Skip to main content

A brain derived peptide preparation reduces the translation dependent loss of a cytoskeletal protein in primary cultured chicken neurons

  • Conference paper
Advances in Dementia Research

Abstract

Neuronal cytoskeletal proteins like the microtubule associated protein 2 (MAP2) are objected to pathological proteolysis in case of Alzheimer’s disease and brain ischemia. The neurotrophic peptidergic drug Cerebrolysin® (EBEWE Arzneimittel, Austria, Europe) is produced by a standardized enzymatic break-down of lipid free porcine brain proteins. Cerebolysin® protected MAP2 in primary neuronal cultures after a brief histotoxic hypoxia and in a rat model of acute brain ischemia. Furthermore the drug was shown to inhibit the proteases μ- and m-calpain dose dependency in several cell free protease activity assays.

The question if the higher MAP2 levels are due to an alleviation of proteolysis, to a higher synthesis rate or both is addressed in the current investigation: Monitoring the MAP2 content of primary neuronal cell cultures over a period of eight days revealed MAP2 to reach a peak level on day six in vitro followed by a degradation phase. In other experiments the protein synthesis of Cerebrolysin® treated and untreated cells was blocked with cycloheximide at that moment when all cells exhibited the same MAP2 content. After the following MAP2 degradation phase — i. e. after eight days in vitro — the MAP2 contents were determined by western blotting. Cerebrolysin® treated cells contained more MAP2 than untreated controls proving that the drug protects MAP2 independently from de novo synthesis, although further work is in progress to investigate if the drug supplementary boosts this effect by increasing MAP2 synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akai F, Hiruma S, Sato T, Iwamotu N, Fujimotu N, Iohu M, Hashimotu S (1992) Neurotrophic factor-like effect of FPF 1070 on septal cholinergic neurons after transections of fimbria-fornix in the rat brain. Histol Histopath 7: 213 – 221

    CAS  Google Scholar 

  • Alexa A, Tompa P, Baki A, Vereb G, Friedrich P (1996) Mutual protection of microtubule associated protein 2 (MAP2) and cyclic AMP-dependent protein kinase II against μ-calpain. J Neurosci Res 44: 438 – 445

    Article  PubMed  CAS  Google Scholar 

  • Avila J, Brandt R, Kosik KS (1997) Preface of: Brain microtubule associated proteins — modifications in disease, Harwood Academic Publ., Amsterdam, p vii

    Google Scholar 

  • Blomgren K, McRae A, Bona E, Saido TC, Karlsson JO, Hagberg H (1995) Degradation of fodrin and MAP 2 after neonatal cerebral hypoxic-ischemia. Brain Res 684: 136 – 142

    Article  PubMed  CAS  Google Scholar 

  • Boado RJ (1998) Brain-derived peptides increase blood-brain barrier GLUT1 glucose transporter gene expression via mRNA stabilization. Neurosci Lett 255: 147 – 150

    Article  PubMed  CAS  Google Scholar 

  • Caceres A, Mautino J, Kosik KS (1992) Suppression of MAP2 in cultured cerebellar macroneurons inhibits minor neurite formation. Neuron 9: 607 – 618

    Article  PubMed  CAS  Google Scholar 

  • Charrière-Bertrand C, Garner C, Tardy M, Nunez J (1991) Expression of various microtubule-associated protein 2 forms in the developing mouse brain and in cultured neurons and astrocytes. J Neurochem 56: 385 – 391

    Article  PubMed  Google Scholar 

  • Dammerman M, Yen SH, Shafit-Zagardo B (1989) Sequence of a human MAP-2 region sharing epitopes with Alzheimer neurofibrillary tangles. J Neurosci Res 24: 487 – 495

    Article  PubMed  CAS  Google Scholar 

  • Francis-Turner L, Valouskova V (1996) Nerve growth factor and nootropic drug Cerebrolysin but not fibroblast growth factor can reduce spatial memory impairment elicited by fimbria-fornix transection: Short term study. Neurosci Lett 202: 1 – 4

    Article  Google Scholar 

  • Friedrich P, Aszodi A (1991) MAP2: a sensitive cross-linker and adjustable spacer in dendritic architecture. FEBS Lett 295: 5 – 9

    Article  PubMed  CAS  Google Scholar 

  • Gschanes A, Valouskova V, Windisch M (1997) Ameliorative influence of a nootropic drug on motor activity of rats after bilateral carotid artery occlusion. J Neural Transm 104: 1319 – 1327

    Article  PubMed  CAS  Google Scholar 

  • Hutter-Paier B, Friiwirth M, Grygar E, Windisch M (1996) Cerebrolysin protects neurons from ischemia-induced loss of microtubule-associated protein 2. J Neural Transm [Suppl 47]: 276

    Google Scholar 

  • Hutter-Paier B, Steiner E, Windisch M (1998) Cerebrolysin protects isolated cortical neurons from neurodegeneration after brief histotoxic hypoxia. J Neural Transm [Suppl 54]: 343 – 349

    Google Scholar 

  • Iqbal K, Grundke-Iqbal I, Wisniewski HM (1987) Alterations of the neuronal cytoskeleton in Alzheimer’s disease and related conditions. In: Alterations in the neuronal cytoskeleton in Alzheimer’s disease, Plenum Publ., New York, pp 109 – 136

    Google Scholar 

  • Iqbal K, Zaidi T, Bancher C, Grundke-Iqbal I (1994) Alzheimer paired helical filaments, restoration of the biological activity by dephosphorylation. FEBS Lett 349: 104 – 108

    Article  PubMed  CAS  Google Scholar 

  • Johnson GVW, Jope RS (1992) The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res 33: 505 – 512

    Article  PubMed  CAS  Google Scholar 

  • Johnson GVW, Guttman RP (1997) Calpains intact and active? Bioessays 19: 1011 – 1018

    Article  PubMed  CAS  Google Scholar 

  • Kaech S, Matus A (1997) Possible roles for MAP2 in neuronal pathology. In: Brain microtubule associated proteins — modifications in disease, Harwood Academic Publishers, Amsterdam, p 33

    Google Scholar 

  • Khatoon S, Grundke-Iqbal I, Iqbal K (1992) Brain levels of microtubule associated protein x are elevated in Alzheimer’s disease: A radioimmuno-slot-blot assay for nanograms of protein. J Neurochem 59: 750 – 753

    Article  PubMed  CAS  Google Scholar 

  • Kindler S, Schulz B, Goedert M, Garner CC (1990) Molecular structure of microtubule- associated protein 2b and 2c from rat brain. J Biol Chem 265: 19679 – 19684

    PubMed  CAS  Google Scholar 

  • Koppi ST, Barolin GS (1996) Hämodilutionstherapie mit nervenzellstoffwechsel-aktiver Therapie beim ischämischen Insult — ermutigende Result ate einer Vergleichsstudie. Wien Med Wochenschr 146 /3: 1 – 8

    Google Scholar 

  • Kosik KS, Conlogue L (1993) Microtubule associated protein function: Lessons from expression in spodoptera frugiperdacells. Cell Motil Cytoskeleton 28: 195 – 198

    Article  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680 – 685

    Article  PubMed  CAS  Google Scholar 

  • Leclerc N, Baas PW, Garner CC, Kosik KS (1996) Juvenile and mature MAP2 isoforms induce distinct patterns of process outgrowth. Mol Biol Cell 7: 443 – 455

    PubMed  CAS  Google Scholar 

  • Lee G, Rook SL (1992) Expression of tau protein in non-neuronal cells: microtubule binding and stabilization. J Cell Sci 102: 227 – 237

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265 – 275

    PubMed  CAS  Google Scholar 

  • Mandelkow E, Song YH, Schweers O, Marx A, Mandelkow EM (1995) On the structure of microtubules, tau, and paired helical filaments. Neurobiol Aging 16: 347 – 354

    Article  PubMed  CAS  Google Scholar 

  • Matesic DF, Lin RCS (1994) Microtubule-associated protein 2 as an early indicator of ischemia-induced neurodegeneration in the gerbil forebrain. J Neurochem 63: 1012– 1020

    Google Scholar 

  • Metcalfe JC, Smith GA (1991) NMR measurement of cytoplasmic free calcium concentration by fluorine labelled indicators in: Cellular calcium — a practical approach, Oxford University Press, Oxford, p 124

    Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxic assays. J Immunol Methods 65: 55 – 63

    Article  PubMed  CAS  Google Scholar 

  • Okabe S, Hirokawa N (1989) Rapid turnover of microtubule-associated protein MAP2 in the axon revealed by microinjection of biotinylated MAP2 into cultured neurons. PNAS 86: 4127 – 4131

    Article  PubMed  CAS  Google Scholar 

  • Pontremoli S, Viotti PL, Michetti M, Sparatore P, Salamino F, Melloni E (1990) Identification of an endogenous activator of calpain in rat skeletal muscle. Biochem Biophys Res Comm 171: 569 – 574

    Article  PubMed  CAS  Google Scholar 

  • Rüther E, Ritter R, Apecechea M, Freytag S, Windisch M (1994) Efficacy of the peptidergic nootropic drug cerebrolysin in patients with senile dementia of the Alzheimer type (SDAT). Pharmacopsychiatry 27: 32 – 40

    Article  PubMed  Google Scholar 

  • Ruben GC, Iqbal K, Grundke-Iqbal I, Wisniewski HM, Ciardelli TL, Johnson JE Jr. (1991) The microtubule-associated protein tau forms a triple-stranded left hand polymer. J Biol Chem 266: 22019 – 22027

    PubMed  CAS  Google Scholar 

  • Saido TC, Sorimachi H, Suzuki K (1994) Calpain: new perspectives in molecular diversity and physiological-pathological involvement. FASEB J 8: 814 – 822

    PubMed  CAS  Google Scholar 

  • Salamino F, De Tullio R, Mengotti P, Viotti PL, Melloni E, Pontremoli S (1993) Site directed activation of calpain is promoted by a membrane associated natural activator protein. Biochem J 290: 191 – 197

    PubMed  CAS  Google Scholar 

  • Satou T, Imano M, Akai F, Hashimoto S, Itoh T, Fujimoto M (1993) Morphological observation of effects of Cerebrolysin on cultured neural cells. Adv Biosci 87: 195– 196

    Google Scholar 

  • Satou T, Itoh T, Fujimoto M, Hashimoto S (1994) Neurotrophic-like effects of FPF-1070 on cultured neurons from chick embryonic dorsal root ganglia. Jpn Pharmacol Ther 22 /4: 205 – 212

    Google Scholar 

  • Schwab M, Antonow-Schlorke I, Zwiener U, Bauer R (1998) Brain derived peptides reduce the size of cerebral infarction and loss of MAP2 immunoreactivity after focal ischemia in rats. J Neural Transm [Suppl 54]: 299 – 311

    Google Scholar 

  • Sharma N, Kress Y, Shaft-Zagardo B (1994) Antisense MAP2-oligonucleotides induce changes in microtubule assembly and neuritic elongation in pre-existing neurites of rat cortical neurons. Cell Motil Cytoskeleton 27: 234 – 247

    Article  PubMed  CAS  Google Scholar 

  • Shea TB (1997) Restriction of μM-Calcium-requiring calpain activation to the plasma membrane in human neuroblastoma cells: Evidence for regionalized influence of a calpain activator protein. J Neurosci Res 48: 543 – 550

    Article  PubMed  CAS  Google Scholar 

  • Siman R, Noszek JC (1988) Excitatory amino acids activate calpain I and induce structural protein breakdown in vivo. Neuron 1: 279 – 287

    Article  PubMed  CAS  Google Scholar 

  • Tompa P, Schád E, Baki A, Alexa A, Batke J (1995) An ultrasensitive continuous fluorimetric assay for calpain activity. Anal Biochem 228: 287 – 293

    Article  PubMed  CAS  Google Scholar 

  • Trojanowski JQ, Schmidt ML, Shin RW, Bramblett GT, Goedert M, Lee VMY (1993) PHFτ (A68): From pathological marker to potential mediator of neuronal dysfunction and degeneration in Alzheimer’s disease. Clin Neurosci 1: 184 – 191

    Google Scholar 

  • Ulloa L, Dombrádi V, Díaz-Nido J, Szücs K, Gergely P, Friedrich P, Avila J (1993) Dephosphorylation of distinct sites on microtubule-associated protein MAP1B by protein phosphatases 1, 2A and 2B. FEBS Lett 330: 85 – 89

    CAS  Google Scholar 

  • Valouskova V, Francis-Turner L (1998) Can Cerebrolysin influence chronic deterioration of spatial learning and memory? J Neural Transm [Suppl 53]: 343 – 349

    Google Scholar 

  • Wiche G, Oberkanins C, Himmler A (1991) Molecular structure and function of microtubule-associated proteins. Int Rev Cytol 124: 217 – 273

    Article  PubMed  CAS  Google Scholar 

  • Windisch M, Frtihwirth M, Grygar E, Hutter-Paier B (1997) Cerebrolysin normalizes MAP2 homeostasis after glutamate induced neuronal cell death. J Neurol Sci 150: 200 – 201

    Article  Google Scholar 

  • Windisch M, Gschanes A, Hutter-Paier B (1998) Neurotrophic activities and therapeutic experience with a brain derived peptide preparation. J Neural Transm [Suppl 54]: 289 – 298

    Google Scholar 

  • Wronski R, Tompa P, Hutter-Paier B, Crailsheim K, Friedrich P, Windisch (2000) Inhibitory effect of a brain derived peptide preparation on the Ca++-dependent protease, calpain. J Neural Transm 107 (2): 145 – 157

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Lane RD, Mellgren RL (1996) The major calpain isozymes are long lived proteins. J Biol Chem 271: 18825 – 18830

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag/Wien

About this paper

Cite this paper

Wronski, R., Kronawetter, S., Hutter-Paier, B., Crailsheim, K., Windisch, M. (2000). A brain derived peptide preparation reduces the translation dependent loss of a cytoskeletal protein in primary cultured chicken neurons. In: Jellinger, K., Schmidt, R., Windisch, M. (eds) Advances in Dementia Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6781-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6781-6_28

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83512-8

  • Online ISBN: 978-3-7091-6781-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics