Skip to main content

Two-Stage Interval Iterative Methods

  • Chapter

Part of the book series: Computing Supplementum ((COMPUTING,volume 9))

Abstract

Two-Stage Interval Iterative Methods. We present an interval version of the well-known two-stage iterative methods to approximate solutions of linear systems of equations. By using interval arithmetical tools we are able to verify such solutions within interval bounds. The method can also guarantee the non-singularity of the underlying coefficient matrices of the systems. We prove criteria of convergence for the method and we report on an optimality result for the enclosure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alefeld, G.: On the convergence of some interval-arithmetic modifications of Newton’s method. SIAM J. Numer. Anal. 21, 363 – 372 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  2. Alefeld, G., Herzberger, J.: Introduction to interval computations. New York: Academic Press 1983.

    MATH  Google Scholar 

  3. Alefeld, G., Platzöder, L.: A quadratically convergent Krawczyk-like algorithm. SIAM J. Numer. Anal. 20, 210– 219(1983).

    Article  MathSciNet  MATH  Google Scholar 

  4. Barth, W., Nuding, E.: Optimale Lösung von Intervallgleichungssystemen. Computing 12, 117– 125 (1974).

    Article  MathSciNet  MATH  Google Scholar 

  5. Beeck, H.: Über die Struktur und Abschätzung der Lösungsmenge von linearen Gleichungssystemen mit Intervallkoeffizienten. Computing 10, 231 – 244 (1972).

    Article  MathSciNet  MATH  Google Scholar 

  6. Fan, K.: Topological proofs for certain theorems on matrices with nonnegative elements. Monatsh. Math. 62, 219 – 237(1958).

    Article  MathSciNet  MATH  Google Scholar 

  7. Frommer, A., Mayer, G.: Efiicient methods for enclosing solutions of systems of nonlinear equations. Computing 44, 221 – 235 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  8. Frommer, A., Mayer, G.: Efiicient methods for enclosing solutionsof systems of nonlinear equations. Computing 44 44, 221 – 235 (1990).

    Google Scholar 

  9. Golub, G. H., Overton, M. L.: Convergence of a two-stage Richardson iterative procedure for solving systems of linear equations. In: Watson, G.A. (ed.) Numerical analysis (Proceedings of the Ninth Biennial Conference, Dundee, Scotland, 1981), pp. 128–139 (Lecture Notes in Mathematics 912) New York: Springer 1982.

    Google Scholar 

  10. Golub, G. H., Overton, M. L.: The convergence of inexact Chebyshev and Richardson iterative methods for solving linear systems. Numer. Math. 53, 571 – 593 (1988).

    Article  MathSciNet  MATH  Google Scholar 

  11. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Chr.: PASCAL-XSC. Sprachbeschreibung mit Beispielen. Berlin: Springer 1991.

    MATH  Google Scholar 

  12. Kulisch, U. W., Miranker, W. L. (eds.): A new approach to scientific computation. New York: Academic Press 1983.

    MATH  Google Scholar 

  13. Lanzkron, P. J., Rose, D. J., Szyld, D. B.: Convergence of nested classical iterative methods for linear systems. Numer. Math. 58, 685 – 702 (1991).

    Article  MathSciNet  MATH  Google Scholar 

  14. Marek, I., Szyld, D. B.: Comparison theorems for weak Splittings of bounded Operators. Numer. Math. 58, 387 – 397 (1990).

    Article  MathSciNet  MATH  Google Scholar 

  15. Mayer, G.: Reguläre Zerlegungen und der Satz von Stein und Rosenberg für Intervallmatrizen. Habilitationsschrift, Universität Karlsruhe, 1986.

    Google Scholar 

  16. Mayer, G.: Comparison theorems for iterative methods based on strong splittings. SIAM J. Numer. Anal. 24, 215 – 227 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  17. Mayer, G.: On the speed of convergence of some iterative processes. In: Greenspan, D., Rosza, P. (eds.) Colloquia Mathematica Societatis Jänos Bolyai, 50, Numerical Methods, Miskolc, 1986, pp. 207 – 228. Amsterdam: North Holland 1988.

    Google Scholar 

  18. Mayer, G.: Old and new aspects for the interval Gaussian algorithm. In: Kaucher, E., Markov, S. M., Mayer, G. (eds.) Computer arithmetic, scientific computation and mathematical modelling. IMACS Annais on Computing and Applied Mathematics, Baltzer, Basel, 1991, 329 – 349.

    Google Scholar 

  19. Mayer, G.: On £;-inflation in verification algorithms. (Submitted for publication).

    Google Scholar 

  20. Neumaier, A.: New techniques for the analysis of linear interval equations. Linear Algebra Appl. 58, 273 – 325 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  21. Neumaier, A.: Further results on linear interval equations. Linear Algebra Appl. 87, 155 – 179 (1987).

    Article  MathSciNet  MATH  Google Scholar 

  22. Neumaier, A.: Interval methods for systems of equations. Cambridge: Cambridge University Press 1990.

    MATH  Google Scholar 

  23. Nichols, N. K.: On the convergence of two-stage iterative processes for solving linear equations. SIAM J. Numer. Anal. 10, 460 – 469 (1973).

    Article  MathSciNet  MATH  Google Scholar 

  24. Ortega, J. M., Rheinboldt W. C.: Iterative Solution of nonlinear equations in several variables. New York: Academic Press 1970.

    MATH  Google Scholar 

  25. Rump, S. M.: Solving algebraic problems with high accuracy. In: Kulisch, U. W., Miranker, W. L. (eds.) A new approach to scientific computation, pp. 53 – 120. New York: Academic Press 1983.

    Google Scholar 

  26. Rump, S. M.: On the Solution of interval linear systems. Computing 47, 337 – 353 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  27. Schneider, H.: Theorems on M-splittings of a singular M-matrix which depend on graph structure. Linear Algebra Appl. 58, 407 – 424 (1984).

    Article  MathSciNet  MATH  Google Scholar 

  28. Schwandt, H.: Schnelle fast global konvergente Verfahren für die Fünf-Punkt-Diskretisierung der Poissongleichung mit Dirichletschen Randbedingungen auf Rechteckgebieten. Dissertation, Techn. Univ. Berlin, 1981.

    Google Scholar 

  29. Szyld, D. B., Jones M. T.: Two-stage and multi-splitting methods for the parallel Solution of linear systems. Technical Report Preprint MCSP 165-0790, Mathematics and Computer Science Division, Argonne National Laboratory, July 1990. SIAM J. Matrix Anal. Appl. 13, 671 – 679 (1992).

    Article  MathSciNet  MATH  Google Scholar 

  30. Varga, R. S.: Matrix iterative analysis. Englewood Cliffs, New Jersey: Prentice-Hall 1962.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Professor U. Kulisch on the occasion of his 60th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag

About this chapter

Cite this chapter

Frommer, A., Mayer, G. (1993). Two-Stage Interval Iterative Methods. In: Albrecht, R., Alefeld, G., Stetter, H.J. (eds) Validation Numerics. Computing Supplementum, vol 9. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6918-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6918-6_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82451-1

  • Online ISBN: 978-3-7091-6918-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics