Skip to main content

Naturally Occuring Organohalogen Compounds — A Comprehensive Survery

  • Chapter
Progress in the Chemistry of Organic Natural Products

Abstract

Natural chlorine-, bromine-, iodine-, and fluorine-containing organic chemical compounds are abundant on our planet. Occurring on land, in the oceans, and in the atmosphere, they pervade every form of life. They are produced by marine and terrestrial plants, bacteria, fungi, insects, marine animals, and even mammals. Natural combustion processes, such as volcanoes and other geothermal events, and forest and brush fires contribute large quantities of halogenated compounds to the environment. In 40 years, the number of known natural organohalogens has multiplied 200 times, from a dozen in 1954 to nearly 2400 today (Table 1) (1–12).

Dedicated to the memory of my father, Waldron Boger Gribble, 1907–1980.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bracken, A.: Naturally Occurring Chlorine-Containing Organic Substances. Manufacturing Chemist 25, 533 (1954).

    CAS  Google Scholar 

  2. Petty, M.A.: An Introduction to the Origin and Biochemistry of Microbial Halometabolites. Bact. Rev. 25, 111 (1961).

    CAS  Google Scholar 

  3. Fowden, L.: The Occurrence and Metabolism of Carbon-Halogen Compounds. Proc. Roy. Soc. B171, 5 (1968).

    CAS  Google Scholar 

  4. Turner, W.B.: Fungal Metabolites. New York: Academic Press. 1971.

    Google Scholar 

  5. Siuda, J.F., and J.F. Debernardis: Naturally Occurring Halogenated Organic Compounds. Lloydia 36, 107 (1973).

    CAS  Google Scholar 

  6. Minale, L.: Natural Product Chemistry of the Marine Sponges. Pure Appl. Chem. 48, 7 (1976).

    CAS  Google Scholar 

  7. Thomson, R.H.: Halogenated Metabolites from Marine Animals and Plants. J. Indian Chem. Soc. 55, 1209 (1978).

    CAS  Google Scholar 

  8. Fenical, W.: Natural Halogenated Organics. In: Marine Organic Chemistry, Chap. 12 ( E.K. Duursma and R. Dawson, eds.). Amsterdam: Elsevier. 1981.

    Google Scholar 

  9. Turner, W.B., and D.C. Aldridge: Fungal Metabolites, 2nd ed. New York: Academic Press. 1983.

    Google Scholar 

  10. Engvild, K.C.: Chlorine-Containing Natural Compounds in Higher Plants. Phytochem. 25, 781 (1986).

    CAS  Google Scholar 

  11. Gribble, G.W.: Naturally Occurring Organohalogen Compounds—A Survey. J. Nat. Prod. 55, 1353 (1992).

    CAS  Google Scholar 

  12. Naumann, K.: Chlorchemie der Natur. Chem. Zeit. 27, 33 (1993).

    CAS  Google Scholar 

  13. Scheuer, P.J.: Chemistry of Marine Natural Products. New York: Academic Press. 1973.

    Google Scholar 

  14. Fenical, W.: Halogenation in the Rhodophyta—A Review. J. Phycol. 11, 245 (1975).

    CAS  Google Scholar 

  15. Minale, L., G. Cimino, S. De Stefano, and G. Sodano: Natural Products from Porifera. Progr. Chem. Org. Nat. Prod. 33, 1 (1976).

    CAS  Google Scholar 

  16. Baker, J.T.: Some Metabolites from Australian Marine Organisms. Pure Appl. Chem. 48, 35 (1976).

    CAS  Google Scholar 

  17. Scheuer, P.J.: The Varied and Fascinating Chemistry of Marine Mollusks. Is. J. Chem. 16, 52 (1977).

    CAS  Google Scholar 

  18. Faulkner, D.J.: Interesting Aspects of Marine Natural Products Chemistry. Tetrahedron 33, 1421 (1977).

    CAS  Google Scholar 

  19. Marine Natural Products, Vols. I-V (P.J. Scheuer, ed.). New York: Academic Press. 1981.

    Google Scholar 

  20. Krebs, H.C.: Recent Developments in the Field of Marine Natural Products with Emphasis on Biologically Active Compounds. Progr. Chem. Org. Nat. Prod. 49, 151 (1986).

    CAS  Google Scholar 

  21. Rinehart, Jr., K.L., P.D. Shaw, L.S. Shield, J.B. Gloer, G.C. Harbour, M.E.S. Koker, D. Samain, R.E. Schwartz, A.A. Tymiak, D.L. Weller, G.T. Carter, M.H.G. Munro, R.G. Hughes, Jr., H. E. Renis, E.B. Swynenberg, D.A. Stringfellow, J.J. Vavra, J.H. Coats, G.E. Zurenko, S.L. Kuentzel, L.H. LI, G.J. Bakus, R.C. Brusca, L.L. Craft, D.N. Young, and J.L. Connor: Marine Natural Products as Sources of Antiviral, Antimicrobial, and Antineoplastic Agents. Pure Appl. Chem. 53, 795 (1981).

    Google Scholar 

  22. Müller, G., and W. Schmitz: Halogenorganische Verbindungen in aquatischen Sedimenten: Antropogene und Biogene. Chem. Zeit. 109, 415 (1985).

    Google Scholar 

  23. Faulkner, D.J.: Marine Natural Products: Metabolites of Marine Algae and Herbivorous Marine Molluscs. Nat. Prod. Rep. 1, 251 (1984).

    CAS  Google Scholar 

  24. Faulkner, D.J.: Marine Natural Products: Metabolites of Marine Invertebrates. Nat. Prod. Rep. 1, 551 (1984).

    CAS  Google Scholar 

  25. Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 3, 1 (1986).

    CAS  Google Scholar 

  26. Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 4, 539 (1987).

    CAS  Google Scholar 

  27. Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 5, 613 (1988).

    CAS  Google Scholar 

  28. Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 7, 269 (1990).

    CAS  Google Scholar 

  29. Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 8, 97 (1991).

    CAS  Google Scholar 

  30. Faulkner, D.J.: Marine Natural Products. Nat. Prod. Rep. 9, 323 (1992).

    CAS  Google Scholar 

  31. Faulkner, DJ.: Marine Natural Products. Nat. Prod. Rep. 10, 497 (1993).

    CAS  Google Scholar 

  32. Moore, R.E.: Marine Aliphatic Natural Products. Aliphatic and Related Natural Prod. Chem. 1, 20 (1979).

    CAS  Google Scholar 

  33. Thomson, R.H.: Marine Natural Products. Chem. Brit. 14, 133 (1978).

    CAS  Google Scholar 

  34. Christophersen, C: Secondary Metabolites from Marine Bryozoans. A Review. Acta Chem. Scand. B39, 517 (1985).

    CAS  Google Scholar 

  35. Asplund, G., and A. Grimvall: Organohalogens in Nature. Environ. Sei. Technol. 25, 1346 (1991).

    CAS  Google Scholar 

  36. Fleming, B.: Chlorinated Organics in Perspective: From Drinking Water to Mill Effluent. Pulp & Paper April, 115 (1991).

    Google Scholar 

  37. Premuzic, E.: Chemistry of Natural Products Derived from Marine Sources. Progr. Chem. Org. Nat. Prod. 29, 417 (1971).

    CAS  Google Scholar 

  38. Hopp, V.: Chlor und seine Verbindungenihr Kreislauf in Natur und Technik. Chem. Zeit. 115, 341 (1991).

    CAS  Google Scholar 

  39. Harper, D.B., and D. O’hagan: The Fluorinated Natural Products. Nat. Prod. Rep. 11, 123 (1994).

    CAS  Google Scholar 

  40. Gribble, G.W.: The Natural Production of Chlorinated Compounds. Environ. Sci. Technol. 28, 310A (1994).

    Google Scholar 

  41. Goldberg, E.D.: The Oceans as a Chemical System. In: The Sea, 2 (M.N. Hill, ed.), pp. 3–25. New York: Wiley-Interscience. 1963.

    Google Scholar 

  42. Stijve, T.: Inorganic Bromide in Higher Fungi. Z. Naturforsch. 39C, 863 (1984).

    Google Scholar 

  43. Isidorov, V.A.: Organic Chemistry of the Earth’s Atmosphere, p. 107. Berlin, Heidelberg: Springer. 1990.

    Google Scholar 

  44. Keene, W.C., A.A. P. Pszenny, D.J. Jacob, R.A. Duce, J.N. Galloway, J J. Schultz-Tokos, H. Sievering, and J.F. Boatman: The Geochemical Cycling of Reactive Chlorine Through the Marine Troposphere. Global Biogeochem. Cycles 4, 407 (1990).

    CAS  Google Scholar 

  45. Stolarski, R.S., and R.J. Cicerone: Stratospheric Chlorine: A Possible Sink for Ozone. Can. J. Chem. 52, 1610 (1974).

    CAS  Google Scholar 

  46. Symonds, R.B., W.I. Rose, and M.H. Reed: Contribution of CI-and F-Bearing Gases to the Atmosphere by Volcanoes. Nature 334, 415 (1988).

    CAS  Google Scholar 

  47. Tabazadeh, A., and R.P. Turco: Stratospheric Chlorine Injection by Volcanic Eruptions: HCl Scavenging and Implications for Ozone. Science 260, 1082 (1993).

    CAS  Google Scholar 

  48. Westrich, H.R., and T.M. Gerlach: Magmatic Gas Source for the Stratospheric S02 Cloud from the June 15, 1991, Eruption of Mount Pinatubo. Geology 20, 867 (1992).

    CAS  Google Scholar 

  49. Johnston, D.A.: Volcanic Contribution of Chlorine to the Stratosphere: More Significant to Ozone than Previously Estimated? Science 209, 491 (1980).

    CAS  Google Scholar 

  50. Symonds, R.B., W.I. Rose, T.M. Gerlach, P.H. Briggs, and R.S. Harmon: Evaluation of Gases, Condensates, and S02 Emissions from Augustine Volcano, Alaska: The Degassing of a Cl-Rich Volcanic System. Bull. Volcanol. 52, 355 (1990).

    Google Scholar 

  51. Symonds, R.B., M.H. Reed, and W.I. Rose: Origin, Speciation, and Fluxes of Trace-Element Gases at Augustine Volcano, Alaska: Insights into Magma Degassing and Fumarolic Processes. Geochim. Cosmochim. Acta 56, 633 (1992).

    CAS  Google Scholar 

  52. Oskarsson, N.: The Interaction Between Volcanic Gases and Tephra. Fluorine Adhering to Tephra of the 1970 Hekla Eruption. J. Volcanol. Geother. Res. 8, 251 (1980).

    CAS  Google Scholar 

  53. Woods, D.C., R.L. Chuan, and W.I. Rose: Halite Particles Injected into the Stratosphere by the 1982 El Chichon Eruption. Science 230, 170 (1985).

    CAS  Google Scholar 

  54. Mankin, W.G., and M.T. Coffey: Increased Stratospheric Hydrogen Chloride in the El Chichón Cloud. Science 226, 170 (1983).

    Google Scholar 

  55. Cadle, R.D., A.L. Lazrus, B.J. Huebert, L.E. Heidt, W.I. Rose, D.C Woods, R.L. Chuan, R.E. Stoiber, D.B. Smith, and R.A. Zielinski: Atmospheric Implications of Studies of Central American Volcanic Eruption Clouds. J. Geophys. Res. 84, 6961 (1979).

    CAS  Google Scholar 

  56. Olmez, I., D.L. Finnegan, and W.H. Zoller: Iridium Emissions from Kilauea Volcano. J. Geophys. Res. 91, 653 (1986).

    CAS  Google Scholar 

  57. Blake, G.A., J. Keene, and T.G. Phillips: Chlorine in Dense Interstellar Clouds: The Abundance of HCl in OMC-1. Astrophys. J. 295, 501 (1985).

    CAS  Google Scholar 

  58. Winnewisser, G., and E. Herbst: Organic Molecules in Space. Top. Curr. Chem. 139, 119 (1987).

    CAS  Google Scholar 

  59. Sauvageau, C: Algae Containing Free Iodine. Rev. Bot. App. Agr. Col. 6, 169 (1926); Chem. Abstr. 20, 3485 (1926).

    Google Scholar 

  60. Kylin, H.: The Occurrence of Iodides, Bromides and Iodide-Oxidases in Marine Algae. Z. Physiol. Chem. 186, 50 (1929).

    CAS  Google Scholar 

  61. Low, E.M.: Iodine and Bromine in Sponges. J. Mar. Res. 8, 97 (1949).

    CAS  Google Scholar 

  62. Faulkner, D.J.: Natural Organohalogen Compounds. In: The Handbook of Environmental Chemistry, Vol. 1, Part A (O. Hutzinger, ed.), p. 229. Berlin: Springer. 1980.

    Google Scholar 

  63. Isidorov, V.A.: Organic Chemistry of the Earth’s Atmosphere, p. 49. Berlin, Heidelberg: Springer. 1990.

    Google Scholar 

  64. Gregson, R.P., B.A. Baldo, P.G. Thomas, R.J. Quinn, P.R. Bergquist, J.F. Stephens, and A.R. Horne: Fluorine Is a Major Constituent of the Marine Sponge Halichondria moorei. Science 206, 1108 (1979).

    CAS  Google Scholar 

  65. Rodriguez, J.M.: Probing Stratospheric Ozone. Science 261, 1128 (1993).

    CAS  Google Scholar 

  66. Cicerone, R.J.: Fires, Atmospheric Chemistry, and the Ozone Layer. Science 263, 1243 (1994).

    CAS  Google Scholar 

  67. Pearson, C.R.: Cl and C2 Halocarbons. In: The Handbook of Environmental Chemistry, Vol. 3/Part B ( O. Hutzinger, ed.). Berlin, Heidelberg: Springer. 1982.

    Google Scholar 

  68. Leisinger, T.: Microorganisms and Xenobiotic Compounds. Experientia 39, 1183 (1983).

    CAS  Google Scholar 

  69. Rasmussen, R.A., L.E. Rasmussen, M.A.K. Khalil, and R.W. Dalluge: Concentration Distribution of Methyl Chloride in the Atmosphere. J. Geophys. Res. 85, 7350 (1980).

    CAS  Google Scholar 

  70. Harper, D.B.: Halomethane from Halide Ion—A Highly Efficient Fungal Conversion of Environmental Significance. Nature 315, 55 (1985).

    CAS  Google Scholar 

  71. Edwards, P.R., I. Campbell, and G.S. Milne: The Impact of Chloromethanes on the Environment, Part 2: Methyl Chloride and Methylene Chloride. Chem. Ind., 619 (1982).

    Google Scholar 

  72. Cowan, M.I., A.T. Glen, S.A. Hutchinson, M.E. MacCartney, J.M. Mackintosh, and A.M. Moss: Production of Volatile Metabolites by Species of Fomes. Trans. Br. Mycol. Soc. 60, 347 (1973).

    CAS  Google Scholar 

  73. White, R.H.: Biosynthesis of Methyl Chloride in the Fungus Phellinus pomaceus. Arch. Microbiol. 132, 100 (1982).

    CAS  Google Scholar 

  74. Harper, D.B., J.T. Kennedy, and J.T.G. Hamilton: Chloromethane Biosynthesis in Poroid Fungi. Phytochem. 27, 3147 (1988).

    CAS  Google Scholar 

  75. Harper, D.B., and J.T. Kennedy: Effect of Growth Conditions on Halomethane Production by Phellinus Species: Biological and Environmental Implications. J. Gen. Microbiol. 132, 1231 (1986).

    CAS  Google Scholar 

  76. Turner, E.M., M. Wright, T. Ward, D.J. Osborne, and R. Self: Production of Ethylene and Other Volátiles and Changes in Cellulase and Lacease Activities During the Life Cycle of the Cultivated Mushroom, Agaricus bisporus. J. Gen. Microbiol. 91, 167 (1975).

    CAS  Google Scholar 

  77. Gschwend, P.M., J.K. Macfarland, and K.A. Newman: Volatile Halogenated Organic Compounds Released to Seawater from Temperate Marine Macroalgae. Science 227, 1033 (1985).

    CAS  Google Scholar 

  78. Wuosmaa, A.M., and L.P. Hager: Methyl Chloride Transferase: A Carbocation Route for Biosynthesis of Halometabolites. Science 249, 160 (1990).

    CAS  Google Scholar 

  79. Manley, S.L., and M.N. Dastoor: Methyl Halide (CH3X) Production from the Giant Kelp, Macrocystis, and Estimates of Global CH3X Production by Kelp. Limnol. Oceanogr. 32, 709 (1987).

    CAS  Google Scholar 

  80. Blackman, A.J., N.W. Davies, and C.E. Ralph: Volatile and Odorous Compounds from the Bryozoan Biftustra perfragilis. Biochem. Syst. Ecol. 20, 339 (1992).

    CAS  Google Scholar 

  81. Isidorov, V.A., I.G. Zenkevich, and B.V. Ioffe: Volatile Organic Compounds in the Atmosphere of Forests. Atmos. Environ. 19, 1 (1985).

    CAS  Google Scholar 

  82. Wever, R.: Formation of Halogenated Gases, by Natural Sources. In: Microbial Production and Consumption of Greenhouse Gases: Methane, Nitrogen Oxides, and Halomethanes, Chap. 15 ( J.E. Rogers and W.B. Whitman, eds.). Washington, D.C.: American Society for Microbiology. 1991

    Google Scholar 

  83. Harper, D.B., J.T.G. Hamilton, J.T. Kennedy, and K.J. McNally: Chloromethane, a Novel Methyl Donor for Biosynthesis of Esters and Anisóles in Phellinus pomaceus. Appl. Environ. Microbiol. 55, 1981 (1989).

    CAS  Google Scholar 

  84. Harper, D.B., J.A. Buswell, J.T. Kennedy, and J.T.G. Hamilton: Chloromethane, Methyl Donor in Veratryl Alcohol Biosynthesis in Phanerochaete chrysosporium and Other Lignin-Degrading Fungi. Appl. Environ. Microbiol. 56, 3450 (1990).

    CAS  Google Scholar 

  85. Harper, D.B., J.A. Buswell, and J.T. Kennedy: Effect of Chloromethane on Veratryl Alcohol and Lignin Peroxidase Production by the Fungus Phanerochaete chrysosporium. J. Gen. Microbiol. 137, 2867 (1991).

    CAS  Google Scholar 

  86. Isidorov, V.A.: Natural Sources of Organic Components of the Atmosphere. In: Organic Chemistry of the Earth’s Atmosphere, Chap. 3. Berlin, Heidelberg: Springer. 1990.

    Google Scholar 

  87. Palmer, T.Y.: Combustion Sources of Atmospheric Chlorine. Nature 263, 44 (1976).

    CAS  Google Scholar 

  88. Crutzen, P.J., and M.O. Andreae: Biomass Burning in the Tropics: Impact on Atmospheric Chemistry and Biogeochemical Cycles. Science 250, 1669 (1990).

    CAS  Google Scholar 

  89. Lovelock, J.E.: Natural Halocarbons in the Air and in the Sea. Nature 256, 193 (1975).

    CAS  Google Scholar 

  90. Stephens, E.R., and F.R. Burleson: Distribution of Light Hydrocarbons in Ambient Air. J. Air.Pollut. Control Assoc. 19, 929 (1969).

    CAS  Google Scholar 

  91. Tassios, S., and D.R. Packham: The Release of Methyl Chloride from Biomass Burning in Australia. J. Air Pollut. Control Assoc. 35, 41 (1985).

    CAS  Google Scholar 

  92. Guerin, M.R.: Organic Chemistry of the Atmosphere, Chap. 3 (L.D. Hansen and D.J. Eatough, eds.). Boca Raton, FL: CRC Press. 1991.

    Google Scholar 

  93. Stoiber, R.E., D.C. Leggett, T.F. Jenkins, R.P. Murrmann, and W.I. Rose, JR.: Organic Compounds in Volcanic Gas from Santiaguito Volcano, Guatemala. Geol. Soc. Amer. Bull. 82, 2299 (1971).

    CAS  Google Scholar 

  94. Rasmussen, R.A., M.A.K. Khalil, R.W. Dalluge, S.A. Penkett, and B. Jones: Carbonyl Sulfide and Carbon Disulfide from the Eruptions of Mount St. Helens. Science 215, 665 (1982).

    CAS  Google Scholar 

  95. Cadle, R.D.: A Comparison of Volcanic with Other Fluxes of Atmospheric Trace Gas Constituents. Rev. Geophys. Space Phys. 18, 746 (1980).

    CAS  Google Scholar 

  96. Gerlach, T.M.: Evaluation of Volcanic Gas Analyses from Kilauea Volcano. J. Volcan. Geotherm. Res. 7, 295 (1980).

    CAS  Google Scholar 

  97. Inn, E.C.Y., J.F. Vedder, E.P. Condon, and D. O’Hara: Gaseous Constituents in the Plume from Eruptions of Mount St. Helens. Science 211, 821 (1981).

    CAS  Google Scholar 

  98. Degroot, W.F.: Methyl Chloride as a Gaseous Tracer for Wood Burning? Letter to the Editor. Environ. Sci. Technol. 23, 252 (1989).

    CAS  Google Scholar 

  99. Edgerton, S.A., M.A.K. Khalil, and R.A. Rasmussen: Emissions from Wood Burning. Letter to the Editor. Environ. Sci. Technol. 23, 906 (1989).

    CAS  Google Scholar 

  100. Varnes, J.L.: The Release of Methyl Chloride from Potato Tubers. Am. Potato J. 59, 593 (1982).

    Google Scholar 

  101. Grimsrud, E.P., and R.A. Rasmussen: Survey and Analysis of Halocarbons in the Atmosphere by Gas Chromatography-Mass Spectrometry. Atmos. Environ. 9, 1014 (1975).

    CAS  Google Scholar 

  102. McConnell, O., and W. Fenical: Halogen Chemistry of the Red Alga Asparagopsis. Phytochem. 16, 367 (1977).

    CAS  Google Scholar 

  103. Isidorov, V.A., E.B. Prilepsky, and V.G. Povarov: Photochemically and Optically Active Components of Minerals and Gas Emissions of Mining Plants. J. Ecol. Chem. N2–3, 201 (1993).

    Google Scholar 

  104. Edwards, P.R., I. Campbell, and G.S. Milne: The Impact of Chloromethanes on the Environment, Part 1: The Atmospheric Chlorine Cycle. Chem. Ind. (London), 574 (1982).

    Google Scholar 

  105. Lovelock, J.E., R.J. Maggs, and R.J. Wade: Halogenated Hydrocarbons in and over the Atlantic. Nature 241, 194 (1973).

    CAS  Google Scholar 

  106. Isidorov, V.A., V.G. Povarov, and E.B. Prilepsky: Geological Sources of Volatile Organic Components in Regions of Seismic and Volcanic Activity. J. Ecol. Chem. Nl, 19 (1993).

    Google Scholar 

  107. Pyysalo, H.: Identification of Volatile Compounds in Seven Edible Fresh Mushrooms. Acta Chem. Scand. B30, 235 (1976).

    Google Scholar 

  108. Gil, V., and A.J. Macleod: Some Glucosinolates of Farsetia aegyptia and Farsetia ramosissima. Phytochem. 19, 227 (1980).

    CAS  Google Scholar 

  109. Macleod, A.J., and N.G. Detroconis: Volatile Flavor Components of Sapodilla Fruit. J. Agrie. Food Chem. 30, 515 (1982).

    CAS  Google Scholar 

  110. Choi, S.H., and H. Kato: Volatile Components of Sergia lucens and Its Fermented Product. Agrie. Biol. Chem. 48, 1479 (1984).

    CAS  Google Scholar 

  111. Kameoka, H., K. Kubo, and M. Miyazawa: Volatile Flavor Components of Malabar-Nightshade (Basella rubra L.). J. Food Comp. Anal. 4, 315 (1991).

    CAS  Google Scholar 

  112. Fogelqvist, E.: Carbon Tetrachloride, Tetrachloroethylene, 1,1,1-Trichloroethane and Bromoform in Arctic Seawater. J. Geophys. Res. 90, 9181 (1985).

    CAS  Google Scholar 

  113. Krysell, M., and D.W.R. Wallace: Arctic Ocean Ventilation Studied with a Suite of Anthropogenic Halocarbon Traces. Science 242, 746 (1988).

    CAS  Google Scholar 

  114. Lovelock, J.E.: Atmospheric Halocarbons and Stratospheric Ozone. Nature 252, 292 (1974).

    CAS  Google Scholar 

  115. Yagi, K., J. Williams, N.-Y. Wang, and R.J. Cicerone: Agricultural Soil Fumigation as a Source of Atmospheric Methyl Bromide. Proc. Natl. Acad. Sci. USA 90, 8420 (1993).

    CAS  Google Scholar 

  116. Berg, W.W., L.E. Heidt, W. Pollock, P.D. Sperry, R.J. Cicerone, and E.S, Gladney: Brominated Organic Species in the Arctic Atmosphere. Geophys. Res. Lett. 11, 429 (1984).

    CAS  Google Scholar 

  117. Rasmussen, R.A., and M.A.K. Khalil: Gaseous Bromine in the Arctic Haze. Geophys. Res. Lett. 11, 433 (1984).

    CAS  Google Scholar 

  118. Cicerone, R.J., L.E. Heidt, and W.H. Pollock: Measurements of Atmospheric Methyl Bromide and Bromoform. J. Geophys. Res. 93, 3745 (1988).

    CAS  Google Scholar 

  119. Manley, S.L., and M.N. Dastoor: Methyl Iodide (CH3I) Production by Kelp and Associated Microbes. Mar. Biol. 98, 477 (1988).

    CAS  Google Scholar 

  120. Sharp, G.J., Y. Yokouchi, and H. Akimoto: Trace Analysis of Organobromine Compounds in Air by Adsorbent Trapping and Capillary Gas Chromatography Mass Spectroscopy. Environ. Sci. Technoi. 26, 815 (1992).

    CAS  Google Scholar 

  121. Sturges, W.T., C.W. Sullivan, R.C. Schnell, L.E. Heidt, and W.H. Pollock: Bromoalkane Production by Antarctic Ice Algae. Tellus 45B, 120 (1993).

    Google Scholar 

  122. Class, TH., R. Kohnle, and K. Ballschmiter: Chemistry of Organic Traces in the Air VII: Bromo-and Bromochloromethanes in Air Over the Atlantic Ocean. Chemosphere 15, 429 (1986).

    CAS  Google Scholar 

  123. Manley, S.L., K. Goodwin, and W.J. North: Laboratory Production of Bromoform, Methylene Bromide, and Methyl Iodide by Macroalgae and Distribution in Nearshore Southern California Waters. Limnol. Oceanogr. 37, 1652 (1992).

    CAS  Google Scholar 

  124. Reifenhäuser, W., and K.G. Heumann: Determinations of Methyl Iodide in the Antarctic Atmosphere and the South Polar Sea. Atmos. Environ. 26A, 2905 (1992).

    Google Scholar 

  125. Rasmussen, R.A., M.A.K. Khalil, R. Gunawardena, and S.D. Hoyt: Atmospheric Methyl Iodide (CH3I). J. Geophys. Res. 87, 3086 (1982).

    CAS  Google Scholar 

  126. Singh, H.B., L.J. Salas, and R.E. Stiles: Methyl Halides in and over the Eastern Pacific. J. Geophys. Res. 88, 3684 (1983).

    CAS  Google Scholar 

  127. Butler, J.H.: The Potential Role of the Ocean in Regulating Atmospheric CH3Br. Geophys. Res. Lett. 21, 185 (1994).

    CAS  Google Scholar 

  128. Khalil, M.A.K., R.A. Rasmussen, and R. Gunawardena: Atmospheric Methyl Bromide: Trends and Global Mass Balance. J. Geophys. Res. 98, 2887 (1993).

    CAS  Google Scholar 

  129. Singh, H.B., and M. Kanakidou: An Investigation of the Atmospheric Sources and Sinks of Methyl Bromide. Geophys. Res. Lett. 20, 133 (1993).

    CAS  Google Scholar 

  130. Berg, W.W., P.D. Sperry, K.A. Rahn, and E.S. Gladney: Atmospheric Bromine in the Arctic. J. Geophys. Res. 88, 6719 (1983).

    CAS  Google Scholar 

  131. Sturges, W.T., and L.A. Barrie: Chlorine, Bromine and Iodine in Arctic Aerosols. Atmos. Environ. 22, 1179 (1988).

    CAS  Google Scholar 

  132. Burreson, B.J., R.E. Moore, and P.P. Roller: Volatile Halogen Compounds in the Alga Asparagopsis taxiformis (Rhodophyta). J. Agric. Food. Chem. 24, 856 (1976).

    CAS  Google Scholar 

  133. Moore, R.E.: Volatile Compounds from Marine Algae. Acct. Chem. Res. 10, 40 (1977).

    CAS  Google Scholar 

  134. Class, T., and K. Ballschmiter: Chemistry of Organic Traces in Air, VIII: Sources and Distribution of Bromo-and Bromochloromethanes in Marine Air and Surface Water of the Atlantic Ocean. J. Atmos. Chem. 6, 35 (1988).

    CAS  Google Scholar 

  135. Schall, C, and K.G. Heumann: GC Determination of Volatile Organoiodine and Organobromine Compounds in Arctic Seawater and Air Samples. Fresenius’ J. Anal. Chem. 346, 717 (1993).

    CAS  Google Scholar 

  136. Tokarczyk, R., and R.M. Moore: Production of Volatile Organohalogens by Phytoplankton Cultures. Geophys. Res. Lett. 21, 285 (1994).

    CAS  Google Scholar 

  137. Klick, S.: The Release of Volatile Halocarbons to Seawater by Untreated and Heavy Metal Exposed Samples of the Brown Seaweed Fucus vesiculosus. Marine Chem. 42, 211 (1993).

    CAS  Google Scholar 

  138. Reifenhäuser, W., and K.G. Heumann: Bromo-and Bromochloromethanes in the Antarctic Atmosphere and the South Polar Sea. Chemosphere 24, 1293 (1992).

    Google Scholar 

  139. Weyer, R., M.G.M. Tromp, B.E. Krenn, A. Marjani, and M. VAL Tol: Brominating Activity of the Seaweed Ascophyllum nodosum: Impact on the Biosphere. Environ. Sci. Technol. 25, 446 (1991).

    Google Scholar 

  140. Dyrssen, D., and E. Fogelqvist: Bromoform Concentrations of the Arctic Ocean in the Svalbard Area. Oceanol. Acta 4, 313 (1981).

    CAS  Google Scholar 

  141. Krysell, M.: Bromoform in the Nansen Basin in the Arctic Ocean. Marine Chem. 33, 187 (1991).

    CAS  Google Scholar 

  142. Theiler, R., J.C. Cook, L.P. Hager, and J.F. Siuda: Halohydrocarbon Synthesis by Bromoperoxidase. Science 202, 1094 (1978).

    CAS  Google Scholar 

  143. Beissner, R.S., W.J. Guilford, R.M. Coates, and L.P. Hager: Synthesis of Brominated Heptanones and Bromoform by a Bromoperoxidase of Marine Origin. Biochem. 20, 3724 (1981).

    CAS  Google Scholar 

  144. Klick, S., and K. Abrahamsson: Biogenic Volatile lodated Hydrocarbons in the Ocean. J. Geophys. Res. 97, 12683 (1992).

    CAS  Google Scholar 

  145. Burreson, B.J., R.E. Moore, and P. Roller: Haloforms in the Essential Oil of the Alga Asparagopsis taxiformis (Rhodophyta). Tetrahedron Lett., 473 (1975).

    Google Scholar 

  146. Moore, R.M., and R. Tokarczyk: Chloro-Iodomethane in N. Atlantic Waters: A Potentially Significant Source of Atmospheric Iodine. Geophys. Res. Lett. 19, 1779 (1992).

    CAS  Google Scholar 

  147. Moore, R.M., and R. Tokarczyk: Volatile Biogenic Halocarbons in the Northwest Atlantic. Global Biogeochem. Cycles 7, 195 (1993).

    CAS  Google Scholar 

  148. Fabian, P., R. Borchers, B.C. Kruger, and S. Lai: CF4 and C2F6 in the Atmosphere. J. Geophys. Res. 92, 9831 (1987).

    CAS  Google Scholar 

  149. Cicerone, R.J.: Atmospheric Carbon Tetrafluoride: A Nearly Inert Gas. Science 206, 59 (1979).

    CAS  Google Scholar 

  150. Sturges, W.T., G.F. Cota, and P.T. Buckley: Bromoform Emission from Arctic Ice Algae. Nature 358, 660 (1992).

    CAS  Google Scholar 

  151. Mano, S., and M.O. Andreae: Emission of Methyl Bromide from Biomass Burning. Science 263, 1255 (1994).

    CAS  Google Scholar 

  152. Woolard, F.X., R.E. moore, and P.P. Roller: Halogenated Acetamides, But-3-en-2-ols, and Isopropanols from Asparagopsis taxiformis (Delile) Trev. Tetrahedron 32, 2843 (1976).

    CAS  Google Scholar 

  153. Fenical, W.: Polyhaloketones from the Red Seaweed Asparagopsis taxiformis. Tetrahedron Lett, 4463 (1974).

    Google Scholar 

  154. Combaut, G, Y. Bruneau, J. Teste, and L. Codomier: Composes Halogenes d’une Algue Rouge, Falkenbergia rufolanosa Tetrasporophyte d’Asparagopsis armata. Phytochem. 17, 1661 (1978).

    CAS  Google Scholar 

  155. Siuda, J.F, G.R. Vanblaricom, P.D. Shaw, R.D. Johnson, R.H. White, L.P. Hager, and K.L. Rinehart Jr.: l-Iodo-3,3-dibromo-2-heptanone, 1,1,3,3-Tetrabromo-2-heptanone, and Related Compounds from the Red Alga Bonnemaisonia hamifera. J. Am. Chem. Soc. 97, 937 (1975).

    CAS  Google Scholar 

  156. Jacobsen, N, and J.O. Madsen: Halogenated Metabolites Including Brominated 2-Heptanols and 2-Heptyl Acetates from the Tetrasporophyte of the Red Alga Bonnemaisonia hamifera. Tetrahedron Lett, 3065 (1978).

    Google Scholar 

  157. Mcconnell, O.J, and W. Fenical: Polyhalogenated l-Octene-3-ones, Antibacterial Metabolites from the Red Seaweed Bonnemaisonia asparagoides. Tetrahedron Lett, 1851 (1977).

    Google Scholar 

  158. McConnell, O.J, and W. Fenical: Halogen Chemistry of the Red Alga Bonnemaisonia. Phytochem. 19, 233 (1980).

    CAS  Google Scholar 

  159. Mcconnell, O.J, and W. Fenical: Halogenated Metabolites-Including Favorsky Rearrangement Products-from the Red Seaweed Bonnemaisonia nootkana. Tetrahedron Lett., 4159 (1977).

    Google Scholar 

  160. Rose, A.F., J.A. Pettus JR., and J.J. Sims: Marine Natural Products, XIII: Isolation and Synthesis of Some Halogenated Ketones from the Red Seaweed Delisea fimbriata. Tetrahedron Lett., 1847 (1977).

    Google Scholar 

  161. De Nys, R., J.C. Coll, and B.F. Bgwden: Delisea pulchra (cf. fimbriata) Revisited. The Structural Determination of Two New Metabolites from the Red Alga Delisea pulchra. Aust. J. Chem. 45, 1625 (1992).

    Google Scholar 

  162. Kazlauskas, R., R.O. Lidgard, and R.J. Wells: New Polybrominated Metabolites from the Red Alga Ptilonia australasica. Tetrahedron Lett., 3165 (1978).

    Google Scholar 

  163. Ohta, K., and M. Takagi: Antimicrobial Compounds of the Marine Red Alga Marginisporum aberrans. Phytochem. 16, 1085 (1977).

    CAS  Google Scholar 

  164. Peters, R.A., and M. Shorthouse: Identification of a Volatile Constituent Formed by Homogenates of Acacia georginae Exposed to Fluoride. Nature 231, 123 (1971).

    CAS  Google Scholar 

  165. Kubota, K., K. Yokoyama, T. Yamanishi, and S. Akatsuka: Odor of Dried Shell Powder of Antarctic Krills and Liquid Seasoning of the Hydrolysate. Nippon Nogei Kagaku Kaishi 54, 727 (1980); Chem. Abstr. 94, 63937 (1980).

    Google Scholar 

  166. Franssen, M.C.R., M.A. Posthumus, and H.C. Van DER PLAS: New Halometabolites from Caldariomyces fumago. Phytochem. 27, 1093 (1988).

    CAS  Google Scholar 

  167. Nicod, F., F. Tillequin, and J. Vaquette: Metabolite Halogene Nouveau, Substance Majoritaire de Ptilonia magellanica, Algue Rhodophycee. J. Nat. Prod. 50, 259 (1987).

    CAS  Google Scholar 

  168. Yanagisawa, I., and H. Yoshikawa: A Bromine Compound Isolated from Human Cerebrospinal Fluid. Biochim. Biophys. Acta 329, 283 (1973).

    CAS  Google Scholar 

  169. Mynderse, J.S., and R.E. Moore: The Isolation of (-)-£-l-Chlorotridec-l-ene-6,8-diol from a Marine Cyanophyte. Phytochem. 17, 1325 (1978).

    CAS  Google Scholar 

  170. Nozoe, S., N. Ishii, G. Kusano, K. Kikuchi, and T. Ohta: Neocarzilins A and B, Novel Polyenones from Streptomyces carzinostaticus. Tetrahedron Lett. 33, 7547 (1992).

    CAS  Google Scholar 

  171. Nozoe, S., K. Kikuchi, N. Ishii, and T. Ohta: Synthesis of Neocarzilin A: An Absolute Stereochemistry. Tetrahedron Lett. 33, 7551 (1992).

    CAS  Google Scholar 

  172. Kazlauskas, R., P.T. Murphy, and R.J. Wells: A Brominated Metabolite from the Red Alga Vidalia spiralis. Aust. J. Chem. 35, 219 (1982).

    CAS  Google Scholar 

  173. Clutterbuck, P.W., S.L. Mukhopadhyay, A.E. Oxford, and H. Raistrick: Studies in the Biochemistry of Micro-Organisms 65. (A) A Survey of Chlorine Metabolism by Moulds. (B) Caldariomycin, C5H8O2CI2, a Metabolic Product of Caldariomyces fumago Woronichin. Biochem. J. 34, 664 (1940).

    CAS  Google Scholar 

  174. Beckwith, J.R., and L.P. Hager: Synthesis of D,L-Caldariomycin. J. Org. Chem. 26, 5206 (1961).

    CAS  Google Scholar 

  175. Johnson, S.M., I.C. Paul, K.L. Rinehart, JR., and R. Srinivasan: The Absolute Configuration of Caldariomycin. J. Am. Chem. Soc. 90, 136 (1968).

    CAS  Google Scholar 

  176. Patterson, E.L., W.W. Andres, and L.A. Mitscher: Isolation of the Bromo Analogue of Caldariomycin from Caldariomyces fumago. Appl. Microb. 15, 528 (1967).

    CAS  Google Scholar 

  177. Nakanishi, S., K. Ando, I. Kawamoto, T. Yasuzawa, H. Sano, and H. Kase: KS-504 Compounds, Novel Inhibitors of Ca + 2 and Calmodulin-Dependent Cyclic Nucleotide Phosphodiesterase from Mollisia ventosa. J. Antibiot. 42, 1775 (1989).

    CAS  Google Scholar 

  178. Hirayama, N., and E. Shimizu: Structures of Novel Calmodulin Inhibitors KS504a, KS504b and KS504e. Acta Cryst. C46, 1515 (1990).

    Google Scholar 

  179. Mcgahren, W.J., J.H. Van Den Hende, and L.A. Mitscher: Chlorinated Cyclopentenone Fungiotoxic Metabolites from the Fungus Sporomia affinis. J. Am. Chem. Soc. 91, 157 (1969).

    CAS  Google Scholar 

  180. Giles, D., and W.B. Turner: Chlorine-Containing Metabolites of Periconia macrospinosa. J. Chem. Soc. (C), 2187 (1969).

    Google Scholar 

  181. Strunz, G.M., A.S. Court, J. Komlossy, and M.A. Stillwell: Structures of Cryptosporiopsin: A New Antibiotic Substance Produced by a Species of Cryptosporiopsis. Can. J. Chem. 47, 2087 (1969).

    CAS  Google Scholar 

  182. Strunz, G.M., A.S. Court, J. Komlossy, and M.A. Stillwell: Addendum: Cryptosporiopsin, an Amended Structure. Can. J. Chem. 47, 3700 (1969).

    CAS  Google Scholar 

  183. Strunz, G.M., P.I. Kazinoti, and M.A. Stillwell: A New Chlorinated Cyclopentenone Produced by a Cryptosporiopsis sp. Can. J. Chem. 52, 3623 (1974).

    CAS  Google Scholar 

  184. Lousberg, RJ.J.Ch., Y. Tirilly, and M. Moreau: Isolation of (-)-Cryptosporiopsin, a Chlorinated Cyclopentenone Fungitoxic Metabolite from Phialophora asteris f. sp. helianthi. Experientia 32, 331 (1976).

    CAS  Google Scholar 

  185. Singh, J., K.L. Dhar, and C.K. Atal: Studies on the Genus Piper, Part XI: Occurrence of Pipoxide Chlorohydrin from Piper hookeri. Indian J. Pharm. 33, 50 (1971).

    CAS  Google Scholar 

  186. Joshi, B.S., D.H. Gawad, and H. Fühler: Revised Structures of Pipoxide and Pipoxide Chlorohydrin. Tetrahedron Lett., 2427 (1979).

    Google Scholar 

  187. Sakamura, S., K. Nabeta, S. Yamada, and A. Ichihara: Minor Constituents from Phyllosticta sp. and Their Correlation with Epoxydon (Phyllosinol). Agric. Biol. Chem. 39, 403 (1975).

    CAS  Google Scholar 

  188. Sakamura, S., J. Ito, and R. Sakai: Phytotoxic Metabolites of Phyllosticta sp. Agric. Biol. Chem. 35, 105 (1971).

    CAS  Google Scholar 

  189. Nabeta, K., A. Ichihara, and S. Sakamura: Biosynthesis of Epoxydon and Related Compounds by Phyllosticta sp. Agric. Biol. Chem. 39, 409 (1975).

    CAS  Google Scholar 

  190. Kiriyama, N., Y. Higuchi, and Y. Yamamoto: Studies on the Metabolic Products of Aspergillus terreus, II: Structure and Biosynthesis of the Metabolites of the Strain ATCC 12238. Chem. Pharm. Bull. (Japan) 25, 1265 (1977).

    CAS  Google Scholar 

  191. Stadler, M., H. Anke, W.-R. Arendholz, F. Hansske, U. Anders, O. Sterner, and K.-E. Bergquist: Lachnumon and Lachnumol A, New Metabolites with Nematicidal and Antimicrobial Activities from the Ascomycete Lachnum papyraceum (Karst.) Karst, I: Producing Organism, Fermentation, Isolation and Biological Activities. J. Antibiot. 46, 961 (1993).

    CAS  Google Scholar 

  192. Stadler, M., H. Anke, K.-E. Bergquist, and O. Sterner: Lachnumon and Lachnumol A, New Metabolites with Nematicidal and Antimicrobial Activities from the Ascomycete Lachnum papyraceum (Karst.) Karst, II: Structural Elucidation. J. Anti¬biot. 46, 968 (1993).

    CAS  Google Scholar 

  193. Higa, T., and P.J. Scheuer: Constituents of the Hemichordate Ptychodera flava laysanica. Mar. Nat. Prod. NATO Conf., 35 (1977).

    Google Scholar 

  194. Higa, T., R.K. Okuda, R.M. Severns, P.J. Scheuer, C.-H. He, X. Changfu, and J. Clardy: Unprecedented Constituents of a New Species of Acorn Worm. Tetrahedron 43, 1063 (1987).

    CAS  Google Scholar 

  195. Corgiat, J.M., F.C. Dobbs, M.W. Burger, and P.J. Scheuer: Organohalogen Constituents of the Acorn Worm Ptychodera bahamensis. Comp. Biochem. Physiol. 106B, 83 (1993).

    Google Scholar 

  196. Bollinger, P., and T. Zardin-Tartaglia: Isolierung und Strukturaufklärung von Mikrolin. Helv. Chim. Acta 59, 1809 (1976).

    CAS  Google Scholar 

  197. Weber, H.P., and T.J. Petcher: Die Kristallstruktur und absolute Konfiguration von Mikrolin. Helv. Chim. Acta 59, 1821 (1976).

    CAS  Google Scholar 

  198. Trofast, J., and B. Wickberg: Mycorrhizin A and Chloromycorrhizin A, Two Antibiotics from a Mycorrhizal Fungus of Monotropa hypopitys L. Tetrahedron 33, 875 (1977).

    CAS  Google Scholar 

  199. Stalhandske, C., C. Svensson, and C. Sarnstrand: Chloromycorrhizin A. Acta Cryst. B33, 870 (1977).

    Google Scholar 

  200. Chexal, K.K., CH. Tamm, J. Clardy, and K. Hirotsu: Gilmicolin and Mycor-rhizinol, Two New Metabolites of GilmanieUa humicola Barron. Helv. Chim. Acta 62, 1129 (1979).

    CAS  Google Scholar 

  201. Kitamura, E., A. Hirota, M. Nakagawa, M. Nakayama, H. Nozaki, T. Tada, M. Nukina, and H. Hirota: (R, 6R, 9S, 10S)-9-Chloro-10-hydroxy-8-methox-carbonyl-4-methylene-2,5-dioxabicyclo[4.4.0]dec-3-one-7-ene, A First Chlorine-Containing Shikimate-Related Metabolite from Fungi. Tetrahedron Lett. 31, 4605 (1990).

    CAS  Google Scholar 

  202. Curtin, T.P., and J. Reilly: Sclerotiorin, C2oH2i05Cl, a Chlorine-Containing Metabolic Product of Penicillium sclerotiorin. Biochem. J. 34, 1419 (1940).

    Google Scholar 

  203. Birkinshaw, J.H.: Studies in the Biochemistry of Micro-Organisms, 89: Metabolic Products of Penicillium multicolor G.-M. and. P. with Special Reference to Sclerotiorin. Biochem. J. 52, 283 (1952).

    CAS  Google Scholar 

  204. Udagawa, S.: (-)-Sclerotiorin, a Major Metabolite of Penicillium hirayamae. Chem. Pharm. Bull. (Japan) 11, 366 (1963).

    CAS  Google Scholar 

  205. Gregory, E.M., and W.B. Turner: 7-epi-Sclerotiorin. Chem. Ind., 1625 (1963).

    Google Scholar 

  206. Ellestad, G.A., and W.B. Whalley: The Chemistry of Fungi, Part LII: (-)-Sclerotiorin. J. Chem. Soc., 7260 (1965).

    Google Scholar 

  207. Dean, F.M., J. Staunton, and W.B. Whalley: The Chemistry of Fungi, Part XXXVI: A Revised Structure for Sclerotiorin. J. Chem. Soc., 3004 (1959).

    Google Scholar 

  208. Whalley, W.B., G. Ferguson, W.C. Marsh, and R.J. Restjvo: The Chemistry of Fungi, Part LXVIII: The Absolute Configuration of (+)-Sclerotiorin and of the Azaphilones. J. Chem. Soc., Perkin Trans. 1, 1366 (1976).

    Google Scholar 

  209. Gray, R.W., and W.B. Whalley: The Chemistry of Fungi, Part LXIII: Rubrorotiorin, a Metabolite of Penicillium hirayamae Udagawa. J. Chem. Soc. C, 3575 (1971).

    Google Scholar 

  210. Gray, R.W., and W.B. Whalley: (-)-7-Epi-5-Chloroisorotiorin, a Novel Metabolite. J. Chem. Soc, Chem. Commun, 762 (1970).

    Google Scholar 

  211. Takahashi, M, K. Koyama, and S. Natori: Four New Azaphilones from Chaetomium globosum var. flavor-viridae. Chem. Pharm. Bull (Japan) 38, 625 (1990).

    CAS  Google Scholar 

  212. Omura, S., H. Tanaka, K. Matsuzaki, H. Ikeda, and R. Masuma: Isochromophilones I and II, Novel Inhibitors Against gpl20-CD4 Binding from Penicillium sp. J. Antibiot. 46, 1908 (1993).

    CAS  Google Scholar 

  213. Rose, A.F, P.J. Scheuer, J.P. Springer, and J. Clardy: Stylocheilamide, an Unusual Constituent of the Sea Hare Stylocheilus longicauda. J. Am. Chem. Soc. 100, 7665 (1978).

    CAS  Google Scholar 

  214. Naylor, S, F.J. Hanke, L.V. Manes, and P. Crews: Chemical and Biological Aspects of Marine Monoterpenes. Progr. Chem. Org. Nat. Prod. 44, 189 (1983).

    CAS  Google Scholar 

  215. Faulkner, D.J, and M.O. Stallard: 7-Chloro-3,7-dimethyl-l,4,6-tribromo-l-octen-3-ol, a Novel Monoterpene Alcohol from Aplysia californica. Tetrahedron Lett., 1171 (1973).

    Google Scholar 

  216. Faulkner, D.J., and M.O. Stallard, J. Fayos, and J. Clardy: (3R, 4S, lS)-trans, irans-3,7-Dimethyl-l,8,8-tribromo-3,4,7-trichloro-l,5-octadiene, a Novel Monoterpene from the Sea Hare, Aplysia californica. J. Am. Chem. Soc. 95, 3413 (1973).

    CAS  Google Scholar 

  217. Stallard, M.O., and DJ. Faulkner: Chemical Constituents of the Digestive Gland of the Sea Hare Aplysia californica-I. Comp. Biochem. Physiol. 49B, 25 (1974).

    CAS  Google Scholar 

  218. Willcott, M.R., R.E. Davis, D.J. Faulkner, and M.O. Stallard: The Configuration and Conformation of 7-Chloro-1,6-dibromo-3,7-dimethyl-3,4-epoxy-1octene. Tetrahedron Lett., 3967 (1973).

    Google Scholar 

  219. Crews, P., and E. Kho: Cartilagineal, an Unusual Monoterpene Aldehyde from Marine Alga. J. Org. Chem. 39, 3303 (1974).

    CAS  Google Scholar 

  220. Ichikawa, N., Y. Naya, and S. Enomoto: New Halogenated Monoterpenes from Desmia (Chondrococcus) hornemanni. Chem. Lett., 1333 (1974).

    Google Scholar 

  221. Naya, Y., Y. Hirose, and N. Ichikawa: Labile Halogenated Monoterpenes from Desmia (Chondrococcus) japonicus Harvey. Chem. Lett., 839 (1976).

    Google Scholar 

  222. Mynderse, J.S., and D.J. Faulkner: Polyhalogenated Monoterpenes from the Red Alga Plocamium cartilagineum. Tetrahedron 31, 1963 (1975).

    CAS  Google Scholar 

  223. Imperato, F., L. Minale, and R. Riccio: Constituents of the Digestive Gland of Molluscs of the Genus Aplysia, II: Halogenated Monoterpenes from Aplysia limacina. Experientia 33, 1273 (1977).

    CAS  Google Scholar 

  224. Crews, P., S. Naylor, F.J. Hanke, E.R. Hogue, E. Kho, and-R. Braslau: Halogen Regiochemistry and Substituent Stereochemistry Determination in Marine Mono–terpenes by 13C NMR. J. Org. Chem. 49, 1371 (1984).

    CAS  Google Scholar 

  225. Konig, G.M., A.D. Wright, and O. Sticher: A New Polyhalogenated Monoterpene from the Red Alga Plocamium cartilagineum. J. Nat. Prod. 53, 1615 (1990).

    CAS  Google Scholar 

  226. Stierle, D.B., and J.J. Sims: Marine Natural Products, XV: Polyhalogenated Cyclic Monoterpenes from the Red Alga Plocamium cartilagineum of Antarctica. Tetrahedron 35, 1261 (1979).

    CAS  Google Scholar 

  227. Stierle, D.B., R.M. Wing, and J.J. Sims: Marine Natural Products, XVI: Polyhalogenated Acyclic Monoterpenes from the Red Alga Plocamium of Antarctica. Tetrahedron 35, 2855 (1979).

    CAS  Google Scholar 

  228. Ireland, C., M.O. Stallard, D.J. Faulkner, J. Finer, and J. Clardy: Some Chemical Constituents of the Digestive Gland of the Sea Hare Aplysia californica. J. Org. Chem. 41, 2461 (1976).

    CAS  Google Scholar 

  229. Blunt, J.W., N.J. Bowman, M.H.G. Munro, M.J. Parsons, G.J. Wright, and Y.K. Kon: Polyhalogenated Monoterpenes of the New Zealand Marine Red Alga Plocamium cartilagineum. Aust. J. Chem. 38, 519 (1985).

    CAS  Google Scholar 

  230. Kazlauskas, R., P.T. Murphy, R.J. Quinn, and R.J. Wells: Two Polyhalogenated Monoterpenes from the Red Alga Plocamium costatum. Tetrahedron Lett., 4451 (1976).

    Google Scholar 

  231. Crews, P.: Monoterpene Halogenation by the Red Alga Plocamium oregonum. J, Org. Chem. 42, 2634 (1977).

    CAS  Google Scholar 

  232. Crews, P., and E. Kho-Wiseman: Acyclic Polyhalogenated Monoterpenes from the Red Alga Plocamium violaceum. J. Org. Chem. 42, 2812 (1977).

    CAS  Google Scholar 

  233. Blunt, J.W., M.P. Hartshorn, M.H.G. Munro, and S.C. Yorke: A Novel, C8 Dichlorodienol Metabolite of the Red Alga Plocamium cruciferum. Tetrahedron Lett., 4417 (1978).

    Google Scholar 

  234. Bates, P., J.W. Blunt, M.P. Hartshorn, A.J. Jones, M.H.G. Munro, W.T. Robinson, and S.C. Yorke: Halogenated Metabolites of the Red Alga Plocamium cruciferum. Aust. J. Chem. 32, 2545 (1979).

    CAS  Google Scholar 

  235. Stierle, D.B., and J.J. Sims: Plocamenone, A Unique Halogenated Monoterpene from the Red Alga, Plocamium. Tetrahedron Lett. 25, 153 (1984).

    CAS  Google Scholar 

  236. Coll, J.C., B.W. Skelton, A.H. White, and A.D. Wright: Tropical Marine Algae, II: The Structure Determination of New Halogenated Monoterpenes from Plocamium hamatum (Rhodophyta, Gigartinales, Plocamiaceae). Aust. J. Chem. 41, 1743 (1988).

    CAS  Google Scholar 

  237. Dunlop, R.W., P.T. Murphy, and R.J. Wells: A New Polyhalogenated Monoterpene from the Red Alga Plocamium angustum. Aust. J. Chem. 32, 2735 (1979).

    CAS  Google Scholar 

  238. Sims, J.J., A.F. Rose, and R.R. Izac: Applications of 13C-NMR to Marine Natural Products. In: Marine Natural Products, Vol. 2, Chap. 5 ( P.J. Scheuer, ed.). New York: Academic Press. 1978.

    Google Scholar 

  239. Leary, J.V., R. Kfir, J.J. Sims, and D.W. Fulbright: The Mutagenicity of Natural Products from Marine Algae. Mutation Res. 68. 301 (1979).

    CAS  Google Scholar 

  240. Burreson, B.J., F.X. Woolard, and R.E. Moore: Evidence for the Biogenesis of Halogenated Myrcenes from the Red Alga Chondrococcus hornemanni. Chem. Lett., 1111 (1975).

    Google Scholar 

  241. Burreson, B.J., F.X. Woolard, and R.E. Moore: Chondrocole A and B, Two Halogenated Dimethylhexahydrobenzofurans from the Red Alga Chondrococcus hornemanni. Tetrahedron Lett., 2155 (1975).

    Google Scholar 

  242. Woolard, F.X., R.E. Moore, M. Mahendran, and A. Sivapalan: (-)-3-Bromo-methyl-3-chloro 7-methyl-l,6-octadiene from Sri Lankan Chondrococcus hornemanni. Phytochem. 15, 1069 (1976).

    CAS  Google Scholar 

  243. Coll, J.C., and A.D. Wright: Tropical Marine Algae, I: New Halogenated Monoterpenes from Chondrococcus hornemannii (Rhodophyta, Gigartinales, Rhizophyllidaceae). Aust. J. Chem. 40, 1893 (1987).

    CAS  Google Scholar 

  244. Coll, J.C., and A.D. Wright: Tropical Marine Algae, VI: New Monoterpenes from Several Collections of Chondrococcus hornemannii (Rhodophyta, Gigartinales, Rhizophyllidaceae). Aust. J. Chem. 42, 1983 (1989).

    CAS  Google Scholar 

  245. Wright, A.D., G.M. König, O. Sticher, and R. De Nys: Five New Monoterpenes from the Marine Red Alga Portieria hornemannii. Tetrahedron 47, 5717 (1991).

    CAS  Google Scholar 

  246. Katayama, A., K. Ina, H. Nozaki, and M. Nakayama: Structure Elucidation of Kurodainol, a Novel Halogenated Monoterpene from Sea Hare (Aplysia kurodai). Agric. Biol. Chem. 46, 859 (1982).

    CAS  Google Scholar 

  247. Miyamoto, T., R. Higuchi, T. Komori, T. Fujioka, and K. Mihashi: Isolation and Structures of New Isoprenoids, Aplykurodin A and B, and Some Halogenated Terpenoids from the Marine Mollusk, Aplysia kurodai, Collected Along the Coast of Fukuoka. Chem. Abstr. 104, 183529n (1986).

    Google Scholar 

  248. Miyamoto, T., R. Higuchi, N. Marubayashi, and T. Komori: Studies on the Constituents of Marine Opisthobranchia, IV: Two New Polyhalogenated Monoterpenes from the Sea Hare Aplysia kurodai. Liebigs Ann. Chem., 1191 (1988).

    Google Scholar 

  249. De Nopoli, L., E. Fattorusso, S. Magno, and L. Mayol: Acyclic Polyhalogenated Monoterpenes from Four Marine Hydroids. Biochem. Sys. Ecol. 12, 321 (1984).

    Google Scholar 

  250. Crews, P., L. Campbell, and E. Heron: Different Chemical Types of Plocamium violaceum (Rhodophyta) from the Monterey Bay Region, California. J. Phycol. 13, 297 (1977).

    CAS  Google Scholar 

  251. Mynderse, J.S., and D.J. Faulkner: Variations in the Halogenated Monoterpene Metabolites of Plocamium cartilagineum and P. violaceum. Phytochem. 17, 237 (1978).

    CAS  Google Scholar 

  252. Mynderse, J.S., and D.J. Faulkner: Violacene, a Polyhalogenated Monocyclic Monoterpene from the Red Alga Plocamium violaceum. J. Am. Chem. Soc. 96, 6771 (1974).

    CAS  Google Scholar 

  253. Engen, D.V., J. Clardy, E. Kho-Wiseman, P. Crews, M.D. Higgs, and D.J. Faulkner: Violacene: A Reassignment of Structure. Tetrahedron Lett., 29 (1978).

    Google Scholar 

  254. Crews, P., E. Kho-Wiseman, and P. Montana: Halogenated Aiicyclic Monoter-penes from the Red Algae Plocamium. J. Org. Chem. 43, 116 (1978).

    CAS  Google Scholar 

  255. Mynderse, J.S, D.J. Faulkner, J. Finer, and J. Clardy: (1, 25, 4S, 5/?)-L-Bro-mo-iras-2-chlorovinyl-4,5-dichloro-l,5-dimethylcyclohexane, a New Monoterpene Skeletal Type from the Red Alga Plocamium vioiaceum. Tetrahedron Lett., 2175 (1975).

    Google Scholar 

  256. Crews, P., and E. Kho: Plocamene B, a New Cyclic Monoterpene Skeleton from a Red Marine Alga. J. Org. Chem. 40, 2568 (1975).

    CAS  Google Scholar 

  257. Higgs, M.D., D.J. Vanderah, and D.J. Faulkner: Polyhalogenated Monoterpenes from Plocamium cartilagineum from the British Coast. Tetrahedron 33, 2775 (1977).

    CAS  Google Scholar 

  258. Norton, R.S., R.G. Warren, and R.J. Wells: Three New Polyhalogenated Monoterpenes from Plocamium Species. Tetrahedron Lett., 3905 (1977).

    Google Scholar 

  259. González, A.G., J.M. Arteaga, J.D. Martín, M.L. Rodríguez, J. Fayos, and M. Martínez-Ripolls: Two New Polyhalogenated Monoterpenes from the Red Alga Plocamium cartilagineum. Phytochem. 17, 947 (1978).

    Google Scholar 

  260. Rivera, P., L. Astudillo, J. Rovirosa, and A. San-Martín: Halogenated Monoterpenes of the Red Alga Shottera nicaensis. Biochem. Sys. Eco]. 15, 3 (1987).

    Google Scholar 

  261. San-Martín, A., R. Negrete, and J. Rovirosa: Insecticide and Acaricide Activities of Polyhalogenated Monoterpenes from Chilean Plocamium cartilagineum. Phytochem. 30, 2165 (1991).

    Google Scholar 

  262. Capon, R.J., L.M. Engelhardt, E.L. Ghisalberti, P.R. Jefferies, V.A. Patrick, and A.H. White: Structural Studies of Polyhalogenated Monoterpenes from Plocamium Species. Aust. J. Chem. 37, 537 (1984).

    CAS  Google Scholar 

  263. Watanabe, K., M. Miyakado, N. Ohno, A. Okada, K. Yanagi, and K. Moriguchi: A Polyhalogenated Insecticidal Monoterpene from the Red Alga Plocamium telfairiae. Phytochem. 28, 77 (1989).

    CAS  Google Scholar 

  264. Combaut, G., J.-M. Kornprobst, and J. Mollion: Chemistry of Seaweeds from Senegal. Chem. Abstr. 97, 69273m (1982).

    Google Scholar 

  265. Castedo, L., M.L. Garcia, E. Quinoa, and R. Riguera: Marine Natural Products from the Galician Coast, Part II: Halogenated Monoterpenes from Plocamium coccineum of Northwest Spain. J. Nat. Prod. 47, 724 (1984).

    CAS  Google Scholar 

  266. Sardina, F.J., E. Quiñoá, L. Castedo, and R. Riguera: Structural Elucidation of Marine Halogenated Monoterpenes by 2D-NMR and NOE Difference Spectroscopy. A Stereochemical Correction. Chem. Lett., 697 (1985).

    Google Scholar 

  267. Barrow, K.D., and C.A. Temple: Biosynthesis of Halogenated Monoterpenes in Plocamium cartilagineum. Phytochem. 24, 1697 (1985).

    CAS  Google Scholar 

  268. Crews, P., P. Ng, E. Kho-Wiseman, and C. Pace: Halogenated Monoterpenes of the Red Alga Microcladia. Phytochem. 15, 1707 (1976).

    CAS  Google Scholar 

  269. Sakata, K., Y. Iwase, K. Ina, and D. Fujita: Halogenated Terpenes Isolated from the Red Alga Plocamium leptophyllum as Feeding Inhibitors for Marine Herbivores. Nippon Suisan Gakkaishi 57, 743 (1991).

    CAS  Google Scholar 

  270. Aazizi, M.A., G.M. Assef, and R. Faure: Gelidene, a New Polyhalogenated Monocyclic Monoterpene from the Red Marine Alga Gelidium sesquipedale. J. Nat. Prod. 52, 829 (1989).

    CAS  Google Scholar 

  271. Woolard, F.X., R.E. Moore, D. Van Engen, and J. Clardy: The Structure and Absolute Configuration of Chondrocolactone, A Halogenated Monoterpene from the Red Alga Chondrococcus hornemanni, and a Revised Structure for Chondrocole A. Tetrahedron Lett., 2367 (1978).

    Google Scholar 

  272. Crews, P., B.L. Myers, S. Naylor, E.L. Clason, R.S. Jacobs, and G.B. Staal: Bio-Active Monoterpenes from Red Seaweeds. Phytochem. 23, 1449 (1984).

    CAS  Google Scholar 

  273. McConnell, O.J., and W. Fenical: Ochtodene and Ochtodiol: Novel Polyhalogenated Cyclic Monoterpenes from the Red Seaweed Ochtodes secundiramea. J. Org. Chem. 43, 4238 (1978).

    CAS  Google Scholar 

  274. Gerwick, W.H.: 2 Chloro l,6(S),8 tribromo 3 (8)(Z) ochtodene: A Metabolite of the Tropical Red Seaweed Ochtodes secundiramea. Phytochem. 23, 1323 (1984).

    CAS  Google Scholar 

  275. Paul, Y.J., O.J. McConnell, and W. Fenical: Cyclic Monoterpenoid Feeding Deterrents from the Red Marine Alga Ochtodes crockeri. J. Org. Chem. 45, 3401 (1980).

    CAS  Google Scholar 

  276. Sumathykutty, M.A., and J.M. Rao: 8-Hentriacontanol and Other Constituents from Piper attenuatum. Phytochem. 30, 2075 (1991).

    CAS  Google Scholar 

  277. Stierle, D.B., R.M. Wing, and J.J. SIMS: Marine Natural Products, XI: Costatone and Costatolide, New Halogenated Monoterpenes from the Red Seaweed, Plocamium costatum. Tetrahedron Lett., 4455 (1976).

    Google Scholar 

  278. Kusumi, T., H. Uchida, Y. Inouye, M. Ishitsuka, H. Yamamoto, and H. Kakisawa: Novel Cytotoxic Monoterpenes Having a Halogenated Tetrahydropyran from Aplysia kurodai. J. Org. Chem. 52, 4597 (1987).

    CAS  Google Scholar 

  279. Watanabe, K., K. Umeda, Y. Kurita, C. Takayama, and M. Miyakado: Two Insecticidal Monoterpenes, Telfairine and Aplysiaterpenoid A, from the Red Alga Plocamium telfairiae: Structure Elucidation, Biological Activity, and Molecular Topographical Consideration by a Semiempirical Molecular Orbital Study. Pestic. Biochem. Physiol. 37, 275 (1990).

    CAS  Google Scholar 

  280. Kupchan, S.M., J.E. Kelsey, M. Maruyama, and J.M. Cassady: Eupachlorin Acetate, A Novel Chloro-Sesquiterpenoid Lactone Tumor Inhibitor from Eupatorium rotundifolium. Tetrahedron Lett., 3517 (1968).

    Google Scholar 

  281. Kupchan, S.M., J.E. Kelsey, M. Maruyama, J.M. Cassady, J.C. Hemingway, and J.R. Knox: Tumor Inhibitors, XLI: Structural Elucidation of Tumor-Inhibitory Sesquiterpene Lactones from Eupatorium rotundifolium. J. Org. Chem. 34, 3876 (1969).

    CAS  Google Scholar 

  282. Harley-Mason, J., A.T. Hewson, O. Kennard, and R.C. Pettersen: Isolation of Centaurea repens Centaurepensin, a Guaianolide Sesquiterpene Lactone Ester Containing Two Chlorine Atoms; Determination of Structure and Absolute Configuration by X-Ray Crystallography. J. Chem. Soc., Chem. Commun., 460 (1972).

    Google Scholar 

  283. Lopez De Lerma, J., J. Fayos, S. García-Blanco, and M. Martínez-Ripoll: Centaurepensin. A Redetermination of Its Absolute Configuration by X-Ray Crystallography. Acta Cryst. B34, 2669 (1978).

    Google Scholar 

  284. Cassady, J.M., D. Abramson, P. Cowall, C. Chang, J.L. Mclaughlin, and Y. Aynehchi: Centaurepensin: A Cytotoxic Constituent of Centaurea solstitialis and C. repens (Asteraceae). J. Nat. Prod. 42, 427 (1979).

    CAS  Google Scholar 

  285. Stevens, K.L., and R.Y. Wong: Structure of Chlororepdiolide, a New Sesquiterpene Lactone from Centaurea repens. J. Nat. Prod. 49, 833 (1986).

    CAS  Google Scholar 

  286. Evstratova, R.I., V.I. Scheichenko, and K.S. Rybalko: The Structure of Acroptilin-A Sesquiterpene Lactone from Acroptilon repens. Khim. Prir. Soedin., 161 (1973).

    Google Scholar 

  287. Stevens, K.L., and R.Y. Wong: Acroptilin C19H23C107. Cryst. Struct. Comm. 11, 949 (1982).

    CAS  Google Scholar 

  288. González, A.G,, J. Bermejo, J.L. Bretón, and J. Triana: Constituents of Com-positae, XV: Chlorohyssopifolin A and B, Two New Sesquiterpene Lactones Isolated from Centaurea hyssopifolia Vahl. Tetrahedron Lett., 2017 (1972).

    Google Scholar 

  289. González, A.G., J. Bermejo, J.L. Bretón, G.M. Massanet, and J. Triana: Chlorohyssopifolin C, D, E and Vahlenin, Four New Sesquiterpene Lactones from Centaurea hyssopifolia. Phytochem. 13, 1193 (1974).

    Google Scholar 

  290. González, A.G., J. Bermejo, J.L. Breton, G.M. Massanet, B. Domínguez, and J.M. Amaro: The Chemistry of the Compositae, Part XXXI: Absolute Configuration of the Sesquiterpene Lactones Centaurepensin (Chlorohyssopifolin A), Acroptilin (Chlorohyssopifolin C), and Repin. J. Chem. Soc., Perkin Trans. 1, 1663 (1976).

    Google Scholar 

  291. González, A.G., J. Bermejo, J.M. Amaro, G.M. Massanet, A. Galindo, and I. Cabrera: Sesquiterpene Lactones from Centaurea linifolia Vahl. Can. J. Chem. 56, 491 (1978).

    Google Scholar 

  292. Rustaiyan, A., L. Nazarians, and F. Bohlmann: Guaianolides from Acroptilon repens. Phytochem. 20, 1152 (1981).

    CAS  Google Scholar 

  293. Sham’Yanov, I.D., A. Mallabaev, and G.P. Sidyakin: Structure of Sesquiterpene Lactone Elegin. Khim. Prir. Soedin., 442 (1978).

    Google Scholar 

  294. Sham’Yanov, I.D., A. Mallabaev, and G.P. Sidyakin: Salegin-A New Sesquiterpene Lactone from Saussurea elegans. Khim. Prir. Soedin., 865 (1979).

    Google Scholar 

  295. Merrill, G.B., and K.L. Stevens: Sesquiterpene Lactones from Centaurea solstitialis. Phytochem. 24, 2013 (1985).

    CAS  Google Scholar 

  296. González, A.G., J. Bermejo, and G.M. Massanet: Aportación al Estudio Quimiotaxonomico del Genero Centaurea: Determinación Estructural de las Lactonas Sesquiterpenicas Presentes en Centaureas de Canarias y de la Peninsula Ibérica. Rev. Latinoamer. Quim. 8, 176 (1977).

    Google Scholar 

  297. El-Dahmy, S., F. Bohlmann, T.M. Sarg, A. Ateya, and N. Farreg: New Guaianolides from Centaurea aegyptica. Planta Med. 51, 176 (1985).

    Google Scholar 

  298. Sarg, T.M., M. EL-Domiaty, and S. El-Dahmy: Further Guaianolides from Centaurea aegyptica. Sci. Pharm. 55, 107 (1987).

    CAS  Google Scholar 

  299. Jakupovic, J., Y. Jia, V.P. Pathak, F. Bohlmann, and R.M. King: Bisabolone Derivatives and Sesquiterpene Lactones from Centaurea Species. Planta Med. 52, 399 (1986).

    Google Scholar 

  300. Dawidar, A.M., M.A. Metwally, M. Abou-Elzahab, and M. Abdel-Mogib: Chemical Constituents of Two Centaurea Species. Pharmazie 44, 735 (1989).

    CAS  Google Scholar 

  301. Al-Easa, H.S., J. Mann, and A.-F. Rizk: Guaianolides from Centaurea sinaica. Phytochem. 29, 1324 (1990).

    CAS  Google Scholar 

  302. Daniewski, W.M., and G. Nowak: Further Sesquiterpene Lactones of Centaurea bella. Phytochem. 32, 204 (1993).

    Google Scholar 

  303. Óksüz, S., S. Serin, and G. Topcu: Sesquiterpene Lactones from Centaurea hermannii. Phytochem. 35, 435 (1994).

    Google Scholar 

  304. Rustaiyan, A., Z. Sharif, A. Tajarodi, J. Ziesche, and F. Bohlmann. Neue Guaianolide aus Centaurea imperalis. Planta Med. 50, 193 (1984).

    CAS  Google Scholar 

  305. Nowak, G., M. Holub, and M. Budesinsky: Sesquiterpene Lactones, XXXVI: Sesquiterpene Lactones in Several Subgenera of the Genus Centaurea L. Acta Soc. Bot. Pol. 58, 95 (1989).

    CAS  Google Scholar 

  306. Singh, P., and M. Bhala: Guaianolides from Saussurea candicans. Phytochem. 27, 1203 (1988).

    CAS  Google Scholar 

  307. Todorova, M.N., I.V. Ognyanov, and S. Shatar: Sesquiterpene Lactones in Mongolian Saussurea lipshitzii. Collect. Czech. Chem. Commun. 56, 1106 (1991).

    CAS  Google Scholar 

  308. Jakupovic, J., R. Boeker, A. Schuster, F. Bohlmann, and S.B. Jones: Further Guaianolides and 5-Alkylcoumarins from Gutenbergia and Bothriocline Species. Phytochem. 26, 1069 (1987).

    CAS  Google Scholar 

  309. Marco, J.A., J.F. Sanz, R. Albiach, A. Rustaiyan, and Z. Habibi: Bisabolene Derivatives and Sesquiterpene Lactones from Cousinia Species. Phytochem. 32, 395 (1993).

    CAS  Google Scholar 

  310. Yusupov, M.I., A. Mallabaev, SH.Z. Kasymov, and G.P. Sidyakin: Biebsanin-A New Sesquiterpene Lactone from Achillea biebersteinii. Khim. Prir. Soedin. 15, 580 (1979).

    Google Scholar 

  311. Bohlmann, F., J. Jakupovic, R.M. King, and H. Robinson: New Germacranolides, Guaianolides and Rearranged Guaianolides from Lasiolaena santosii. Phytochem. 20, 1613 (1981).

    CAS  Google Scholar 

  312. Bohlmann, F., J. Jakupovic, A. Schuster, R.M. King, and H. Robinson: Guaianolides and Homoditerpenes from Lasiolaena morii. Phytochem. 21, 161 (1982).

    CAS  Google Scholar 

  313. Vichnewski, W., P. Kulanthaivel, V.L. Goedken, and W. Herz: Two Sesquiterpene Lactones from Trichogonia gardneri. Phytochem. 24, 291 (1985).

    CAS  Google Scholar 

  314. Castro, V., J. Jakupovic, and F. Bohlmann: Sesquiterpene Lactones from Mikania Species. Phytochem. 25, 1750 (1986).

    CAS  Google Scholar 

  315. Mata, R., G. Delgado, and A. Romo De Vivar: Sesquiterpene Lactones of Artemisia klotzchiana. Phytochem. 24, 1515 (1985).

    CAS  Google Scholar 

  316. Wagner, H., B. Fessler, H. Lotter, and V. Wray: New Chlorine-Containing Sesquiterpene Lactones from Chrysanthemum parthenium. Planta Med. 54, 171 (1988).

    CAS  Google Scholar 

  317. Ali, A.A., O.M. Abdallah, and W. Steglich: Chlorosesquiterpene Lactones from Ambrosia maritima. Pharmazie 44, 800 (1989).

    CAS  Google Scholar 

  318. Gil, R.R., J.A. Pastoriza, J.C. Oberti, A.B. Gutierrez, and W. Herz: Guaianolides from Stevia sanguinea. Phytochem. 28, 2841 (1989).

    CAS  Google Scholar 

  319. De Gutierrez, A.N., E.E. Sigstad, C.A.N. Catalan, A.B. Gutierrez, and W. Herz: Guaianolides from Kaunia lasiophthalma. Phytochem. 29, 1219 (1990).

    Google Scholar 

  320. Reis, L.V., M.R. Tavares, F.M.S.B. Palma, and M.J. Marcelo-Curto: Sesquiterpene Lactones from Cynara humilis. Phytochem. 31, 1285 (1992).

    CAS  Google Scholar 

  321. Ali, A.A., N.A. El-Emary, A.A. Khalifa, and A.W. Frahm: Guaianolides from Venidium fastuosum. Phytochem. 31, 2781 (1992).

    CAS  Google Scholar 

  322. Bohlmann, F., U. Fritz, R.M. King, and H. Robinson: Fourteen Heliangolides from Calea Species. Phytochem. 20, 743 (1981).

    CAS  Google Scholar 

  323. Bohlmann, F., R.K. Gupta, R.M. King, and H. Robinson: Three Furanoheliangolides from Calea villosa. Phytochem. 21, 2593 (1982).

    CAS  Google Scholar 

  324. Herz, W., and P. Kulanthaivel: Sesquiterpene Lactones from Liatris acidota, L. aspera and L. mucronata. Phytochem. 22, 513 (1983).

    CAS  Google Scholar 

  325. Jakupovic, J., S. Banerjee, V. Castro, F. Bohlmann, A. Schuster, J.D. Msonthi, and S. Keeley: Poskeanolide, A Seco-Germacranolide, and Other Sesquiterpene Lactones from Vernonia Species. Phytochem. 25, 1359 (1986).

    CAS  Google Scholar 

  326. Arriaga-Giner, F.J., J. Borges-Del-Castillo, M.T. Manresa-Ferrero, P. Vasquez-Bueno, F. Rodriguez-Luis, and S. Valdes-Iraheta: Eudesmane Derivatives from Pluchea odorata. Phytochem. 22, 1767 (1983).

    CAS  Google Scholar 

  327. Yoshihira, K., M. Fukuoka, M. Kuroyanagi, and S. Natori: 1-Indanone Derivatives from Bracken, Pteridium acquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 19, 1491 (1971).

    CAS  Google Scholar 

  328. Hayashi, Y., M. Nishizawa, S. Harita, and T. Sakan: Structures and Syntheses of Hypolepin A, B, and C, Sesquiterpenes from Hypolepis punctata. Chem. Lett., 375 (1972).

    Google Scholar 

  329. Fukuoka, M., M. Kuroyanagi, M. Toyama, K. Yoshihira, and S. Natori: Pterosins J, K, and L and Six Acylated Pterosins from Bracken Pteridium aquilinum var. latiusculum. Chem. Pharm. Bull. (Japan) 20, 2282 (1972).

    CAS  Google Scholar 

  330. Murakami, T., K. Owashi, N. Tanaka, T. Satake, and C.-M. Chen: Chemische Untersuchungen der Inhaltsstoffe von Dennstaedtia scabra (Wall.) Moore. Chem. Pharm. Bull. (Japan) 23, 1630 (1975).

    CAS  Google Scholar 

  331. Murakami, T., S. Taguchi, and C.-M. Chen: Chemische Untersuchungen der Inhaltsstoffe von Hypolepis punctata (Thunb.) Mett. Chem. Pharm. Bull. (Japan) 24, 2241 (1976).

    CAS  Google Scholar 

  332. Fuküoka, M., M. Kuroyanagi, K. Yoshihira, and S. Natori: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum, II: Structures of Pterosins, Sesquiterpenes Having 1-indanone Skeleton. Chem. Pharm. Bull. (Japan) 26, 2365 (1978).

    Google Scholar 

  333. Kuroyanagi, M., M. Fukuoka, K. Yoshihira, and S. Natori: Chemical and Toxicological Studies on Bracken Fern, Pteridium aquilinum var. latiusculum, III: Further Characterization of Pterosins and Pterosides, Sesquiterpenes and the Glucosides Having 1-Indanone Skeleton, from the Rhizomes. Chem. Pharm. Bull. (Japan) 27, 592 (1979).

    CAS  Google Scholar 

  334. Kobayashi, A., and K. Koshimizu: Cytotoxic Effects of Bracken Fern Constituents, Pterosins, on Sea Urchin Embryos and a Ciliate. Agric. Bioll Chem. 44, 393 (1980).

    CAS  Google Scholar 

  335. Murakami, T., T. Satake, K. Ninomiya, H. Iida, K. Yamauchi, N. Tanaka, Y. Saiki, and C.-M. Chen: Pterosin-Derivate aus der Familie Pteridaceae. Phytochem. 19, 1743 (1980).

    CAS  Google Scholar 

  336. Takana, N., T. Murakami, Y. Saiki, C.-M. Chen, and L.D. Gomez P: Chemical and Chemotaxonomical Studies of Ferns, XXXVII: Chemical Studies on the Constituents of Costa Rican Ferns (2). Chem. Pharm. Bull. (Japan) 29, 3455 (1981).

    Google Scholar 

  337. Tanaka, N., T. Satake, A. Takahashi, M. Mochizuki, T. Murakami, Y. Saiki, J.-Z. Yang, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Ferns, XXXIX: Chemical Studies on the Constituents of Pteris beita Tagawa and Pteridium aquilinum subsp. wightianum (Wall) Shich. Chem. Pharm. Bull. (Japan) 30, 3640 (1982).

    CAS  Google Scholar 

  338. Kuraishi, T., T. murakami, T. Taniguchi, Y. Kobuki, H. Maehashi, N. Tanaka, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Ferns, LIV: Pterosin Derivatives of the Genus Microlepia (Pteridaceae). Chem. Pharm. Bull. (Japan) 33, 2305 (1985).

    CAS  Google Scholar 

  339. Murakami, T., H. Maehashi, N. Tanaka, T. Satake, T. Kuraishi, Y. Komazawa, Y. Saiki, and C.-M. Chen: Chemical and Chemotaxonomical Studies of Filices. LV: Studies on the Constituents of Several Species of Pteris. J. Pharmacol. Soc. Japan (Yakugaku Zasshi) 105, 640 (1985).

    CAS  Google Scholar 

  340. Ahmad, V.U., T.A. Farooqui, K. Fizza, A. Sultana, and R. Khatoon: Three New Eudesmane Sesquiterpenes from Pluchea arguta. J. Nat. Prod 55, 730 (1992).

    CAS  Google Scholar 

  341. Hashimoto, T., M. Tori, and Y. Asakawa: Drimane-Type Sesquiterpenoids from the Liverwort Makinoa crispata. Phytochem. 28, 3377 (1989).

    CAS  Google Scholar 

  342. Garg, S.N., S.K. Agarwal, K. Fidelis, M.B. Hossain, and D. Van der Helm: New Jaeschkeanadiol Derivatives from Ferula jaeschkeana. J. Nat Prod. 56, 539 (1993).

    CAS  Google Scholar 

  343. Martin, J.D., and J. Darias: Algal Sesquiterpenoids. In: Marine Natural Products, Vol. I,. Chap. 3 ( P.J. Scheuer, ed.). New York: Academic Press. 1978.

    Google Scholar 

  344. Erickson, K.L.: Constituents of Laurencia. In: Marine Natural Products, Vol. V, Chap. 4 ( P.J. Scheuer, ed.). New York: Academic Press. 1983.

    Google Scholar 

  345. White, R.H., and L.P. Hager: A Biogenetic Sequence of Halogenated Sesquiterpenes from Laurencia intricata. In: Dahlem Workshop on the Nature of Seawater, (E.D. Goldberg, ed.), pp. 633–650. Dahlem Conference: Berlin. 1975.

    Google Scholar 

  346. König, G.M., and A.D. Wright: New C15 Acetogenins and Sesquiterpenes from the Red Alga Laurencia sp. cf. L. gracilis. J. Nat Prod. 57, 477 (1994).

    Google Scholar 

  347. Vazquez, J.T., M. Chang, K. Nakanishi, J.D. Martín, V.S. Martín, and R. Pérez: Puertitols: Novel Sesquiterpenes from Laurencia obtusa. Structure Elucidation and Absolute Configuration and Conformation Based on Circular Dichroism. J. Nat. Prod. 51, 1257 (1988).

    CAS  Google Scholar 

  348. Norte, M., JJ. Fernández, and A. Padilla: Bisabolane Halogenated Sesquiterpenes from Laurencia. Phytochem. 31, 326 (1992).

    CAS  Google Scholar 

  349. Howard, B.M., and W. Fenical: a- and ß-Snyderol; New Bromo-Monocyclic Sesquiterpenes from the Seaweed Laurencia. Tetrahedron Lett., 41 (1976).

    Google Scholar 

  350. Ayyad, S.-E.N., A.-A.M. Dawidar, H.W. Dias, R.A. Howie, J. Jakupovic, and R.H. Thomson: Three Halogenated Metabolites from Laurencia obtusa. Phytochem. 29, 3193 (1990).

    CAS  Google Scholar 

  351. Paul, V.J., and W. Fenical: Palisadins A, B and Related Monocyclofarnesol-Derived Sesquiterpenoids from the Red Marine Alga Laurencia cf. palisada. Tetrahedron Lett. 21, 2787 (1980).

    CAS  Google Scholar 

  352. Norte, M., R. González, A. Padilla, J.J. Fernández, and J.T. Vázquez: New Halogenated Sesquiterpenes from the Red Alga Laurencia caespitosa. Can. J. Chem. 69, 518 (1991).

    CAS  Google Scholar 

  353. Wratten, S.J., and D.J. Faulkner: Carbonimidic Dichlorides from the Marine Sponge Pseudaxinyssa pitys. J. Am. Chem. Soc. 99, 7367 (1977).

    CAS  Google Scholar 

  354. Imre, S., S. Islimyeli, A. Oztunc, and R.H. Thomson: Obtusenol, a Sesquiterpene from Laurencia obtusa. Phytochem. 20, 833 (1981).

    CAS  Google Scholar 

  355. Van Tamelen, E.E., and E.J. Hessler: The Direct Brominative Cyclization of Methyl Farnesate. J. Chem. Soc., Chem. Commun., 411 (1966).

    Google Scholar 

  356. Faulkner, D.J.: 3ß-Bromo-8-epicaparrapi Oxide, the Major Metabolite oí Laurencia obtusa. Phytochem. 15, 1992 (1976).

    Google Scholar 

  357. Pettit, G.R, C.L. Herald, M.S. Allen, R.B. Von Dreele, L.D. Vanell, J.P.Y. Kao, and W. Blake: The Isolation and Structure of Aplysistatin. J. Am. Chem. Soc. 99, 262 (1977).

    CAS  Google Scholar 

  358. Capon, R., E.L. Ghisalberti, P.R. Jefferies, B.W. Skelton, and A.H. White: Sesquiterpene Metabolites from Laurencia filiformis. Tetrahedron 37, 1613 (1981).

    CAS  Google Scholar 

  359. De Nys, R., A.D. Wright, G.M. König, O. Sticher, and P.M. Alino: Five New Sesquiterpenes from the Red Alga Laurencia flexilis. J. Nat. Prod. 56, 877 (1993).

    Google Scholar 

  360. König, G.M., A.D. Wright, and F.R. Fronczek: X-Ray Crystal Structure of 3,4-Epoxypalisadin A. J. Nat. Prod. 57, 151 (1994).

    Google Scholar 

  361. Carney, J.R., A.T. Pham, W.Y. Yoshida, and P.J. Scheuer: Napalilactone, a New Halogenated Norsesquiterpenoid from the Soft Coral Lemnalia africana. Tetrahedron Lett. 33, 7115 (1992).

    CAS  Google Scholar 

  362. González, A.G., J. Darias, and J.D. Martín: Furocaespitane, a New Furan from Laurencia caespitosa. Tetrahedron Lett., 3625 (1973).

    Google Scholar 

  363. 363.González, A.G., J.D. Martín, V.S. Martín, and M. Norte: Carbon-13 NMR Application to Laurencia Polyhalogenated Sesquiterpenes. Tetrahedron Lett., 2719 (1979).

    Google Scholar 

  364. Estrada, D.M., J.D. Martín, R. Pérez, P. Rivera, M.L. Rodríguez, and J.Z. Ruano: Furocaespitane and Related CI2 Metabolites from Laurencia caespitosa. Tetrahedron Lett. 28, 687 (1987).

    CAS  Google Scholar 

  365. Suzuki, M., E. Kurosawa, and T. Irie: Spirolaurenone, a New Sesquiterpenoid Containing Bromine from Laurencia glandulifera Kützing. Tetrahedron Lett., 4995 (1970).

    Google Scholar 

  366. Suzuki, M., N. Kowata, and E. Kurosawa: The Structure of Spirolaurenone, a Halogenated Sesquiterpenoid from the Red Alga Laurencia glandulifera Kiitzing. Tetrahedron 36, 1551 (1980).

    CAS  Google Scholar 

  367. Suzuki, M., E. Kurosawa, and T. Irie: Three New Sesquiterpenoids Containing Bromine, Minor Constituents of Laurencia glandulifera Kützing. Tetrahedron Lett., 821 (1974).

    Google Scholar 

  368. Suzuki, M., A. Furusaki, and E. Kurosawa: The Absolute Configurations of Halogenated Chamigrene Derivatives from the Marine Alga, Laurencia glandulifera Kützing. Tetrahedron 35, 823 (1979).

    CAS  Google Scholar 

  369. Suzuki, M., E. Kurosawa, and T. Irie: Glanduliferol, a New Halogenated Sesquiterpenoid from Laurencia glandulifera Kützing. Tetrahedron Lett., 1807 (1974).

    Google Scholar 

  370. Suzuki, M., and E. Kurosawa: Halogenated Chamigrene-Type Sesquiterpenoids from the Red Algae of the Genus Laurencia. Chem. Abstr. 92, 215566z (1980).

    Google Scholar 

  371. Sims, J.J., W. Fenical, R.M. Wing, and P. Radlick: Marine Natural Products, I: Pacifenol, a Rare Sesquiterpene Containing Bromine and Chlorine from the Red Alga, Laurencia pacifica. J. Am. Chem. Soc. 93, 3774 (1971).

    CAS  Google Scholar 

  372. Sims, J.J., W. Fenical, R.M. Wing, and P. Radlick: Marine Natural Products, IV: Prepacifenol, a Halogenated Epoxy Sesquiterpene and Precursor to Pacifenol from the Red Alga, Laurencia filiformis. J. Am. Chem. Soc. 95, 972 (1973).

    CAS  Google Scholar 

  373. Sims, J.J., W. Fenical, R.M. Wing, and P. Radlick: Marine Natural Products, III: Johnstonol, an Unusual Halogenated Epoxide from the Red Alga Laurencia johnstonii. Tetrahedron Lett., 195 (1972).

    Google Scholar 

  374. Howard, B.M., and W. Fenical: 10-Bromo-a-chamigrene. Tetrahedron Lett., 2519 (1976).

    Google Scholar 

  375. Wolinsky, L.E., and D.J. Faulkner: A Biomimetic Approach to the Synthesis of Laurencia Metabolites. Synthesis of 10-Bromo-a-chamigrene. J. Org. Chem. 41, 597 (1976).

    CAS  Google Scholar 

  376. Fenical, W.: Chemical Variation in a New Bromochamigrene Derivative from the Red Seaweed Laurencia pacifica. Phytochem. 15, 511 (1976).

    CAS  Google Scholar 

  377. Suzuki, M., E. Kurosawa, and A. Furusaki: The Structure and Absolute Stereo-chemistry of a Halogenated Chamigrene Derivative from the Red Alga Laurencia Species. Bull. Chem. Soc. Japan 61, 3371 (1988).

    CAS  Google Scholar 

  378. Selover, S.J., and P. Crews: Kylinone, a New Sesquiterpene Skeleton from the Marine Alga Laurencia pacifica. J. Org. Chem. 45, 69 (1980).

    CAS  Google Scholar 

  379. Howard, B.M., and W. Fenical: Structures and Chemistry of Two New Halogen-Containing Chamigrene Derivatives from Laurencia. Tetrahedron Lett., 1687 (1975).

    Google Scholar 

  380. Ichinose, I., and T. Kato: Biogenetic Type Synthesis of 10-Bromo-a-chamigrene. Chem. Lett., 61 (1979).

    Google Scholar 

  381. Bittner, M.L., M. Silva, V.J. Paul, and W. Fenical: A Rearranged Chamigrene Derivative and Its Potential Biogenetic Precursor from a New Species of the Marine Red Algal Genus Laurencia (Rhodomelaceae). Phytochem. 24, 987 (1985).

    CAS  Google Scholar 

  382. González, A.G., J. Darías, and J.D. Martín: Caespitol, a New Halogenated Sesquiterpene from Laurencia caespitosa. Tetrahedron Lett., 2381 (1973).

    Google Scholar 

  383. Mcmillan, J.A., I.C. Paul, R.H. White, and L.P. Hager: Molecular Structure of Acetoxyintricatol: A New Bromo Compound from Laurencia intricata. Tetrahedron Lett., 2039 (1974).

    Google Scholar 

  384. Sims, J.J., G.H.Y. Lin, and R.M. Wing: Marine Natural Products, X: Elatol, a Halogenated Sesquiterpene Alcohol from the Red Alga Laurencia elata. Tetrahedron Lett., 3487 (1974).

    Google Scholar 

  385. Waraszkiewicz, S.M., and K.L. Erickson: Halogenated Sesquiterpenoids from the Hawaiian Marine Alga Laurencia nidifica: Nidificene and Nidifidiene. Tetrahedron Lett., 2003 (1974).

    Google Scholar 

  386. Waraszkiewicz, S.M., and K.L. Erickson: Halogenated Sesquiterpenoids from the Hawaiian Marine Alga Laurencia nidifica, II: Nidifidienol. Tetrahedron Lett., 281 (1975).

    Google Scholar 

  387. Waraszkiewicz, S.M., and K.L. Erickson: Halogenated Sesquiterpenoids from the Hawaiian Marine Alga Laurencia nidifica, IV: Nidifocene. Tetrahedron Lett., 1443 (1976)

    Google Scholar 

  388. Waraszkiewicz, S.M., K.L. Erickson, J. Finer, and J. Clardy: Nidifocene: A Reassignment of Structure. Tetrahedron Lett., 2311 (1977).

    Google Scholar 

  389. Suzuki, T.: Two New Sesquiterpene Alcohols Containing Bromine from the Marine Alga, Laurencia nipponica Yamada. Chem. Lett., 541 (1980).

    Google Scholar 

  390. Kurata, K., A. Furusaki, C. Katayama, H. Kikuchi, and T. Suzuki: A New Labile Sesquiterpene Diol Having Bromine from the Marine Red Alga, Laurencia nipponica Yamada. Chem. Lett., 773 (1981).

    Google Scholar 

  391. Suzuki, T., H. Kikuchi, and E. Kurosawa: Six New Sesquiterpenoids from the Red Alga Laurencia nipponica Yamada. Bull. Chem. Soc. Japan 55, 1561 (1982).

    CAS  Google Scholar 

  392. Suzuki, M., M. Segawa, T. Suzuki, and E. Kurosawa: Structures of Halogenated Chamigrene Derivatives, Minor Constituents from the Red Alga Laurencia nipponica Yamada. Bull. Chem. Soc. Japan 56, 3824 (1983).

    CAS  Google Scholar 

  393. Kurata, K., T. Suzuki, M. Suzuki, E. Kurosawa, A. Furusaki, and T. Matsumoto: Laureacetal-D and-E, Two New Secochamigrane Derivatives from the Red Alga Laurencia nipponica Yamada. Chem. Lett., 557 (1983).

    Google Scholar 

  394. Kurata, K., T. Suzuki, M. Suzuki, E. Kurosawa, A. Furusaki, K. Suehiro, T. Matsumoto, and C. Katayama: Structures of Two New Halogenated Chamigrane-Type Sesquiterpenoids from the Red Alga Laurencia nipponica Yamada. Chem. Lett., 561 (1983).

    Google Scholar 

  395. Suzuki, M., M. Segawa, T. Suzuki, and E. Kurosawa: Structures of Two New Halochamigrene Derivatives from the Red Alga Laurencia nipponica Yamada. Bull. Chem. Soc. Japan 58, 2435 (1985).

    CAS  Google Scholar 

  396. Kikuchi, H., T. Suzuki, M. Suzuki, and E. Kurosawa: A New Chamigrane-Type Bromo Diether from the Red Alga Laurencia nipponica Yamada. Bull. Chem. Soc. Japan 58, 2437 (1985).

    CAS  Google Scholar 

  397. Watanabe, K., K. Umeda, and M. Miyakado: Isolation and Identification of Three Insecticidal Principles from the Red Alga Laurencia nipponica. Agrie. Biol. Chem. 53, 2513 (1989).

    CAS  Google Scholar 

  398. Kurata, K., T. Suzuki, M. Suzuki, E. Kurosawa, A. Furusaki, and T. Matsumoto: Laurencial, a Novel Sesquiterpene, a, P-Unsaturated Aldehyde from the Red Alga Laurencia nipponica Yamada. Chem. Lett., 299 (1983).

    Google Scholar 

  399. Furusaki, A., C. Katayama, T. Matsumoto, M. Suzuki, T. Suzuki, H. Kikuchi, and E. Kurosawa: The Crystal and Molecular Structure of 7,8–Epoxyhalochamigrene. Bull. Chem. Soc. Japan 55, 3398 (1982).

    CAS  Google Scholar 

  400. Fenical, W., and J.N. Norris: Chemotaxonomy in Marine Algae: Chemical Separation of Some Laurencia Species (Rhodophyta) from the Gulf of California. J. Phycol. 11, 104 (1975).

    CAS  Google Scholar 

  401. Suzuki, T., A. Furusaki, N. Hashiba, and E. Kurosawa: Novel Skeletal Bromo Ether from the Marine Alga, Laurencia nipponica Yamada. Tetrahedron Lett., 3731 (1977).

    Google Scholar 

  402. Suzuki, T., and E. Kurosawa: New Bromo Acetal from the Marine Alga, Laurencia nipponica Yamada. Chem. Lett., 301 (1979).

    Google Scholar 

  403. Suzuki, M., and E. Kurosawa: Two New Halogenated Sesquiterpenes from the Red Alga Laurencia majuscula Harvey. Tetrahedron Lett., 4805 (1978).

    Google Scholar 

  404. Suzuki, M., A. Furusaki, N. Hashiba, and E. Kurosawa: The Structures and Absolute Stereochemistry of Two Halogenated Chamigrenes from the Red Alga Laurencia majuscula Harvey. Tetrahedron Lett., 879 (1979).

    Google Scholar 

  405. Caccamese, S., A. Compagnini, and R.M. Toscano: Pacifenol from the Mediterranean Red Alga Laurencia majuscula. J. Nat. Prod. 49, 173 (1986).

    CAS  Google Scholar 

  406. Caccamese, S., A. Compagnini, R.M. Toscano, F. Nicolo, and G. Chapuis: A New Labile Bromoterpenoid from the Red Alga Laurencia majuscula: Dehydrochloroprepacifenol. Tetrahedron 43, 5393 (1987).

    CAS  Google Scholar 

  407. Coll, J.C., and A.D. Wright: Tropical Marine Algae, III: New Sesquiterpenes from Laurencia majuscula (Rhodophyta, Rhodophyceae, Ceramiales, Rhodomelaceae). Aust. J. Chem. 42, 1591 (1989).

    CAS  Google Scholar 

  408. Ojika, M., Y. Shizuri, and K. Yamada: A Halogenated Chamigrene Epoxide and Six Related Halogen-Containing Sesquiterpenes from the Red Alga Laurencia okamurai. Phytochem. 21, 2410 (1982).

    CAS  Google Scholar 

  409. Guella, G., G. Chiasera, I. Mancini, and F. Pietra: Conformational Analysis of Marine Polyhalogenated P–Chamigrenes Through Temperature-Dependent NMR Spectra. Helv. Chim. Acta 74, 774 (1991).

    CAS  Google Scholar 

  410. Wright, A.D., J.C. Coll, and I.R. Price: Tropical Marine Algae, VII: The Chemical Composition of Marine Algae from North Queensland Waters. J. Nat. Prod. 53. 845 (1990).

    CAS  Google Scholar 

  411. Capon, R.J., E.L. Ghisalberti, T.A. Mori, and P.R. Jefferies: Sesquiterpenes from Laurencia Sp. J. Nat. Prod. 51, 1302 (1988).

    CAS  Google Scholar 

  412. De Nys, R., J.C. Coll, and B.F. Bowden: Tropical Marine Algae, VIII: The Structural Determination of Novel Sesquiterpenoid Metabolites from the Red Alga Laurencia majuscula. Aust. J. Chem. 45, 1611 (1992).

    Google Scholar 

  413. González, A.G., J. Darías, A. Díaz, J.D. Fourneron, J.D. Martín, and C. Pérez: Evidence for the Biogenesis of Halogenated Chamigrenes from the Red Alga Lauren¬cia obtusa. Tetrahedron Lett., 3051 (1976).

    Google Scholar 

  414. González, A.G., J.D. Martín, V.S. Martín, M. Norte, J. Fayos, and M. Martínez-Ripoll: A New Polyhalogenated Sesquiterpene from Laurencia obtusa. Tetrahedron Lett, 2035 (1978).

    Google Scholar 

  415. Perales, A, M. Martínez-Ripoll, and J. Fayos: Structure of Obtusol Acetate, a Halogenated Chamigrene–Type Sesquiterpene. Acta Cryst. B35, 2771 (1979).

    CAS  Google Scholar 

  416. González, A.G, J.D. Martín, V.S. Martín, M. Martínez-Ripoll, and J. Fayos: X-Ray Study of Sesquiterpene Constituents of the Alga L. obtusa Leads to Structure Revision. Tetrahedron Lett., 2717 (1979).

    Google Scholar 

  417. Gerwick, W.H, A. Lopez, R. Davila, and R. Albors: Two New Chamigrene Sesquiterpenoids from the Tropical Red Alga Laurencia obtusa. J. Nat. Prod. 50, 1131 (1987).

    CAS  Google Scholar 

  418. Brennan, M.R., K.L. Erickson, D.A. Minott, and K.O. Pascol: Chamigrane Metabolites from a Jamaican Variety of Laurencia obtusa. Phytochem. 26, 1053 (1987).

    CAS  Google Scholar 

  419. Kennedy, D.J., I.A. Selby, and R.H. Thomson: Chamigrane Metabolites from Laurencia obtusa and L. scoparia. Phytochem. 27, 1761 (1988).

    CAS  Google Scholar 

  420. Martín, J.D., P. Caballero, J.J. Fernandez, M. Norte, R. Peréz, and M.L. Rodriguez: Metabolites from Laurencia obtusa. Phytochem. 28, 3365 (1989).

    Google Scholar 

  421. González, A.G., J. Darías, J.D. Martín, V.S. Martín, M. Norte, and C. Pérez: Laurencia Sesquiterpene Biogenetic-Type Interconversions. Tetrahedron Lett. 21, 1151 (1980).

    Google Scholar 

  422. Elsworth, J.F., and R.H. Thomson: A New Chamigrane from Laurencia gíomerata. J. Nat. Prod. 52, 893 (1989).

    CAS  Google Scholar 

  423. González, A.G., J. Darias, J.D. Martín, and C. Pérez: Revised Structure of Caespitol and Its Correlation with Isocaespitol. Tetrahedron Lett., 1249 (1974).

    Google Scholar 

  424. Baño, S., M.S. Ali, and V.U. Ahmad: Marine Natural Products, VI: A Halogenated Chamigrene Epoxide from the Red Alga Laurencia pinnatifida. Planta Med. 53, 508 (1987).

    Google Scholar 

  425. Baño, S., M.S. Ali, and V.U. Ahmad: Marine Natural Products, VIII: Two Minor Halogenated Sesquiterpenoids from the Red Alga Laurencia pinnatifida. Sci. Pharm. 56, 125 (1988).

    Google Scholar 

  426. Baño, S., M.S. Ali, and V.U. Ahmad: Marine Natural Products, IX: A New Halogenated Sesquiterpene Pinnatifidone from the Red Alga Laurencia pinnatifida. Z. Naturforsch. 43B, 1347 (1988).

    Google Scholar 

  427. Ahmad, V.U., and M.S. Ali: Terpenoids from Marine Red Alga Laurencia pinnatifida. Phytochem. 30, 4172 (1991).

    CAS  Google Scholar 

  428. Atta-Ur-Rahman, V.U. Ahmad, S. Bano, S.A. Abbas, K.A. Alvi, M.S. Ali, H.S.M. Lu, and J. Clardy: Pinnatazane, a Bridged Cyclic Ether Sesquiterpene from Laurencia pinnatifida. Phytochem. 27, 3879 (1988).

    Google Scholar 

  429. Stallard, M.O., and D.J. Faulkner: Chemical Constituents of the Digestive Gland of the Sea Hare Aplysia californica, II: Chemical Transformations. Comp. Biocbem. Physiol. 49B, 37 (1974).

    CAS  Google Scholar 

  430. Faulkner, D.J., M.O. Stallard, and C. Ireland: Prepacifenol Epoxide, a Halogenated Sesquiterpene Diepoxide. Tetrahedron Lett., 3571 (1974).

    Google Scholar 

  431. González, A.G., J.D. Martín, M. Norte, R. Pérez, V. Weyler, A. Perales, and J. Fayos: New Halogenated Constituents of the Digestive Gland of the Sea Hare Aplysia dactylomela. Tetrahedron Lett. 24, 847 (1983).

    Google Scholar 

  432. Sakai, R., T. Higa, C.W. Jefford, and G. Bernardinelli: The Absolute Configurations and Biogenesis of Some New Halogenated Chamigrenes from the Sea Hare Aplysia dactylomela. Helv. Chim. Acta 69, 91 (1986).

    CAS  Google Scholar 

  433. Rao, C.B., C. Satyanarayana, D.V. Rao, E. Fahy, and DJ. Faulkner: Metabolites of Aplysia dactylomela from the Indian Ocean. Indian J. Chem. B28, 322 (1989).

    Google Scholar 

  434. Iwata, C, T. Akiyama, and K. Miyashita: Synthesis of Four Possible Isomers of 9-(Bromomethylene)-l,2,5-trimethylspiro[5.5]undeca-l,7-dien-3-one: Structure Elu¬cidation of a Brominated Rearranged Chamigrane–Type Sesquiterpene. Chem. Pharm. Bull. (Japan) 36, 2872 (1988).

    CAS  Google Scholar 

  435. Guella, G., I. Mancini, G. Chiasera, and F. Pietra: Rogiolol Acetate: A Novel ß-Chamigrene-Type Sesquiterpene Isolated from a Marine Sponge. Helv. Chim. Acta 73, 1612 (1990).

    CAS  Google Scholar 

  436. Guella, G., I. Mancini, and F. Pietra: C15 Acetogenins and Terpenes of the Dictyoceratid Sponge Spongia zimocca of II Rogiolo: A Case of Seaweed-Metabolite Transfer to, and Elaboration Within, a Sponge? Comp. Biochem. Physiol. B103, 1019 (1992).

    Google Scholar 

  437. Cox, P.J., and R.A. Howie: Structure of 2,10-Dibromo-3-chloro-7R,SS-epoxychamigrene. Z. Kristallogr. 188, 1 (1989).

    CAS  Google Scholar 

  438. Denys, R., G.M. König, A.D. Wright, and O. Sticher: Two Metabolites from the Red Alga Laurencia fiexilis. Phytochem. 34, 725 (1993).

    CAS  Google Scholar 

  439. González, A.G., J.D. Martín, V.S. Martín, R. Pérez, B. Tagle, and J. Clardy: Rhodolaureol and Rhodolauradiol, Two New Halogenated Tricyclic Sesquiterpenes from a Marine Alga. J. Chem. Soc., Chem. Commun., 260 (1985).

    Google Scholar 

  440. González, A.G., J.D. Martín, V.S. Martín, M. Norte, and R. Pérez: Biomimetic Approach to the Syntheses of Rhodolaureol and Rhodolauradiol. Tetrahedron Lett 23, 2395 (1982).

    Google Scholar 

  441. Kazlauskas, R., P.T. Murphy, R.J. Wells, J.J. Daly, and W.E. Oberhánsli: Heterocladol, a Halogenated Selinane Sesquiterpene of Biosynthetic Significance from the Red Alga Laurencia filiformis: Its Isolation, Crystal Structure and Absolute Configuration. Aust. J. Chem. 30, 2679 (1977).

    CAS  Google Scholar 

  442. Howard, B.M., and W. Fenical: Structure, Chemistry, and Absolute Configuration of 1 (S)-Bromo-4(.R)-hydroxyl-(-)-selin-7-ene from a Marine Red Alga Laurencia sp. J. Org. Chem. 42, 2518 (1977).

    CAS  Google Scholar 

  443. Rose, A.F., and J.J. SIMS: Marine Natural Products, XIV: 1-S-Bromo-4-iMiydroxy-selin-7-ene, a Metabolite of the Marine Alga Laurencia sp. Tetrahedron Lett., 2935 (1977).

    Google Scholar 

  444. Rose, A.F., J.J. Sims, R.M. Wing, and G.M. Wiger: Marine Natural Products, XVII: The Structure of (lS,4i?,7R)-l-Bromo-4-hydroxy-7-chloroselinane, a Metabolite of the Marine Alga Laurencia sp. Tetrahedron Lett., 2533 (1978).

    Google Scholar 

  445. Dieter, R.K., R. Kinnel, J. Meinwald, and T. Eisner: Brasiidol and Isobrasudol: Two Bromosesquiterpenes. Tetrahedron Lett., 1645 (1979).

    Google Scholar 

  446. Brennan, M.R., and K.L. Erickson: Austradiol Acetate and Austradiol Diacetate, 4,6-Dihydroxy-(+)-selinane Derivatives from an Australian Laurencia sp. J. Org. Chem. 47, 3917 (1982).

    CAS  Google Scholar 

  447. Barnekow, D.E., J.H. Cardellina II, A.S. Zektzer, and G.E. Martin: Novel Cytotoxic and Phytotoxic Halogenated Sesquiterpenes from the Green Alga Neomeris annulata. J. Am. Chem. Soc. Ill, 3511 (1989).

    Google Scholar 

  448. Barnekow, D.E., and J.H. Cardellina II: Determining the Absolute Configuration of Hindered Secondary Alcohols-A Modified Horeau’s Method. Tetrahedron Lett. 30, 3629 (1989).

    CAS  Google Scholar 

  449. Talpir, R., A. Rudi, Y. Kashman, Y. Loya, and A. Hizi: Three New Sesquiterpene Hydroquinones from Marine Origin. Tetrahedron 50, 4179 (1994).

    CAS  Google Scholar 

  450. Burgoyne, D.L., E.J. Dumdei, and R.J. Andersen: Acanthenes A to C: A Chloro, Isothiocyanate, Formamide Sesquiterpene Triad Isolated from the Northeastern Pacific Marine Sponge Acanthella sp. and the Dorid Nudibranch Cadlina luteomar– ginata. Tetrahedron 49, 4503 (1993).

    CAS  Google Scholar 

  451. Wratten, S.J., D.J. Faulkner, D. Van Engen, and J. Clardy: A Vinyl Carbonimidic Dichloride from the Marine Sponge Pseudaxinyssa pitys. Tetrahedron Lett., 1391 (1978).

    Google Scholar 

  452. Wratten, S.J., and D.J. Faulkner: Minor Carbonimidic Dichlorides from the Marine Sponge Pseudaxinyssa pitys. Tetrahedron Lett., 1395 (1978).

    Google Scholar 

  453. Hall, S.S., D.J. Faulkner, J. Fayos, and J. Clardy: Oppositol, a Brominated Sesquiterpene Alcohol of a New Skeletal Class from the Red Alga, Laurencia subopposita. J. Am. Chem. Soc. 95, 7187 (1973).

    CAS  Google Scholar 

  454. Wratten, S.J., and D.J. Faulkner: Metabolites of the Red Alga Laurencia subopposita. J. Org. Chem. 42, 3343 (1977).

    CAS  Google Scholar 

  455. González, A.G., J.M. Aguiar, J.D. Martín, and M. Norte: Three New Sesquiterpenoids from the Marine Alga Laurencia perforata. Tetrahedron Lett., 2499 (1975).

    Google Scholar 

  456. González, A.G., J.M. Aguiar, J. Darías, E. González, J.D. Martín, V.S. Martín, and C. Pérez: Perforenol, a New Polyhalogenated Sesquiterpene from Laurencia perforata. Tetrahedron Lett., 3931 (1978).

    Google Scholar 

  457. Coll, J.C., B.W. Skelton, A.H. White, and A.D. Wright: Tropical Marine Algae, V: The Structure Determination of Two Novel Sesquiterpenes from the Red Alga Laurencia teñera (Rhodophyceae, Ceramiales, Rhodomelaceae). Aust. J. Chem. 42, 1695 (1989).

    CAS  Google Scholar 

  458. González, A.G., J. Darías, J.D. Martín, G Pérez, J.J. Sims, G.H.Y. Lin, and R.M. Wing: Isocaespitol, a New Halogenated Sesquiterpene from Laurencia caespitosa. Tetrahedron 31, 2449 (1975).

    Google Scholar 

  459. González, A.G., J.D. Martín, C. Pérez, M.A. Ramírez, and F. Ravelo: Total Synthesis of 8-Desoxyisocaespitol, a New Polyhaiogenated Sesquiterpene from Laurencia caespitosa. Tetrahedron Lett. 21, 187 (1980).

    Google Scholar 

  460. Chang, M., J.T. Vazquez, K. Nakanishi, F. Cataldo, D.M. Estrada, J. Fernandez, A. Gallardo, J.D. Martin, M. Norte, R. Pérez, and M.L. Rodríguez: Regular and Irregular Sesquiterpenes Containing a Halogenated Hydropyran from Laurencia caespitosa. Phytochem. 28, 1417 (1989).

    CAS  Google Scholar 

  461. González, A.G., J.D. Martín, M. Norte, R. Pérez, P. Rivera, J.Z. Ruano, M.L. Rodríguez, J. Fayos, and A. Perales: X-Ray Structure Determination of New Brominated Metabolites Isolated from the Red Seaweed Laurencia obtusa. Tetrahedron Lett. 24, 4143 (1983).

    Google Scholar 

  462. Hollenbeak, K.H., F.J. Schmitz, M.B. Hossain, and D. Van der Helm: Marine Natural Products. Deodactol, Antineoplastic Sesquiterpenoid from the Sea Hare Aplysia dactylomela. Tetrahedron 35, 541 (1979).

    CAS  Google Scholar 

  463. Schmitz, F.J., D.P. Michaud, and K.H. Hollenbeak: Marine Natural Products: Dihydroxydeodactol Monoacetate, a Halogenated Sesquiterpene Ether from the Sea Hare Aplysia dactylomela. J. Org. Chem. 45, 1525 (1980).

    CAS  Google Scholar 

  464. Gopichand, Y., F.J. Schmitz, J. Shelly, A. Rahman, and D. Van der Helm: Marine Natural Products: Halogenated Acetylenic Ethers from the Sea Hare Aplysia dactylomela. J. Org. Chem. 46, 5192 (1981).

    CAS  Google Scholar 

  465. González, A.G., V. Darías, and E. Estévez: Chemotherapeutic Activity of Polyhaiogenated Terpenes from Spanish Algae. Planta Med. 44, 44 (1982).

    Google Scholar 

  466. Murakami, T., and N. Tanaka: Occurrence, Structure and Taxonomic Implications of Fern Constituents. Progr. Chem. Org. Nat. Prod. 54, 1 (1988).

    CAS  Google Scholar 

  467. Gonález, A.G., J. Darías, and J.D. Martín: Biomimetic Interconversions of Two New Types of Metabolite from Laurencia perforata. Tetrahedron Lett., 3375 (1977).

    Google Scholar 

  468. González, A.G., J. Darías, J.D. Martín, and M.A. Melián: Total Synthesis of Racemic Perforenone and 3-Debromoperforatone. Tetrahedron Lett., 481 (1978).

    Google Scholar 

  469. Sham’Yanov, I.D., A. Mallabaev, U. Rakhmankulov, and G.P. Sidyakin: Sesquiterpene Lactones of Saussurea elegans. Khim. Prir. Soedin. 12, 819 (1976).

    Google Scholar 

  470. Yamamura, S., and Y. Hirata: Structures of Aplysin and Aplysinol, Naturally Occurring Bromo-Compounds. Tetrahedron 19, 1485 (1963).

    CAS  Google Scholar 

  471. Irie, T., M. Suzuki, and Y. Hayakawa: Isolation of Aplysin, Debromoaplysin, and Aplysinol from Laurencia okamurai Yamada. Bull. Chem. Soc. Japan 42, 843 (1969).

    CAS  Google Scholar 

  472. Cameron, A.F., G. Ferguson, and J.M. Robertson: The Crystal Structure and Absolute Stereochemistry of Laurinterol. The Absolute Stereochemistry of Aplysin. J. Chem. Soc, Chem. Commun, 271 (1967).

    Google Scholar 

  473. Cameron, A.F, G. Ferguson, and J.M. Robertson: Laurencia Natural Products, Part II: Crystal Structure and Absolute Stereochemistry of Laurinterol Acetate, a Bicyclo[3.1.0]hexane Derivative. J. Chem. Soc. (B), 692 (1969).

    Google Scholar 

  474. McMillan, J.A, I.C. Paul, S. Caccamese, and K.L. Rinehart JR.: Aplysinol from Laurencia decidua: Crystal Structure and Absolute Stereochemistry. Tetrahedron Lett., 4219 (1976).

    Google Scholar 

  475. Irie, T., A. Fukuzawa, M. Izawa, and E. Kurosawa: Laurenisol, A New Sesquiterpenoid Containing Bromine from Laurencia nipponica Yamada. Tetrahedron Lett., 1343 (1969).

    Google Scholar 

  476. Irie, T., M. Suzuki, E. Kurosawa, and T. Masamune: Laurinterol, Debromolaurinterol and Isolaurinterol, Constituents of Laurencia intermedia Yamada. Tetrahedron 26, 3271 (1970).

    CAS  Google Scholar 

  477. Suzuki, T., M. Suzuki, and E. Kurosawa: a-Bromocuparene and oc-Isobromocuparene, New Bromo Compounds from Laurencia Species. Tetrahedron Lett., 3057 (1975).

    Google Scholar 

  478. Kazlauskas, R., P.T. Murphy, R.J. Quinn, and R.J. Wells: New Laurene Derivatives from Laurencia filiformis. Aust. J. Chem. 29, 2533 (1976).

    CAS  Google Scholar 

  479. Suzuki, M., and E. Kurosawa: New Bromo Compounds from Laurencia glandulifera Kiitzing. Tetrahedron Lett., 4817 (1976).

    Google Scholar 

  480. Izak, R.R., and J.J. Sims: Marine Natural Products, 18: lodinated Sesquiterpenes from the Red Algae Genus Laurencia. J. Am. Chem. Soc. 101, 6136 (1979).

    Google Scholar 

  481. Izak, R.R., J.S. Drage, and J.J. Sims: Caraibical, a New Aromatic Sesquiterpene from the Marine Alga Laurencia caraibica. Tetrahedron Lett. 22, 1799 (1981).

    Google Scholar 

  482. Irie, T., Y. Yasunari, T. Suzuki, N. Imai, E. Kurosawa, and T. Masamune: A New Sesquiterpene Hydrocarbon from Laurencia glandulifera. Tetrahedron Lett., 3619 (1965).

    Google Scholar 

  483. Suzuki, M., and E. Kurosawa: New Aromatic Sesquiterpenoids from the Red Alga Laurencia okamurai Yamada. Tetrahedron Lett., 2503 (1978).

    Google Scholar 

  484. Suzuki, M., and E. Kurosawa: Halogenated and Non-Halogenated Aromatic Sesquiterpenes from the Red Algae Laurencia okamurai Yamada. Bull. Chem. Soc. Japan 52, 3352 (1979).

    CAS  Google Scholar 

  485. Caccamese, S., L.P. Hager, K.L. Rinehart JR., and R.B. Setzer: Characterization of Laurencia Species by Gas Chromatography-Mass Spectrometry. Bot. Mar. 22, 41 (1979).

    CAS  Google Scholar 

  486. Suzuki, M., and E. Kurosawa: Halogenated Sesquiterpene Phenols and Ethers from the Red Alga Laurencia glandulifera Kiitzing. Bull. Chem. Soc. Japan 52, 3349 (1979).

    CAS  Google Scholar 

  487. Blunt, J.W., R.J. Lake, and M.H.G. Munro: Sesquiterpenes from the Marine Red Alga Laurencia distichophylla. Phytochem. 23, 1951 (1984).

    CAS  Google Scholar 

  488. González, A.G., J.M. Arteaga, J.J. Fernandez, J.D. Martín, M. Norte, and J.Z. Ruano: Terpenoids of the Red Alga Laurencia pinnatifida. Tetrahedron 40, 2751 (1984).

    Google Scholar 

  489. Wright, A.D., G.M. Kónig, R. de Nys, and O. Sticher: Seven New Metabolites from the Marine Red Alga Laurencia majuscula. J. Nat. Prod. 56, 394 (1993).

    CAS  Google Scholar 

  490. González, A.G., J.M. Aguiar, J.D. Martín, and M.L. Rodríguez: Perforen, a New Halogenated Sesquiterpene from the Red Alga Laurencia perforata. Tetrahedron Lett., 205 (1976).

    Google Scholar 

  491. Ichiba, T., and T. Higa: New Cuparene-Derived Sesquiterpenes with Unprecedented Oxygenation Patterns from the Sea Hare Aplysia dactylomela. J. Org. Chem. 51, 3364 (1986).

    CAS  Google Scholar 

  492. Ohta, K., and M. Takagi: Halogenated Sesquiterpenes from the Marine Red Alga Marginisporum aberrans. Phytochem. 16, 1062 (1977).

    CAS  Google Scholar 

  493. Afaq-Husain, S., M. Shameel, K. Usmanghani, M. Ahmad, S. Perveen, and V.U. Ahmad: Brominated Sesquiterpene Metabolites of Hypnea pannosa Gigartinales. J. Appl. Phycol. 3, 111 (1991).

    CAS  Google Scholar 

  494. Hógberg, H.-E., R.H. Thomson, and T.J. King: The Cymopols, a Group of Prenylated Bromohydroquinones from the Green Calcareous Alga Cymopolia barbata. J. Chem. Soc., Perkin Trans. 1, 1696 (1976).

    Google Scholar 

  495. Mcconnell, O.J., P.A. Hughes, and N.M. Targett: Diastereomers of Cyclocymopol and Cyclocymopol Monomethyl Ether from Cymopolia barbata. Phytochem. 21, 2139 (1982).

    CAS  Google Scholar 

  496. Estrada, D.M., J.D. Martín, and C. Pérez: A New Brominated Monoterpenoid Quinol from Cymopolia barbata. J. Nat. Prod. 50, 735 (1987).

    CAS  Google Scholar 

  497. Wall, M.E., M.C. Wani, G. Manikumar, H. Taylor, T.J. Hughes, K. Gaetano, W.H. Gerwick, A.T. McPhail, and D.R. McPhail: Plant Antimutagenic Agents, 7: Structure and Antimutagenic Properties of Cymobarbatol and 4-Isocymobarbatol, New Cymopols from Green Alga (Cymopolia barbata). J. Nat. Prod. 52, 1092 (1989).

    CAS  Google Scholar 

  498. Park, M., W. Fenical, and M.E. Hay: Debromoisocymobarbatol, a New Chromanol Feeding Deterrent from the Marine Alga Cymopolia barbata. Phytochem. 31, 4115 (1992).

    CAS  Google Scholar 

  499. Garson, M.J., D.C. Manker, K.E. Maxwell, B.W. Skelton, and A.H. White: Novel Brominated Metabolites from a Dictyocerated Sponge of the Cacospongia Genus. Aust. J. Chem. 42, 611 (1989).

    CAS  Google Scholar 

  500. Ravi, B.N., H.P. Perzanowski, R.A. Ross, T.R. Erdman, P.J. Scheuer, J. Finer, and J. Clardy: Recent Research in Marine Natural Products: The Puupehenones. Pure Appl. Chem. 51, 1893 (1979).

    CAS  Google Scholar 

  501. Aiello, A., E. Fattorusso, and M. Menna: A New Antibiotic Chloro-Sesquiter-pene from the Caribbean Sponge Smenospongia aurea. Z. Naturforsch. 48B, 209 (1993).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this chapter

Cite this chapter

Gribble, G.W. (1996). Naturally Occuring Organohalogen Compounds — A Comprehensive Survery. In: Herz, W., Kirby, G.W., Moore, R.E., Steglich, W., Tamm, C. (eds) Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 68. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6887-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6887-5_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7424-1

  • Online ISBN: 978-3-7091-6887-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics