Advertisement

Scherfestigkeit kohäsiver Böden

Chapter
  • 32 Downloads

Zusammenfassung

In einem Gelände, dessen Untergrund aus Ton besteht, soll eine Straße gebaut werden. Die Straße muß auf einem Damm verlaufen, der in einem bestimmten Abschnitt eine Höhe von 4,0 m über Gelände hat. Das Raumgewicht des Schüttmaterials beträgt nach dem Einbau bei optimaler Verdichtung γ = 1,94 t/m3. Die Porenwasserdruckbeiwerte sind für die zu erwartenden Spannungen nach Laborversuchen:
$$\begin{array}{*{20}{c}} {A = 0,60} \\ {B = 0,40} \end{array}$$
Das Verhältnis zwischen den Hauptspannungen σ1 und σ3 ist σ13=3.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Die hier angegebenen Quellen werden durch die Quellen des Kapitels 2 ergänzt.Google Scholar
  2. Coulomb (1776) Essai sur une application des règles des maximis et minimis à quelques problèmes de statique relatifs à l’architecture. Mem. Acad. Roy. Pres. divers. Sav. 5, 7, Paris.Google Scholar
  3. Rendulic (1936) Porenziffer und Porenwasserdruck in Tonen. Bauingenieur 17, S. 559.Google Scholar
  4. Rendulic (1936) Relation between void ratio and effective principal stresses for remolded silty clay. Discussion Proc. I. Int. Conf. Soil Mech. Pound. Eng. Cambridge (Mass.), Bd. III, S. 48.Google Scholar
  5. Terzaghi/Fröhlich (1936) Theorie der Setzung von Tonschichten. Leipzig-Wien.Google Scholar
  6. Rendulic (1937) Ein Grundgesetz der Tonmechanik und sein experimenteller Beweis. Bauingenieur 18, S. 459.Google Scholar
  7. Hvorslev (1937) Über die Festigkeitseigenschaften gestörter, bindiger Böden. Ing. Vidensk. Skr. A, Nr. 45, Danmarks Natur-Vidensk. Samfund Kopenhagen.Google Scholar
  8. Terzaghi (1938) Die Coulombsche Gleichung für den Scherwiderstand bindiger Böden. Bautechnik 16, S. 343.Google Scholar
  9. Terzaghi (1938) Einfluß des Porenwasserdrucks auf den Scherwiderstand der Tone. Dtsch. Wasserwirtschaft 33,S. 201.Google Scholar
  10. Rendulic (1938) Ergebnisse und Deutung von Versuchen an Tonkörpern. Habilitationsschrift TH Berlin.Google Scholar
  11. Rendulic (1938) Eine Betrachtung zur Präge der plastischen Grenzzustände. Bauingenieur 19, S. 159.Google Scholar
  12. Casagrande (1939) Über die Scherfestigkeit von Böden. Schriftenreihe d. Straße 16, S. 32.Google Scholar
  13. Jaky (1944) Anyugalmi nyomäs tényezöje. (Die Ruhedruckziffer.) Magyar M£rn. fip. Egyl. Közlönye No. 22, Budapest.Google Scholar
  14. Kollbrunner (1946) Pundation und Konsolidation. Zürich, Bd. I, S. 228.Google Scholar
  15. Casagrande/Shannon (1947/48) Research on stress-deformation characteristics of soils and soft rocks under transient loading. Harvard Univ. Soil Mech. Series No. 31.Google Scholar
  16. Schaefer/Schaad/Haefeli (1948) Shearing strength and equilibrium of soils. Contribution to the shearing theory. Proc. II. Int. Conf. Soil Mech. Found. Eng. Rotterdam, Bd. V, S. 12.Google Scholar
  17. Steinbrenner (1948) Shearing tests on cohesive soils. Proc. II. Int. Conf. Soil Mech. Found. Eng. Rotterdam, Bd. III, S. 150.Google Scholar
  18. Lambe (1948) The measurement of pore water pressures in cohesionless soils. Proc. I I. Int. Conf. Soil Mech. Found. Eng. Rotterdam, Bd. VII.Google Scholar
  19. Taylor (1948) Shearing strength determinations by un- drained cylindrical compression tests with pore measurements. Proc. II. Int. Conf. Soil Mech. Found. Eng. Rotterdam, Bd. V, S. 45.Google Scholar
  20. Taylor (1950) A triaxial shear investigation on a partially saturated soil. ASTM.Google Scholar
  21. Kjellman (1950/51) Testing the shear strength of clay in Sweden. Géotechnique 2, S. 225.Google Scholar
  22. Bjerrum (1951) Fundamental considerations on the shear strength of soils. Geotechnique 2, S. 209.CrossRefGoogle Scholar
  23. Casagrande/Wilson (1951) Effect of rate of loading on the of clays and shales at constant water content. Géotechnique 2, S. 251.CrossRefGoogle Scholar
  24. Penman (1952/53) Shear characteristics of saturated silt, measured in triaxial compression. Géotechnique 3, S. 112.Google Scholar
  25. Gibson (1953) Experimental determination of the true cohesion and true angle of internal friction in clays. Proc. III. Int. Conf. Soil Mech. Pound. Eng. Zurich, Bd. I, S. 126.Google Scholar
  26. Rowe (1954) A stress-strain theory for cohesionless soil with applications to earth pressures at rest and moving walls. Géotechnique 4, S. 70.CrossRefGoogle Scholar
  27. Gibson/Henkel (1954) Influence of duration of tests at constant rate of strain on measured “drained” strength. Gèotechnique 4, S. 6.CrossRefGoogle Scholar
  28. Skempton (1954) The pore pressure coefficients A and B. Géotechnique 3, S. 112.Google Scholar
  29. Bishop (1954) The use of pore pressure coefficients in practice. Géotechnique 4, S. 148.CrossRefGoogle Scholar
  30. Jânke/Martin/Plehm (1955) Dreiaxiales Druckgerat zur Be- stimmung der Ruhedruckbeiwerte und des Gleitwiderstan- des von Erdstoffen. Bauplanung und Bautechnik 9, S. 442.Google Scholar
  31. Taylor (1955) Review and research on shearing resistance of clays. M. I. T. Report to U.S. Army Engineers, Waterways Experiment Station.Google Scholar
  32. Kyvellos (1956) Etudes de la courbe intrinsèque compactés et non saturés. Ann. Inst. Techn. Bât. Trav., Pubi. 9f Nr. 101, S. 586.Google Scholar
  33. Henkel (1956) The effect of overconsolidation on the behaviour of clays during shear. Géotechnique 9, S. 119.CrossRefGoogle Scholar
  34. Hilp (1956) An investigation of pore water pressure in compacted cohesive soils. Bureau of Reclamation. Techn. Memorandum 654. Denver, Colorado.Google Scholar
  35. Mitchell (1956) The fabric of natural clays and its relation to engineering properties. Proc. HRB 35, S. 693.Google Scholar
  36. Balla (1957) Stress conditions in the triaxial compression test. Proc. IV. Int. Conf. Soil Mech. Pound. Eng. London, Bd. I, S. 140.Google Scholar
  37. Skempton/Bjerrum (1957) A contribution to the settlement analysis of foundations on clay. Géotechnique 7, S. 168.CrossRefGoogle Scholar
  38. Goldstein (1957) The long-term strength of clays. Proc. IV. Int. Conf. Soil Mech. Pound. Eng. London, Bd. II, S. 311.Google Scholar
  39. Brinch Hansen (1958) On the shear strength of soils, short term and long term stability. Ingeni0ren 12 und Dan. Geot. Inst. Bull. No. 3.Google Scholar
  40. Roscoe/Schopield/Wroth (1958) On the yielding of soils. Géotechnique 8, S. 22.CrossRefGoogle Scholar
  41. Bishop (1958) Test requirements for measuring the coefficient of earth pressure at rest. Brussels Conf. Earth pressure problems, Bd. I, S. 2.Google Scholar
  42. Croney/Coleman/Black (1958) The movement and distribution of water in soil in relation to highway design and performance. Highway Research Board Washington, Special Report No. 40.Google Scholar
  43. Meese/Long (1959) Triaxial compression tests on soils using variable lateral pressure. ASTM Spec. Techn. Publ. No. 254, S. 365.Google Scholar
  44. Henkel (1959) The relationships between the strength, pore water pressure and volume-change characteristics of saturated clays. Géotechnique 9, S. 119.CrossRefGoogle Scholar
  45. Bishop (1959) The principle of effective stress. Teknisk Ukeblad 106, Nr. 39, S. 859.Google Scholar
  46. Geuze (1960) The effect of time on shear strength of clays. ASCE Conv. New Orleans.Google Scholar
  47. Schmertmann/Osterberg (1960) An experimental study of the development of cohesion and friction with axial strain in saturated cohesive soils. Proc. ASCE Conf. on shear strength of cohesive soils, S. 643.Google Scholar
  48. Bjerrum/Simons (1960) Comparison of shear strength characteristics of normally consolidated clays. Publ. Norw. Geot. Inst. No. 25, S. 13.Google Scholar
  49. Henkel (1960) The relationships between the effective stresses and water content in saturated clays. Géotechnique 10, S. 41.CrossRefGoogle Scholar
  50. Jennings (1960) A revised effective stress law for use in the prediction of the behaviour of unsaturated soils. Proc. Conf. on pore pressure and suction in soils London, S. 27.Google Scholar
  51. Lambe (1960) A mechanistic picture of shear strength in clay. Proc. Research Conf. on Shear Strength in Cohesive Soils, S. 555. Boulder, Colorado.Google Scholar
  52. Skempton (1961) Horizontal stresses in an overconsolidated clay. Proc. V. Int. Conf. Soil Mech. Pound. Eng. Paris, Bd. I, S. 357.Google Scholar
  53. Bjerrum (1961) The effective shear strength parameters of sensitive clays. Proc. V. Int. Conf. Soil Mech. Pound. Eng. Paris, Bd. I, S. 23.Google Scholar
  54. Bishop/Donald (1961) The experimental study of partly saturated soils in the triaxial apparatus. Proc. V. Int. Conf. Soil Mech. Pound. Eng. Paris, Bd. I. S. 13.Google Scholar
  55. Bishop/Bjerrum (1961) Bedeutung und Anwendbarkeit des Dreiaxialversuches für die Lösung von Standsicherheits-aufgaben. Publ. Norw. Geot. Inst. No. 43.Google Scholar
  56. Donald (1961) The mechanical properties of saturated and partly saturated soils with special reference to negative pore water pressure. Ph.D. Thesis, University of London.Google Scholar
  57. Bishop/Henkel (1957/1962) The measurement of soil properties in the triaxial test. London.Google Scholar
  58. Scott (1963) Principles of soil mechanics. Addison-Wesley Publishing Co. Reading, Massachusetts.Google Scholar
  59. Skempton (1964) Long-term stability of clay slopes. Géotechnique 14, S. 77.CrossRefGoogle Scholar
  60. Astm (1964) Laboratory shear testing of soils. ASTM Spec. Techn. Publ., No. 361.Google Scholar
  61. De Beer (1965) The scale effect on the phenomenon of progressive rupture in cohesionless soils. Proc. VI. Int. Conf. Soil Mech. Pound. Eng. Montreal, Bd. II, S. 13.Google Scholar

Copyright information

© Springer-Verlag/Wien 1971

Authors and Affiliations

  1. 1.Universidad de Oriente Escuela de Geologia y MinasCiudad BolivarVenezuela

Personalised recommendations