Cellular Molecular Based Research

  • S. Leenstra
Conference paper
Part of the Acta Neurochirurgica Supplements book series (NEUROCHIRURGICA, volume 83)


In recent years significant progress has been made in identifying genetic alterations in glial brain neoplasms. Nowadays, three types of development to glioblastoma multiforme (the most malignant form of primary brain tumours) can be identified using genetic molecular techniques. Moreover, with these techniques patients can be identified who will respond to the treatment with alkylating cytostatic drugs. Future research on the genome level but in particular on the level of gene expression holds promise for better grading systems, tailored treatment based on genetic profiling and new targets for treatment. In this paper the history of genetic research on glioma and the techniques that are used are briefly reviewed.


Glioma astrocytoma oligodendroglioma genetics pathology oncogenes tumour suppressor genes DNA loss of heterozygosity. 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arap W, Knudsen E, Sewell DA et al. (1997) Functional analysis of wild-type and malignant glioma derived CDKN2Abeta alleles: evidence for an RB-independent growth suppressive pathway. Oncogene 15: 2013–2020.PubMedCrossRefGoogle Scholar
  2. 2.
    Bigner SH, Mark J, Bigner DD (1990) Cytogenetics of human brain tumours. Cancer Genet Cytogenet 47: 141–154.PubMedCrossRefGoogle Scholar
  3. 3.
    Bishop JM (1983) Cellular oncogenes and retroviruses. Annu Rev Biochem 52: 301–354.PubMedCrossRefGoogle Scholar
  4. 4.
    Cavenee WK, Dryja TP, Phillips RA et al. (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305: 779–784.PubMedCrossRefGoogle Scholar
  5. 5.
    Frankel RH, Bayona W, Koslow M, Newcomb EW (1992) p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res 52: 1427–1433.PubMedGoogle Scholar
  6. 6.
    Friend SH, Bernards R, Rogelj S et al. (1986) A human DNA segment with properties of the gene that predisposes to retinoblastoma and osteosarcoma. Nature 323: 643–646.PubMedCrossRefGoogle Scholar
  7. 7.
    Fults D, Pedone CA, Thomas GA, White R (1990) Allelotype of human malignant astrocytoma. Cancer Res 50: 5784–5789.PubMedGoogle Scholar
  8. 8.
    Harris H, Miller OJ, Klein G, Worst P, Tachibana T (1969) Suppression of malignancy by cell fusion. Nature 223: 363–368.PubMedCrossRefGoogle Scholar
  9. 9.
    Ino Y, Betensky RA, Zlatescu MC et al. (2001) Molecular subtypes of anaplastic oligodendroglioma: implications for patient management at diagnosis. Clin Cancer Res 7: 839–845.PubMedGoogle Scholar
  10. 10.
    James CD, Carlbom E, Dumanski JP et al. (1988) Clonal genomic alterations in glioma malignancy stages. Cancer Res 48: 5546–5551.PubMedGoogle Scholar
  11. 11.
    Klinger HP, Shows TB (1983) Suppression of tumourigenicity in somatic cell hybrids. II. Human chromosomes implicated as suppressors of tumourigenicity in hybrids with Chinese hamster ovary cells. J Natl Cancer Inst 71: 559–569.Google Scholar
  12. 12.
    Knudson AG Jr (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 68: 820–823.PubMedCrossRefGoogle Scholar
  13. 13.
    Land H, Parada LF, Weinberg RA (1983) Cellular oncogenes and multistep carcinogenesis. Science 222: 771–778.PubMedCrossRefGoogle Scholar
  14. 14.
    Li J, Yen C, Liaw D et al. (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275: 1943–1947.PubMedCrossRefGoogle Scholar
  15. 15.
    Maher EA, Furnari FB, Bachoo RM et al. (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15: 1311–1333.PubMedCrossRefGoogle Scholar
  16. 16.
    Malkin D, Li FP, Strong LC et al. (1990) Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science 250: 1233–1238.PubMedCrossRefGoogle Scholar
  17. 17.
    Marx J (1993) How p53 suppresses cell growth. Science 262: 1644–1645.PubMedCrossRefGoogle Scholar
  18. 18.
    Mercer WE, Shields MT, Amin M et al. (1990) Negative growth regulation in a glioblastoma tumour cell line that conditionally expresses human wild-type p53. Proc Natl Acad Sci USA 87: 6166–6170.PubMedCrossRefGoogle Scholar
  19. 19.
    Mollenhauer J, Wiemann S, Scheurlen W et al. (1997) DMBT1, a new member of the SRCR superfamily, on chromosome 10q25.3–26.1 is deleted in malignant brain tumours. Nat Genet 17: 32–39.PubMedCrossRefGoogle Scholar
  20. 20.
    Nigro JM, Baker SJ, Preisinger AC et al. (1989) Mutations in the p53 gene occur in diverse human tumour types. Nature 342: 705–708.PubMedCrossRefGoogle Scholar
  21. 21.
    Olopade OI, Jenkins RB, Ransom DT et al. (1992) Molecular analysis of deletions of the short arm of chromosome 9 in human gliomas. Cancer Res 52: 2523–2529.PubMedGoogle Scholar
  22. 22.
    Quelle DE, Ashmun RA, Hannon GJ et al. (1995) Cloning and characterization of murine pl6INK4a and pl5INK4b genes. Oncogene 11: 635–645.PubMedGoogle Scholar
  23. 23.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270: 467–470.PubMedCrossRefGoogle Scholar
  24. 24.
    Scherer HJ (1935) Gliomstudien. Virch Arch 294: 790–861.CrossRefGoogle Scholar
  25. 25.
    Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B (1992) Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355: 846–847.PubMedCrossRefGoogle Scholar
  26. 26.
    Soussi T, Caron DF, Mechali M, May P, Kress M (1987) Cloning and characterization of a cDNA from Xenopus laevis coding for a protein homologous to human and murine p53. Oncogene 1:71–78.PubMedGoogle Scholar
  27. 27.
    Southern EM (1992) Detection of specific sequences among DNA fragments separated by gel electrophoresis. 1975. Biotechnology 24: 122–139.Google Scholar
  28. 28.
    Stehelin D, Varmus HE, Bishop JM, Vogt PK (1976) DNA related to the transforming gene(s) of avian sarcoma viruses is present in normal avian DNA. Nature 260: 170–173.PubMedCrossRefGoogle Scholar
  29. 29.
    Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270: 484–487.PubMedCrossRefGoogle Scholar
  30. 30.
    von Deimling A, Eibl RH, Ohgaki H et al. (1992) p53 mutations are associated with 17p allelic loss in grade II and grade III astrocytoma. Cancer Res 52: 2987–2990.Google Scholar

Copyright information

© Springer-Verlag/Wien 2002

Authors and Affiliations

  • S. Leenstra
    • 1
    • 2
  1. 1.Department of Neurosurgery Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of NeurosurgeryAcademic Medical CenterAmsterdamThe Netherlands

Personalised recommendations