Skip to main content

Cytochemical Studies of the Neural Circuitry Underlying Pain and Pain Control

  • Conference paper
Pain

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 38))

Abstract

With the introduction of immunocytochemistry in anatomical studies of the nervous system, significant progress has been made in our understanding of CNS circuitry. By simultaneously performing retrograde tracing studies with immunocytochemistry, it is now possible to identify the cytochemistry of projection systems. When this is combined with a functional analysis of a given pathway, e.g., the spinothalamic tract, it is possible, for the first time, to characterize the likely transmitter content of specific neuronal systems. The importance of such information cannot be overemphasized. For example, if one knows the neurotransmitter that is involved in the central transmission of nociceptive messages, it should be possible to develop receptor antagonists that block the action of that neurotransmitter. That approach could lead to the development of very specific analgesic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agnati LF, Fuxe K, Benefenati F, Zini I, Hokfelt T (1983) On the functional role of coexistence of 5-HT and substance P in bulbospinal 5-HT neurons. Substance P reduces affinity and increases density of 3H-5-HT binding sites. Acta Physiol Scand 117: 299–302

    Article  PubMed  CAS  Google Scholar 

  2. Akil H, Mayer DJ, Liebeskind JC (1976) Antagonism of stimulation-produced analgesia by naloxone, a narcotic antagonist. Science 191: 961–962

    Article  PubMed  CAS  Google Scholar 

  3. Aronin N, Difiglia M, Liotta AS, Martin JB (1981) Ultrastructural localization and biochemical features of immunoreactive leu-enkephalin in monkey dorsal horn. J Neurosci 1: 561–577

    PubMed  CAS  Google Scholar 

  4. Atweh SF, Kuhar M (1977) Autoradiographic localization of opiate receptors in rat brain. I. Spinal cord and lower medulla. Brain Res 124: 53–67

    Article  PubMed  CAS  Google Scholar 

  5. Barbara NM, Hammond DL, Fields HL (1985) Effects of intrathecally administered methysergide and yohimbine on micro-stimulation-produced antinociception in the rat. Brain Res 343: 223–229

    Article  Google Scholar 

  6. Barber RP, Vaughan JE, Slemmon RJ, Salvaterra PM, Roberts E, Leeman SE (1979) The origin, distribution and synaptic relationships of substance P axons in rat spinal cord. J Comp Neurol 184: 331–352

    Article  PubMed  CAS  Google Scholar 

  7. Basbaum AI, Clanton CH, Fields HL (1978) Three bulbospinal pathways from the rostral medulla of the cat: An autoradiographic study of pain modulating systems. J Comp Neurol 178: 209–224

    Article  PubMed  CAS  Google Scholar 

  8. Basbaum AI, Cruz L, Weber E (1986) Immunoreactive dynorphin in sacral primary afferent fibers of the cat. J Neurosci 6: 127–133

    PubMed  CAS  Google Scholar 

  9. Basbaum AI, Fields HL (1978) Endogenous pain control mechanisms: Review and hypothesis. Ann Neurol 4: 451–62

    Article  PubMed  CAS  Google Scholar 

  10. Basbaum AI, Fields HL (1984) Endogenous pain control systems: Brain stem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7: 309–338

    Article  PubMed  CAS  Google Scholar 

  11. Basbaum AI, Glazer EJ (1983) Immunoreactive vasoactive intestinal polypeptide is concentrated in sacral spinal cord: A possible marker for pelvic visceral afferent fibers. Somato-sensory Res 1: 69–82

    CAS  Google Scholar 

  12. Basbaum AI, Jacknow D, Mulcahy J, Levine J (1983) Studies on the contribution of different endogenous opioid peptides to the control of pain. In: Yokota T, Dubner R (eds) Current topics in pain research and therapy. Elsevier, Amsterdam, pp 118–120

    Google Scholar 

  13. Basbaum AI, Moss MS, Glazer EJ (1983) Opiate and stimulation-produced analgesia: The contribution of the monoamines. Adv Pain Res Ther 5: 323–339

    CAS  Google Scholar 

  14. Bennett GJ, Abdelmoumene M, Hayashi H, Dubner R (1980) Physiology and morphology of substantia gelatinosa neurons intracellulary stained with horseradish peroxidase. J Comp Neurol 194: 809–827

    Article  PubMed  CAS  Google Scholar 

  15. Botticelli LH, Cox BM, Goldstein A (1981): Immunoreactive dynorphin in mammalian spinal cord and dorsal root ganglia. Proc Natl Acad Sci USA 78: 7783–7786

    Article  PubMed  CAS  Google Scholar 

  16. Bowker RM, Steinbusch HWM, Coulter JD (1981): Serotonergic and peptidergic projections to the spinal cord demonstrated by a combined retrograde HRP histochemical and immunocytochemical staining method. Brain Res 211: 412–417

    Article  PubMed  CAS  Google Scholar 

  17. Brimijoin S, Lundberg JM, Brodin E, Hokfelt T, Nilsson G (1980) Axonal transport of substance P in the vagus and sciatic nerves of the guinea pig. Brain Res 191: 443–457

    Article  PubMed  CAS  Google Scholar 

  18. Chavkin D, James IF, Goldstein A (1982) Dynorphin is a specific endogenous ligand of the k opioid receptor. Science 215: 413–415

    Article  PubMed  CAS  Google Scholar 

  19. Colpaert DH, Donnerer J, Lembeck F (1983) Effects of capsaicin on inflammation and on the substance P content of nervous tissues in rats with adjuvant arthritis. Life Sci 32: 1827

    Article  PubMed  CAS  Google Scholar 

  20. Cruz L, Basbaum AI (1985) Multiple opioid peptides and the modulation of pain. Immunohistochemical analysis of dynorphin and enkephalin in the trigeminal nucleus caudalis and spinal cord of the cat. J Comp Neurol 240: 331–348

    Google Scholar 

  21. Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine neurons in the central nervous system. I. Experimental demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand [Suppl 232] 62: 1–55

    Google Scholar 

  22. Dodd J, Jahr CR, Jessel TM (1984) Neurotransmitters and neuronal markers at sensory synapses in the dorsal horn. Adv Pain Res Ther 6: 105–121

    CAS  Google Scholar 

  23. Fields HL, Emson PC, Leigh BK, Gilbert RFT, Iversen LL (1980) Multiple opiate receptor sites on primary afferent fibres. Nature 284: 351–353

    Article  PubMed  CAS  Google Scholar 

  24. Gamse R, Holzer P, Lembeck F (1979) Indirect evidence for presynaptic location of opiate receptors on chemosensitive primary sensory neurons. Naunyn Schmiedeberg’s Arch Pharmacol 308: 281–285

    Article  CAS  Google Scholar 

  25. Gamse A, Saria A (1985) Potentiation of tachykinin-induced plasma protein extravasation by calcitonin gene-related peptide. Eur JPharm 114: 61–66

    Article  CAS  Google Scholar 

  26. Glazer EJ, Basbaum AI (1981) Immunohistochemical localization of leucine-enkephalin in the spinal cord of the cat: Enkephalin-containing marginal neurons and pain modulation. J Comp Neurol 196: 377–389

    Article  PubMed  CAS  Google Scholar 

  27. Glazer EJ, Basbaum AI (1983) Opioid neurons and pain modulation: An ultra-structural analysis of enkephalin in cat superficial dorsal horn. Neuroscience 10: 357–376

    Article  PubMed  CAS  Google Scholar 

  28. Glazer EL, Basbaum AI (1984) Axons which take up 3H- serotonin are presynaptic to enkephalin immunoreactive neurons in cat dorsal horn. Brain Res 298: 386–391

    Article  PubMed  CAS  Google Scholar 

  29. Goldstein A, Tachibana S, Lowney LI, Hunkapiller M, Hood L (1979) Dynorphin-(l-13), an extraordinarily potent opioid peptide. Proc Nat Acad Sci USA 76: 6666–6670

    Article  PubMed  CAS  Google Scholar 

  30. Hammond DL, Levy RA, Proudfit HK (1980) Hypoalgesia induced by microinjection of a norepinephrine antagonist in the raphe magnus: Reversal by intrathecal administration of a serotonin antagonist. Brain Res 201: 475–489

    Article  PubMed  CAS  Google Scholar 

  31. Han JS, Xie CW (1982) Dynorphin: Potent analgesic effect in spinal cord of the rat. Life Sci 31: 1781–1784

    Article  Google Scholar 

  32. Headley PM, Duggan AW, Griersmith BT (1978): Selective reduction by noradrenaline and 5-hydroxytryptamine of nociceptive responses of cat dorsal horn neurones. Brain Res 145: 185–189

    Article  PubMed  CAS  Google Scholar 

  33. Henry JL (1976) Effects of Substance P on functionally identified units in cat spinal cord. Brain Res 114: 439–452

    Article  PubMed  CAS  Google Scholar 

  34. Hiller JM, Simon EJ, Crain SM, Peterson ER (1978) Opiate receptors in culture of fetal mouse dorsal root ganglia (DRG) and spinal cord: Predominance in DRG neurites. Brain Res 145: 396–400

    Article  PubMed  CAS  Google Scholar 

  35. Hoffert MJ, Miletic V, Ruda MA, Dubner R (1983) Immunocytochemical identification of serotonin axonal contacts on characterized neurons in laminae I and II of the cat dorsal horn. Brain Res 267: 361–364

    Article  PubMed  CAS  Google Scholar 

  36. Hokfelt T, Johansson O, Ljungdahl A, Lundberg JM, Schultzberg M (1980) Peptidergic neurons. Nature 284: 515–521

    Article  PubMed  CAS  Google Scholar 

  37. Hokfelt T, Ljungdahl A, Steinbusch H, Verhofstad AN, Nilsson G, Brodin E, Pernow B, Goldstein M (1978) Immunohistochemical evidence of substance P-like immunoreactivity in some 5- hydroxytryptamine containing neurons in the rat central nervous system. Neuroscience 3: 517–538

    Article  PubMed  CAS  Google Scholar 

  38. Hokfelt T, Ljungdahl A, Terenius L, Elde R, Nilsson G (1977) Immunohistochemical analysis of peptide pathways possibly related to pain and analgesia: Enkephalin and Substance P. Proc Nat Acad Sci USA 74: 3081–3085

    Article  PubMed  CAS  Google Scholar 

  39. Hokfelt T, Elde R, Johansson O, Luft R, Nilsson G, Arimura A (1976) Immunohistochemical evidence for separate populations of somatostatin-containing and Substance P-containing primary afferent neurons. Neurosci 1: 131–136

    Article  CAS  Google Scholar 

  40. Honda CN, Rethelyi M, Petrusz P (1983) Preferential immunohistochemical localization of vasoactive intestinal poly-peptide (VIP) in the sacral spinal cord of the cat: Light and electron microscopic observations. J Neurosci 3: 2183–2196

    PubMed  CAS  Google Scholar 

  41. Hosobuchi Y, Adams JE, Linchitz R (1977) Pain relief by electrical stimulation of the central gray matter in human and its reversal by naloxone. Science 197: 183–186

    Article  PubMed  CAS  Google Scholar 

  42. Hosobuchi Y, Lamb S, Bascomb D (1980) Tryptophan loading may reverse tolerance to opiate analgesics in humans. A preliminary report. Pain 9: 161–170

    CAS  Google Scholar 

  43. Hunt SP, Kelly JS, Emson PC (1980) The electron microscopic localization of methionine-enkephalin within the superficial layers ( I and II) of the spinal cord. Neuroscience 5: 1871–1890

    Google Scholar 

  44. Hylden JLK, Wilcox GL (1983) Pharmacological characterization of substance P-induced nociception in mice: Modulation by opioid and noradrenergic agonists at the spinal level. J Pharmacol Exp Ther 226: 398–404

    PubMed  CAS  Google Scholar 

  45. Jan LY, Jan YN (1982) Peptidergic transmission in sympathetic ganglion of the frog. J Physiol (Lond) 324: 219–246

    Google Scholar 

  46. Jansco N, Jansco-Gabor A, Szolcsanyi J (1968) Direct evidence for neurogenic inflammation and its prevention by denervation and by pretreatment with capsaicin. Br J Pharmacol 31: 138

    Google Scholar 

  47. Jessel T, Tsunoo A, Kanawa I, Otsuka M (1979) Substance P: Depletion in the dorsal horn of rat spinal cord after section of the peripheral processes of primary sensory neurons. Brain Res 168: 247–259

    Article  Google Scholar 

  48. Jessel TM, Iversen LL (1977) Opiate analgesics inhibit substance P release from rat trigeminal nucleus. Nature 268: 549–551

    Article  Google Scholar 

  49. Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcineneoendorphin/dynorphin precursor. Nature 298: 245–249

    Article  PubMed  CAS  Google Scholar 

  50. Kawatani M, Erdman SL, de Groat WC (1985) Vasoactive intestinal polypeptide and substance P in primary afferent pathways to the sacral spinal cord of the cat. J Comp Neurol 241: 327–347

    Article  PubMed  CAS  Google Scholar 

  51. Khachaturian H, Watson SJ, Lewis ME, Coy D, Goldstein A, Akil H (1982) Dynorphin immunocytochemistry in the rat central nervous system. Peptides 3: 941–954

    Article  PubMed  CAS  Google Scholar 

  52. La Motte CC, de Lanerolle NC (1983) Ultrastructure of chemically defined neuron systems in the dorsal horn of the monkey. II Methionine-enkephalin immunoreactivity. Brain Res 274: 51–63

    Article  Google Scholar 

  53. La Motte C, Pert CB, Snyder SH (1976) Opiate receptor binding in primate spinal cord. Distribution and changes after dorsal root section. Brain Res 112: 407–412

    Article  Google Scholar 

  54. Light AR, Trevino DL, Perl ER (1979) Morphological features of functionally identified neurons in the marginal zone and substantia gelatinosa of the spinal dorsal horn. J Comp Neurol 186: 151–171

    Article  PubMed  CAS  Google Scholar 

  55. Lembeck F, Holzer P (1979) Substance P as neurogenic mediator of antidromic vasodilation and neurogenic plasma extravasation. Naunyn-Schmiedeberg’s Arch Pharm 310: 175–183

    Article  CAS  Google Scholar 

  56. Levine JD, Clark R, Helms C, Moskowitz MA, Basbaum AI (1984) Intraneuronal substance P contributes to the severity of experimental arthritis. Science 226: 547

    Article  PubMed  CAS  Google Scholar 

  57. Morgan C, Nadelhaft I, de Groat WC (1981) The distribution of visceral primary afferents from the pelvic nerve to Lissauer’s tract and the spinal gray matter and its relationship to the sacral parasympathetic nucleus. J Comp Neurol 201: 415–440

    CAS  Google Scholar 

  58. Olgart L, Gazelius B, Brodin E, Nisson G (1977) Release of substance P-like immunoreactivity from the dental pulp. Acta Physiol Scand 101: 510–512

    Article  PubMed  CAS  Google Scholar 

  59. Oliveras AL, Hosobuchi Y, Guilbaud G, Besson JM (1978) Analgesic electrical stimulation of the feline nucleus raphe magnus: Development of tolerance and its reversal by 5-HTP. Brain Res 146: 404–409

    Article  PubMed  CAS  Google Scholar 

  60. Reddy SVR, Maderdrut JL, Yaksh TL (1980) Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J Pharmacol Exp Ther 213: 525–533

    PubMed  CAS  Google Scholar 

  61. Rosenfeld MG, Mermod J-J, Amara SG, Swanson LW, Sawchenko PE, Rivier J, Vale WW, Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304: 129–135

    Article  PubMed  CAS  Google Scholar 

  62. Ruda MA (1982) Opiates and pain pathways. Demonstration of enkephalin synapses on dorsal horn projection neurons. Science 215: 1523–1524

    Article  PubMed  CAS  Google Scholar 

  63. Ruda MA, Coffield J, Dubner R (1984) Demonstration of postsynaptic opioid modulation of thalamic projection neurons by the combined techniques of retrograde horseradish peroxidase and enkephalin immunocytochemistry. J Neurosci 4: 2117–2132

    PubMed  CAS  Google Scholar 

  64. Schmauss C, Yaksh TL (1984) In vivo studies on spinal opiate receptor systems mediating antinociception. II. Pharmacological profiles suggesting a differential association of Mu, Delta, and Kappa receptors with visceral chemical and cutaneous thermal stimuli in the rat. J Pharm Exper Ther 228: 1

    CAS  Google Scholar 

  65. Sumal KK, Pickel VM, Miller RJ, Reis DJ (1982) Enkephalin— containing neurons in substantia gelatinosa of spinal trigeminal complex: Ultrastructural and synaptic interaction with primary sensory afferents. Brain Res 248: 223–236

    Article  PubMed  CAS  Google Scholar 

  66. Sweetnam PM, Neale JH, Barker JL, Goldstein A (1982) Localization of immunoreactive dynorphin in neurons cultured 15 Allan I. Basbaum: Cytochemical Studies of the Neural Circuitry from spinal cord and dorsal root ganglia. Proc Nat Acad Sci USA 79: 6742–6746

    Article  PubMed  CAS  Google Scholar 

  67. Tulunay FC, Jen MF, Chang JK, Loh HH, Lee HM (1981) Possible regulatory role of dynorphin on morphine and P- endorphin-induced analgesia. J Pharmacol Exp Ther 219: 296

    PubMed  CAS  Google Scholar 

  68. Tung AS, Yaksh TL (1982) In vivo evidence for multiple opiate receptors mediating analgesia in the rat spinal cord. Brain Res 247: 75–83

    Article  PubMed  CAS  Google Scholar 

  69. Vincent SR, Hokfelt T, Christensson I, Terenius L (1982) Dynorphin-immunoreactive neurons in the central nervous system of the rat. Neurosci Lett 33: 185–190

    Article  PubMed  CAS  Google Scholar 

  70. Walker JM, Tucker DE, Coy DH, Walker BB, Akil H (1982) Des-tyrosine-dynorphin antagonizes morphine analgesia. Eur J Pharm 85: 121–122

    Article  CAS  Google Scholar 

  71. Wiesenfeld-Hallin Z, Hokfelt T, Lundberg JM, Forssmann WG, Reinecke M, Tschopp FA, Fischer JA (1984) Immunoreactive calcitonin gene-related peptide and substance P co-exist in sensory neurons to the spinal cord and interact in spinal behavioral responses of the rat. Neurosci Lett 52: 199–204

    Article  PubMed  CAS  Google Scholar 

  72. Willcockson WS, Chung JM, Hori Y, Lee KH, Willis WD (1984) Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci 4: 732–740

    PubMed  CAS  Google Scholar 

  73. Wilcockson WS, Chung JM, Hori Y, Lee KH, Willis WD (1984) Effects of iontophoretically released peptides on primate spinothalamic tract cells. J Neurosci 4: 741–750

    Google Scholar 

  74. Yaksh TL (1979) Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal grey. Brain Res 160: 180–185

    Article  PubMed  CAS  Google Scholar 

  75. Yaksh TL, Jessell TM, Gamse R, Mudge AW, Leeman SE (1980) Intrathecal morphine inhibits substance P release from mam¬malian spinal cord in vivo. Nature 286: 155–157

    Article  PubMed  CAS  Google Scholar 

  76. Yoshimura M, North RA (1983) Substantia gelatinosa neurons hyperpolarized in vitro by enkephalin. Nature 305: 529–530

    Article  PubMed  CAS  Google Scholar 

  77. Zieglgansberger W, Tulloch IF (1979) The effects of methionine- and leucine-enkephalin on spinal neurones of the cat. Brain Res 167: 53–64

    Article  PubMed  CAS  Google Scholar 

  78. Zorman G, Belcher G, Adams JE, Fields HL (1982) Lumbar intrathecal naloxone blocks analgesia produced by micro stimulation of the ventromedial medulla in the rat. Brain Res 236: 77–84

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1987 Springer-Verlag

About this paper

Cite this paper

Basbaum, A.I. (1987). Cytochemical Studies of the Neural Circuitry Underlying Pain and Pain Control. In: Brihaye, J., Loew, F., Pia, H.W. (eds) Pain. Acta Neurochirurgica Supplementum, vol 38. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6975-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6975-9_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7457-9

  • Online ISBN: 978-3-7091-6975-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics