Information Theory Tools for Scene Discretization

  • Miquel Feixas
  • Esteve del Acebo
  • Philippe Bekaert
  • Mateu Sbert
Conference paper
Part of the Eurographics book series (EUROGRAPH)

Abstract

Finding an optimal discretization of a scene is an important but difficult problem in radiosity. The efficiency of hierarchical radiosity for instance, depends entirely on the subdivision criterion and strategy that is used. We study the problem of adaptive scene discretization from the point of view of information theory. In previous work, we have introduced the concept of mutual information, which represents the information transfer or correlation in a scene, as a complexity measure and presented some intuitive arguments and preliminary results concerning the relation between mutual information and scene discretization. In this paper, we present a more general treatment supporting and extending our previous findings to the level that the development of practical information theory-based tools for optimal scene discretization becomes feasible.

Keywords

information theory radiosity adaptive scene discretization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. del Acebo, M. Feixas and M. Sbert. “Form Factors and Information Theory”. Proceedings of 3IA’98, Limoges, April 1998.Google Scholar
  2. 2.
    R. Badii and A. Politi. Complexity. Hierarchical structures and scaling in physics. Cambridge University Press, 1997.Google Scholar
  3. 3.
    Ph. Bekaert, L. Neumann, A. Neumann, M. Sbert and Y. D. Willems. “Hierarchical Monte Carlo Radiosity”. 9th Eurographics Workshop on Rendering, pp. 259–268, Vienna, Austria, June 1998.Google Scholar
  4. 4.
    R. E. Blahut. Principles and practice of Information Theory. Addison-Wesley, 1987.Google Scholar
  5. 5.
    A. Campbell. “Modelling Global Diffuse Illumination for Image Synthesis”. PhD thesis, Dept. of Computer Science, University of Texas at Austin, 1991.Google Scholar
  6. 6.
    M. F. Cohen and J. R. Wallace Radiosity and Realistic Image Synthesis. Academic Press, 1993.Google Scholar
  7. 7.
    T. M. Cover and J. A. Thomas. Elements of Information Theory. Wiley, 1991.Google Scholar
  8. 8.
    M. Feixas, E. del Acebo and M. Sbert. “Entropy of scene visibility”. WSCG’99, Plzen, 1999.Google Scholar
  9. 9.
    M. Feixas, E. del Acebo, Ph. Bekaert and M. Sbert. “An information theory framework for the analysis of scene complexity”. To appear in Eurographics’99 Proceedings. Available in http://ima.udg.es/~mateu.Google Scholar
  10. 10.
    D. P. Feldman and J. P. Crutchfield. “Statistical Measures of Complexity: Why?”. Physics Letters A, 238:244–252, 1998.MathSciNetMATHCrossRefGoogle Scholar
  11. 11.
    D. P. Feldman. “A brief introduction to: Information Theory, Excess Entropy and Computational Mechanics”. Department of Physics, University of California, July 1997. Available in http://leopard.ucdavis.edu/dave/index.html.Google Scholar
  12. 12.
    A. S. Glassner. Principles of digital image synthesis. Morgan Kaufmann Publishers, San Francisco, 1995.Google Scholar
  13. 13.
    P. Hanrahan, D. Salzman and L. Aupperle. “Rapid hierarchical radiosity algorithm”. Computer Graphics (Proc.Siggraph’ 91), 25(4): 197–206, 1991.CrossRefGoogle Scholar
  14. 14.
    W. Li. “On the relationship between complexity and entropy for Markov chains and regular languages”. Complex Systems, 5(4):381–399, 1991.MathSciNetMATHGoogle Scholar
  15. 15.
    D. Lischinski, F. Tampieri and D. Greenberg. “Combining Hierarchical Radiosity and Discontinuity Meshing”. SIGGRAPH“93 Proceedings, 1993.Google Scholar
  16. 16.
    S. Pattanaik and S. Mudur. “Adjoint Equations and Random Walks in Illumination Computation”. ACM Transactions on Graphics, Vol. 14, No. 1, January 1995.Google Scholar
  17. 17.
    M. Sbert, A. Brusi, R. Tobler and W. Purgathofer. “Random Walk radiosity with generalized transition probabilities”, Research Report IIiA-98-07-RR, Institut d’Informàtica i Aplica-cions, Universitat de Girona, 1998. Available in http://ima.udg.es/~mateu.Google Scholar
  18. 18.
    F. X. Sillion and C. Puech. Radiosity and Global Illumination. Morgan Kaufmann Publishers, San Francisco, 1994.Google Scholar

Copyright information

© Springer-Verlag/Wien 1999

Authors and Affiliations

  • Miquel Feixas
    • 1
  • Esteve del Acebo
    • 1
  • Philippe Bekaert
    • 2
  • Mateu Sbert
    • 1
  1. 1.Institut d’Informàtica i AplicacionsUniversitat de GironaSpain
  2. 2.Department of Computer ScienceKatholieke Universiteit LeuvenBelgium

Personalised recommendations