Skip to main content

The Drift Diffusion Equations

  • Chapter
Semiconductor Equations

Abstract

The drift diffusion equations are the most widely used model to describe semiconductor devices today. The bulk of the literature on mathematical models for device simulation is concerned with this nonlinear system of partial differential equations and numerical software for its solution is commonplace at practically every research facility in the field. From an engineering point of view, the interest in the drift diffusion model is to replace as much laboratory testing as possible by numerical simulation in order to minimize costs. To this end, it is important that computations can be performed in a reasonable amount of time. This implies that the involved mathematical models cannot be too complicated, such as, for instance, the higher dimensional transport equations described in Chapter 1. For the current state of technology the drift diffusion equations seem to represent a reasonable compromise between computational efficiency and an accurate description of the underlying device physics. Therefore transport equations are used mainly to compute data for the model parameters in the drift diffusion equations in the engineering environment. It should be pointed out, however, that, with the increased miniaturization of semiconductor devices, one comes closer and closer to the limits of validity of the drift diffusion equations, even in an industrial environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 9.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. A. Adams: Sobolev Spaces. Academic Press, New York (1975).

    MATH  Google Scholar 

  2. F. Alabeau: A Singular Perturbation Analysis of the Semiconductor Device and the Electrochemistry Equations. Report, Institut National de Recherche en Informatique et en Automatique, Paris (1984).

    Google Scholar 

  3. U. Ascher, P. A. Markowich, C. Schmeiser, H. Steinrück, R. Weiß: Conditioning of the Steady State Semiconductor Device Problem. SIAM J. Appl. Math. 49, 165–185 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  4. R. E. Bank, et al: Analytical and Numerical Aspects of Semiconductor Device Modelling. Report 82–11274–2, Bell Laboratories, Murray Hill (1982).

    Google Scholar 

  5. R. E. Bank, D. J. Rose: Global Approximate Newton Methods. Numerische Mathematik 37, 279–295 (1981).

    Article  MathSciNet  MATH  Google Scholar 

  6. F. Brezzi: Theoretical and Numerical Problems in Reverse Biased Semiconductor Devices. Proc. 7th Intern. Conf. on Comput. Meth. in Appl. Sci. and Engng., INRIA, Paris (1985).

    Google Scholar 

  7. F. Brezzi, A. C. S. Capelo, L. Gastaldi: A Singular Perturbation Analysis of Reverse Biased Semiconductor Diodes. SIAM J. Math. Anal. 20, 372–387 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Brezzi, L. Gastaldi: Mathematical Properties of One-Dimensional Semiconductors. Mat. Apl. Comp. 5, 123–137 (1986).

    MathSciNet  MATH  Google Scholar 

  9. L. Caffarelli, A. Friedman: A Singular Perturbation Problem for Semiconductors. Bolletino U.M.I. 1-B (7), 409–421 (1987).

    MathSciNet  Google Scholar 

  10. H. Gajewski: On the Existence of Steady-State Carrier Distributions in Semiconductors. ZAMM (to appear).

    Google Scholar 

  11. H. Gajewski: On Existence, Uniqueness and Asymptotic Behavior of Solutions of the Basic Equations for Carrier Transport in Semiconductors. ZAMM 65, 101–108 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  12. D. Gilbarg, N. S. Trudinger: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer, Berlin (1984).

    Google Scholar 

  13. E. Griepentrog, R. Maerz: Differential Algebraic Equations and Their Numerical Treatment. Teubner, Leipzig (1986).

    MATH  Google Scholar 

  14. H. K. Gummel: A Self-Consistent Iterative Scheme for One-Dimensional Steady State Transistor Calculations. IEEE Trans. Electron. Devices 11, 455–465 (1964).

    Article  Google Scholar 

  15. J. Henri, B. Louro: Singular Perturbation Theory Applied to the Electrochemistry Equations in the Case of Electroneutrality. Nonlinear Analysis TMA 13, 787–801 (1989).

    Article  Google Scholar 

  16. J. W. Jerome: Consistency of Semiconductor Modelling: An Existence/Stability Analysis for the Stationary Van Roosbroeck System. SIAM J. Appl. Math. 45, 565–590 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  17. T. Kerkhoven: A Proof of the Convergence of Gummel’s Method for Realistic Device Geometries. SIAM J. Num. Anal. 23, 1121–1137 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  18. P. Markowich: A Singular Perturbation Analysis of the Fundamental Semiconductor Device Equations. SIAM J. Appl. Math. 44, 896–928 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  19. P. Markowich: The Stationary Semiconductor Device Equations. Springer, Wien-New York (1986).

    Google Scholar 

  20. P. Markowich, P. Szmolyan: A System of Convection-Diffusion Equations with Small Diffusion Coefficient Arising in Semiconductor Physics. J. Diff. Equ. 81, 234–254 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  21. P. Markowich, C. Ringhofer: A Singularly Perturbed Boundary Value Problem Modelling a Semiconductor Device. SIAM J. Appl. Math. 44, 231–256 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  22. P. Markowich, C. Ringhofer: Stability of the Linearized Transient Semiconductor Device Equations. ZAMM 67, 319–332 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  23. P. Markowich, C. Schmeiser: Uniform Asymptotic Representations of the Basic Semiconductor Device Equations. IMA J. Appl Math. 36, 43–57 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  24. M. S. Mock: Analysis of Mathematical Models of Semiconductor Devices. Boole Press, Dublin (1983).

    MATH  Google Scholar 

  25. R. E. O’Malley jr.: Introduction to Singular Perturbations. Academic Press, New York (1974).

    MATH  Google Scholar 

  26. C. Ringhofer: An Asymptotic Analysis of a Transient P-N Junction Model. SIAM J. Appl. Math. 47, 624–642 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  27. C. Ringhofer: A Singular Perturbation Analysis for the Transient Semiconductor Device Equations in One Space Dimension. IMA J. Appl. Math. 39, 17–32 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  28. C. Ringhofer, C. Schmeiser: An Approximate Newton Method for the Solution of the Basic Semiconductor Device Equations. SIAM J. Num. Anal. 26, 507–516 (1989).

    Article  MathSciNet  MATH  Google Scholar 

  29. C. Ringhofer, C. Schmeiser: A Modified Gummel Method for the Basic Semiconductor Device Equations. IEEE Trans. CAD 7, 251–253 (1988).

    Google Scholar 

  30. C. Schmeiser: On Strongly Reverse Biased Semiconductor Diodes. SIAM J. Appl. Math. (1989) (to appear).

    Google Scholar 

  31. C. Schmeiser, R. Weiss: Asymptotic Analysis of Singular Singularly Perturbed Boundary Value Problems. SIAM J. Math. Anal. 17, 560–579 (1986).

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Seidman, G. Troianiello: Time Dependent Solution of a Nonlinear System Arising in Semiconductor Theory. Nonlinear Analysis T.M.A. 9, 1137–1157 (1985).

    Article  MathSciNet  MATH  Google Scholar 

  33. T. Seidman, G. Troianiello: Time Dependent Solution of a Nonlinear System Arising in Semiconductor Theory, II: Boundedness and Periodicity. Nonlinear Analysis T.M.A. 10, 491–502 (1986).

    Article  MATH  Google Scholar 

  34. S. Selberherr: Analysis and Simulation of Semiconductor Devices. Springer-Verlag, Wien New York (1984).

    Google Scholar 

  35. S. M. Sze: Physics of Semiconductor Devices, 2nd edn. John Wiley & Sons, New York (1981).

    Google Scholar 

  36. P. Szmolyan: Initial Transients of Solutions of the Semiconductor Device Equations. Nonlinear Analysis TMA (to appear).

    Google Scholar 

  37. H. Triebel: Interpolation Theory, Function Spaces, Differential Operators. Verlag der Wissenschaften, Berlin (1973).

    Google Scholar 

  38. J. H. Wilkinson: Rounding Errors in Algebraic Processes. Prentice Hall, New Jersey (1963).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer-Verlag Wien

About this chapter

Cite this chapter

Markowich, P.A., Ringhofer, C.A., Schmeiser, C. (1990). The Drift Diffusion Equations. In: Semiconductor Equations. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6961-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6961-2_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82157-2

  • Online ISBN: 978-3-7091-6961-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics