Advertisement

Methods of Developmental Research

  • A. Ünlü
Conference paper
Part of the Acta Neurochirurgica Supplements book series (NEUROCHIRURGICA, volume 83)

Summary

Neural tube defects (NTD) caused by abnormal neurulation are the major congenital anomalies which result in fetal or embryonic death, and medical, financial and social problems. The multifactorial events of neurulation have attracted researchers to identify the mechanisms of this disability.

Research focused on NTDs is one of the major topics in developmental experiments. Mammalian, avian, amphibian and computer models are used as fundamental models to discover specific events causing NTDs. There are advantages of working on some models: rats and mice are mammalian models of neurulation; amphibians and avian embryos are simple models and more practical.

Advancement in laboratory techniques has yielded more detailed information about neurulation which will assist in future with prevention and therapy of these defects.

Keywords

Method neural tube defect neurulation avian embryo 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Breen JG, Claggett TW, Kimmel GL, Kimmel CA (1999) Heat shock during rat embryo development in vitro results in decreased mitosis and abundant cell death. Reprod Toxicol 13(1): 31–39.PubMedCrossRefGoogle Scholar
  2. 2.
    Bush KT, Lynch FJ, DeNittis AS, Steinberg AB, Lee HY, Nagele RG (1990) Neural tube formation in the mouse: a morpho- metric and computerized three-dimensional reconstruction study of the relationship between apical constriction of neuroepithelial cells and the shape of the neuroepithelium. Anat Em- bryol 181(1): 49–58.Google Scholar
  3. 3.
    Butler H, Juurlink BHJ (1987) An atlas for staging mammalian and chick embryos. CRC Press. Inc, Florida.Google Scholar
  4. 4.
    Clausi DA, Brodland GW (1993) Mechanical evaluation of theories of neurulation using computer simulations. Development 118:1013–1023.Google Scholar
  5. 5.
    Copp A, Cogram P, Fleming A, Gerrelli D, Henderson D, Hynes A, Kolatsi-Joannou M, Murdoch J et al (2000) Neurulation and neural tube closure defects. Methods Mol Biol 136: 135–160.PubMedGoogle Scholar
  6. 6.
    Copp A J (1994) Genetic models of mammalian neural tube defects. Ciba Found Symp 181: 118–134.PubMedGoogle Scholar
  7. 7.
    Copp A J, Brook FA, Estibeiro JP, Shum AS, Cockroft DL (1990) The embryonic development of mammalian neural tube defects. Prog Neurobiol 35(5): 363–403.PubMedCrossRefGoogle Scholar
  8. 8.
    Dale K, Sattar N, Heemskerk J, Clarke JD, Placzek M, Dodd J (1999) Differential patterning of ventral midline cells by axial mesoderm is regulated by BMP7 and chordin. Development 126(2): 397–408.Google Scholar
  9. 9.
    Dunnett D, Goodbody A, Stanisstreet M (1991) Computer modelling of neural tube defects. Acta Biotheor 39(1): 63–79.PubMedCrossRefGoogle Scholar
  10. 10.
    Ferreira MC, Hilfer SR (1993) Calcium regulation of neural fold formation: visualization of the actin cytoskeleton in living chick embryos. Dev Biol 159(2): 427–440.PubMedCrossRefGoogle Scholar
  11. 11.
    Fineman RM, Schoenwolf GC (1987) Animal model: dysmor- phogenesis and death in a chicken embryo model. Am J Med Genet 27(3): 543–552.PubMedCrossRefGoogle Scholar
  12. 12.
    Finnell RH, Gelineau-van Waes J, Bennett GD, Barber RC, Wlodarczyk B, Shaw GM, Lammer EJ, Piedrahita JA et al (2000) Genetic basis of susceptibility to environmentally induced neural tube defects. Ann NY Acad Sci 919: 261–277.PubMedCrossRefGoogle Scholar
  13. 13.
    Fisher M, Schoenwolf GC (1983) The use of early chick embryos in experimental embryology and teratology: improvements in standard procedures. Teratology 27(1): 65–72.PubMedCrossRefGoogle Scholar
  14. 14.
    Friedberg W, Faulkner DN, Neas BR, Hanneman GD, Darden EB Jr, Deal RB Jr, Parker DE (1987) Dose-incidence relationships for exencephalia, anophthalmia and prenatal mortality in mouse embryos irradiated with fission neutrons or 250 kV X- rays. Int J Radiat Biol Relat Stud Phys Chem Med 52(2): 223–236.PubMedCrossRefGoogle Scholar
  15. 15.
    Halpern ME, Hatta K, Amacher SL, Talbot WS, Yan YL, Thisse B, Thisse C, Postlethwait JH et al (1997) Genetic interactions in zebrafish midline development. Dev Biol 187(2): 154–170.PubMedCrossRefGoogle Scholar
  16. 16.
    Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. 1951 [classical article] [see comments]. Dev Dyn 195(4): 231–272.CrossRefGoogle Scholar
  17. 17.
    Jacobson AG (1994) Normal neurulation in amphibians. Ciba Found Symp 181: 6–21.PubMedGoogle Scholar
  18. 18.
    Jacobson AG, Oster GF, Odell GM, Cheng LY (1986) Neurulation and the cortical tractor model for epithelial folding. J Embryol Exp Morphol 96: 19–49.PubMedGoogle Scholar
  19. 19.
    Juriloff DM, Harris MJ (2000) Mouse models for neural tube closure defects. Hum Mol Genet 9(6): 993–1000.PubMedCrossRefGoogle Scholar
  20. 20.
    Lee PS, Lee KH (2000) Genomic analysis. Curr Opin Biotechnol 11(2): 171–175.PubMedCrossRefGoogle Scholar
  21. 21.
    Luque JM, Morante-Oria J, Riederer BM, Fairen A (2001) Whole-mount confocal immunofluorescence of mammalian CNS. Brain Res Prot 6: 129–133.CrossRefGoogle Scholar
  22. 22.
    Morriss-Kay G, Tuckett F (1985) The role of microfilaments in cranial neurulation in rat embryos: effects of short-term exposure to cytochalasin D. J Embryol Exp Morphol 88: 333–348.PubMedGoogle Scholar
  23. 23.
    New DAT (1955) A new technique for the cultivation of the chick embryo in vitro. J Embryol Exp Morphol 3: 326–331.Google Scholar
  24. 24.
    O’Rahilly R, Muller F (1994) Neurulation in the normal human embryo. Ciba Found Symp 181: 70–82.PubMedGoogle Scholar
  25. 25.
    Peeters MC, Viebahn C, Hekking JW, van Straaten HW (1998) Neurulation in the rabbit embryo. Anat Embryol (Berl) 197(3): 167–175.CrossRefGoogle Scholar
  26. 26.
    Schoenwolf GC (1991) Cell movements driving neurulation in avian embryos. Development [Suppl] 2: 157–168.Google Scholar
  27. 27.
    Schoenwolf GC (1994) Formation and patterning of the avian neuraxis: one dozen hypotheses. Ciba Found Symp 181: 25–38.PubMedGoogle Scholar
  28. 28.
    Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169(4): 361–376.PubMedCrossRefGoogle Scholar
  29. 29.
    Schoenwolf GC (1985) Shaping and bending of the avian neuroepithelium: morphometric analyses. Dev Biol 109(1): 127–139.PubMedCrossRefGoogle Scholar
  30. 30.
    Schoenwolf GC, Smith JL (2000) Mechanisms of neurulation. MethMol Biol 136: 125–134.Google Scholar
  31. 31.
    Smith JL, Schoenwolf GC (1997) Neurulation: coming to closure. Trends Neurosci 20(11): 510–517.PubMedCrossRefGoogle Scholar
  32. 32.
    Walter G, Bussow K, Cahill D, Lueking A, Lehrach H (2000) Protein arrays for gene expression and molecular interaction screening. Curr Opin Microbiol 3(3): 298–302.PubMedCrossRefGoogle Scholar
  33. 33.
    Wheeler GN, Hamilton FS, Hoppler S (2000) Inducible gene expression in transgenic Xenopus embryos. Curr Biol 10(14): 849–852.PubMedCrossRefGoogle Scholar
  34. 34.
    Wilgenbus KK, Lichter P (1999) DNA chip technology ante portas. J Mol Med 77(11): 761–768.PubMedCrossRefGoogle Scholar
  35. 35.
    Zhong GY, Riov J, Goren R, Holland D (2000) Competitive hybridization: theory and application in isolation and quantification of differentially regulated genes. Anal Biochem 282(1): 129–135.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag/Wien 2002

Authors and Affiliations

  • A. Ünlü
    • 1
    • 2
  1. 1.Neurosurgery DepartmentUniversity of Ankara, School of MedicineAnkaraTurkey
  2. 2.AnkaraTurkey

Personalised recommendations