Skip to main content

Part of the book series: Computational Microelectronics ((COMPUTATIONAL))

Abstract

In an era which is dominated by an always faster and larger flow of information, microelectronics plays a major role. The building block of today’s microelectronics are semiconductor devices, which are used either as single components in a variety of applications (process controllers, antennas, sensors, radios, etc.,...) as well as in integrated circuits. Since the invention of the bipolar transistor in 1949, many new devices have been proposed and improved performances have been constantly achieved. Before this date, semiconductors were only used as thermistors, photodiodos and rectifiers. The advances in the field of semiconductor devices are the combined results of better understanding of the physical processes that underline the electrical behaviour of devices, of an improved handling of technological processes involved with the fabrication of the devices, of the mature knowledge of the chemical properties of the materials that are used, and of the combination of all these factors. In other words, electronics have been able to make big steps forward in the last few decades thanks to the progress in the physical, chemical and material sciences, as well as the development of new technological tools. The best example is given by the fact that we are currently able to put hundreds of thousands of devices onto a single chip, well into what is called very-large-scale integration (VLSI) [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mead, C. A., Conway, L.: Introduction to VLSI Systems. Reading, Mass.: Addison-Wesley. 1980.

    Google Scholar 

  2. Moore, G.: Proc. IEDM 1975, p. 11. New York: IEEE Press. 1975.

    Google Scholar 

  3. Ferry, D. K., Akers, L. A., Greeneich, E. W.: Ultra-Large-Scale Integrated Microelectronics. Englewood Cliffs, N.J.: Prentice-Hall. 1988.

    Google Scholar 

  4. Sze, M.: Physics of Semiconductor Devices, 2nd edn. New York: Wiley. 1981.

    Google Scholar 

  5. Muller, R. S., Kamins, T. I.: Device Electronics for Integrated Circuits. New York: Wiley. 1986.

    Google Scholar 

  6. Solomon, P. M.: Proc. IEEE 70, 489 (1982).

    Article  Google Scholar 

  7. Eden, R. C.: Proc. IEEE 70, 5 (1982).

    Article  Google Scholar 

  8. Solomon, P. M., Morkoc, H.: IEEE Trans. El. Devices ED-31, 1015 (1984).

    Article  Google Scholar 

  9. Kroemer, H.: Proc. IEEE 70, 13 (1982).

    Article  Google Scholar 

  10. Scavennee, A.: J. de Physique C4 [Suppl. 9], 115 (1988).

    Google Scholar 

  11. Zanoni, E., Lugli, P., Canali, C., Alberigi. Quaranta, A.: Fisica e Tecnologia 9, 75 (1986).

    Google Scholar 

  12. Pamlin, B. R. (ed.): Molecular Beam Epitaxy. Oxford: Pergamon Press. 1980;

    Google Scholar 

  13. Ploog, K., Graf, K.: Molecular Beam Epitaxy of III–V Compounds. Berlin-Heidelberg-New York: Springer 1984;

    Google Scholar 

  14. Cho, A. Y.: J. Vac. Sci. Technol. 16, 275 (1979).

    Article  Google Scholar 

  15. Razeghi, M., Duchemin, J. P.: In: Two-Dimensional Systems, Heterostructures and Superlattices (Baver, G., Kuchar, F., Heinrich, H., eds.), p. 100. Berlin-Heidelberg-New York: Springer. 1984;

    Google Scholar 

  16. Jones, M. W.: In: Two-Dimensional Systems, Heterostructures and Superlattices (Baver, G., Kuchar, F., Heinrich, H., eds.), p. 115. Berlin-Heidelberg-New York: Springer. 1984.

    Google Scholar 

  17. Esaki, L., Tsu, R.: IBM Res. Rep. RC-2418 (1969).

    Google Scholar 

  18. Kroemer, H.: Proc. IRE 45, 1535 (1957).

    Article  Google Scholar 

  19. Lepselter, M. P., Andrews, J. M.: In: Ohmic Contacts in Semiconductors (Schwartz, B., ed.), The Electrochemical Society Symposium Series, p. 159. New York: Electrochemical Society 1969.

    Google Scholar 

  20. Rideout, V. L.: Solid State Electron. 18, (541 (1975).

    Article  Google Scholar 

  21. Pickar, K. A.: Ion Implantation in Silicon-Physics, Processing and Microelectronics Devices. In: Applied Solid State Science (Wolfe, R., ed.), Vol. 5. New York: Academic Press. 1975.

    Google Scholar 

  22. Dennard, R. H., Gaensslen, F. H., Yu, H., Rideout, V. L., Bassons, E., Blanc, A. R.: IEEE J. Solid State Circuits SC-9, 256 (1974).

    Article  Google Scholar 

  23. Meindl, J. D.: Scientific American 257, 54 (1987).

    Article  Google Scholar 

  24. Keyes, R.: Proc. IEEE, 63, 740 (1975).

    Article  Google Scholar 

  25. Moll, J. L.: Proc. IRE 46, 1076 (1958).

    Article  Google Scholar 

  26. Zanoni, E., Lugli, P., Canali, C., Alberigi-Quaranta, A.: Fisica e Tecnologia 10, 83 (1987).

    Google Scholar 

  27. Capasso, F.: In: Semiconductors and Semimetals, Vol. 24, p. 319. New York: Academic Press. 1988.

    Google Scholar 

  28. Rhoderick, E. H.: Metal-Semiconductor Contacts. Oxford: Clarendon Press. 1978.

    Google Scholar 

  29. Liechti, C. A.: IEEE Trans. Microwave Theory Tech. MTT-24, 279 (1976).

    Article  Google Scholar 

  30. Ferry, D. K.: In: VLSI Electronics: Microstructure Science, Vol. 1, p. 231. New York: Academic Press. 1981.

    Google Scholar 

  31. Hill, A. J., Ladbrooke, P. M.: GEC J. Res. 4, 1 (1986).

    Google Scholar 

  32. Drummond, T. J., Masselink, W. T., Morkoc, H.: Proc. IEEE 74, 773 (1986).

    Article  Google Scholar 

  33. Mead, C. A.: Proc. IRE 48, 359 (1960).

    Google Scholar 

  34. Moll, J. L.: IEEE Trans. El. Dev. ED-10, 299 (1963).

    Article  Google Scholar 

  35. Poate, J. M., Dynes, R. C.: IEEE Spectrum, p. 38. February 1986.

    Google Scholar 

  36. Levi, A. F. J., Hayes, J. R., Platzman, P. M., Wiegmann, W.: Phys. Rev. Lett. 55, 2071 (1985).

    Article  Google Scholar 

  37. Heiblum, M., Nathan, M. I., Thomas, D. C., Knodler, C. M.: Phys. Rev. Lett. 55, 2200 (1985).

    Article  Google Scholar 

  38. Malik, R. J., Hollis, M. A., Eastman, L. F., Woodard, D. J., Wood, C. E. C., Aucoins, T. R.: In: Proc, Conf. Active Microwave Devices, Cornell University, Ithaca, N.Y., 1981.

    Google Scholar 

  39. Heiblum, M.: Solid-State Electron. 24, 343 (1981).

    Article  Google Scholar 

  40. Heiblum, M., Eastman, L. F.: Scientific American 256, 64 (1987).

    Article  Google Scholar 

  41. Bozler, C. O., Alley, G. D., Murphy, R. A., Flanders, D. C., Lindley, W. T.: IEEE Tech. Dig. Int. Electron. Dev. Meet., p. 384 (1979).

    Google Scholar 

  42. Mimura, T., Nishiuchi, N., Abe, M., Shibatomi, A., Kobayanshi, M.: Superlattice and Microstr. 1, 365 (1985).

    Google Scholar 

  43. Art, W. H.: Microwellen Magazin 14, 106 (1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer-Verlag/Wien

About this chapter

Cite this chapter

Jacoboni, C., Lugli, P. (1989). Review of Semiconductor Devices. In: The Monte Carlo Method for Semiconductor Device Simulation. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6963-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6963-6_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7453-1

  • Online ISBN: 978-3-7091-6963-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics