Modell-Dralldüse. DVL-Bericht in Druck.

    Google Scholar 

  10. Fraser, R. P.: Liquid Fuel Atomisation, Sixth Symposium on Combustion, Reinhold Publishing Corp.,New York 1956, S. 687–701.

    Google Scholar 

  11. Altman, D., and S. S. Penner: Combustion of Liquid Propellants, High Speed Aerodynamics and Jet Propulsion, Bd. II, Combustion Processes, Princeton University Press, S. 470–513, 1956.

    Google Scholar 

  12. Ingebo, R. D.: Atomisation, Acceleration and Vaporisation of Liquid Fuels, Sixth Symposium on Combustion, Reinhold Publishing Corp., New York 1956, S. 684–6.

    Google Scholar 

  13. Agoston, G. A., H. Wise, and W. A. Rosser: Dynamic Factors Affecting the Combustion of Liquid Spheres, Sixth Symposium on Combustion, Reinhold Publishing Corp., New York 1956, S. 708–717.

    Google Scholar 

  14. Miesse, C. C.: On the Combustion of a Liquid Fuel Spray, Sixth Symposium on Combustion, Reinhold Publishing Corp., New York 1956, S. 732–9.

    Google Scholar 

  15. Priem, R. J.: Propellant Vaporisation as a Criterion for Rocket Engine Design: Calculation of Chamber Length to Vaporise a Single N-Heptane Drop, NACA Techn. Note 3985, July 1957.

    Google Scholar 

  16. Priem, R. J.: Propellant Vaporisation as a Criterion for Rocket Engine Design, Calculations Using Various Log Probability Distributions of Heptane Drops, NACA Techn. Note 4098, Oct. 1957.

    Google Scholar 

  17. Priem, R. J.: Propellant Vaporisation as a Criterion for Rocket Engine Design, Calculations of Chamber Length to Vaporise Various Propellants, NACA Techn. Note 3883, Sept. 1958.

    Google Scholar 

  18. v. Karman, TH.: Fundamental Equations in Aerothermochemistry, Selected Combustion Problems II, AGARD, Butterworth, London 1956.

    Google Scholar 

  19. Roy, M.: Aérothermodynamique fondamental et Notions d’Aérothermochimie, Publication ONERA No. 84, 1956.

    Google Scholar 

  20. Penner, S.S.: Introduction to the Study of Chemical Reactions Flow in Systems, AGARD, Butterworth, London 1955.

    Google Scholar 

  21. Himpan, J.: The Calculation of the Volume of Rocket Combustion Chambers, Aircraft Engineering 22, No. 257, July 1950.

    Google Scholar 

  22. Novotny, R.: Determining the Minimum Combustion Chamber Volume by Nomogramm, Aero Digest (Sept. 1955) S. 27–9.

    Google Scholar 

  23. Rothenberg, E. A., and H. W. Douglass: NACA RM E53E08 July 1953.

    Google Scholar 

  24. Feiler, C.E., and L. Baker: A Study of Fuel-Nitric Acid Reactivity, NACA RM E56A19.

    Google Scholar 

  25. Rao, G. V. R.: Exhaust Nozzle Contour for Optimum Thrust, Jet Propulsion 28 (1958).

    Google Scholar 

  26. Rao, G. V. R.: Optimum Thrust Performance of Contoured Nozzle, Bull. 1st Meeting JANAF Liquid Propellant Group, Johns Hopkins University, Nov. 1959.

    Google Scholar 

  27. Rao, G. V. R.: Contoured Rocket Nozzles, 9th Annual Congress of the I. A. F., Springer-Verlag, Wien 1959.

    Google Scholar 

  28. Kramer, P.: Charakteristik und Vergleich von Entspannungsdüsen, Raketentechnik u. Raumfahrtfor schung 5, 135 (1961).

    Google Scholar 

  29. Overall, R. E.: An Experimental Comparison of Contoured and Conical Nozzles, ARS Solid Propellant Rocket Research Rocket Conference, Princeton, New Jersey, Jan. 1960.

    Google Scholar 

  30. Green, L.: Flow Separation in Rocket Nozzles, J. ARS Jan. Febr. 1953.

    Google Scholar 

  31. Rao, G. V. R.: Spike Nozzle Contour for Optimum Thrust, Ballistic Missile and Space Technology, Proc. 4th AFMBD/STL Symposium, Pergamon Press, New York.

    Google Scholar 

  32. Krull, H. G., W. T. Beale, and R. F. Schmiedlin: Effect of Several Design Variables on Internal Performance of Convergent Plug Exhaust Nozzles, NACA RM E56G20, Oct. 1956.

    Google Scholar 

  33. Berman, K.: The Plug Nozzle: A New Approach to Engine Design, Astronautics April 1960.

    Google Scholar 

  34. Rao, G. V. R.: The E-D-Nozzle, a Novel Means of Improving Thrust Performance, Astronautics, Sept. 1960.

    Google Scholar 

  35. Hoffman, D. J., and S. A. Lorenc: AIAA Journal 8, 163 (1965).

    Google Scholar 

  36. Thompson, R. J.: Rocketdyne Report AGARD Colloquium, Kopenhagen 1958.

    Google Scholar 

  37. DBP 1142253.

    Google Scholar 

  38. Johnston, S.A.: A Method of Comparing the Performance of Liquid Propellants in Large Missile, Aerospace Corp. Report GM61-1840-33 (unclassified).

    Google Scholar 

  39. Crocco, L.: Aspects of Combustion Stability in Liquid Propellant Rocket Motors, J. Am. Rocket Soc. 21, (1951), 22, (1952).

    Google Scholar 

  40. Crocco, L.: Theoretical Studies on Liquid Rocket Instability, Tenth Symposium on Combustion 1101, 1965.

    Google Scholar 

  41. Levine, R. S.: Experimental Status of High Freequency Liquid Rocket Combustion Instability, Tenth Symposium on Combustion 1083, 1965.

    Google Scholar 

  42. Hart, R. W., and F. T. McClure: Theory of Acoustic Instability in Solid Propellant Rocket Combustion. Tenth Symposium on Combustion 1047, 1965.

    Google Scholar 

  43. Price, E. W.: Experimental Solid Rocket Instability, Tenth Symposium on Combustion 1067, 1965.

    Google Scholar 

  44. Strahle, W. C., and L. Crocco: Analytical Investigation of Several Mechanism of Combustion Instability, Bull, of the Fifth Liquid Propulsion Symposium, Tampa Nov. 1963, Chemical Propulsion Information Agency.

    Google Scholar 

  45. Strahle, W. C.: Periodic Solutions to a Convective Droplet Burning Problem: The Stagnation Point, Tenth Symposium on Combustion 1315, 1965.

    Google Scholar 

  46. Angelus, TH. A.: Unstable Burning Phenomena in Doublebase Propellants, Progr. in Astronautics and Rocketry, S. 160. Edited by M. Stjmmerfield, Academic Press, New York 1960.

    Google Scholar 

  47. Butz jr., J. S.: Trends and Developments — Project Scorpio, Air Force Space Digest Internationa, April 1965.

    Google Scholar 

  48. George, D.: Scorpio, Simple Injectors and Clusters for Large Liquids, Space/Aeronautics, May 1966.

    Google Scholar 

  49. Cinjarew, G. D., and M. B. Dobrowolski: Theory of Liquid Propellant Rockets, Moskau 1957.

    Google Scholar 

  50. Greenfield, S.: Determination of Rocket Motor Heat-Transfer Coefficients by a Transient Method. J. Aeronaut. Soc. 18, 8, 512–18 (1951).

    Article  Google Scholar 

  51. Long, W. S.: The Determination of the Coefficient of Heat Transfer to a Rocket-Motor Nozzle by a Transient Method, R. A. E. Technical Note R. P. D. 76 and R. P. D. 114.

    Google Scholar 

  52. Thompson, R. J.: Recent Developments in Liquid Rocket Engineering, Rocke tdyne Report AGARD Colloquium, Kopenhagen 1958.

    Google Scholar 

  53. Eckert, E. R. G.: Engineering Relations for Friction and Heat Transfer to Surfaces in High Velocity Flow. J. of the Aeronautical Science, Aug. 1955.

    Google Scholar 

  54. Spalding, D. B.: Heat and Mass Transfer in Aeronautical Engineering, Aeronautical Quarterly 11, May 1960.

    Google Scholar 

  55. Ambrok, G. S.: Approximate Solution of Equations for the Thermal Boundary Layer Structure, Soviet Physics Technical Physics 2 (1952).

    Google Scholar 

  56. V. D. I. Wärmeatlas, VDI-Verlag, Düsseldorf 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1968 Springer-Verlag/Wien

About this chapter

Cite this chapter

Dadieu, A., Damm, R., Schmidt, E.W. (1968). Zusammenspiel Motor-Treibstoff. In: Raketentreibstoffe. Springer, Vienna. https://doi.org/10.1007/978-3-7091-7132-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-7132-5_8

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7133-2

  • Online ISBN: 978-3-7091-7132-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics