Elicitor Recognition and Signal Transduction

  • Jürgen Ebel
  • Dierk Scheel
Part of the Plant Gene Research book series (GENE)


The majority of plants are highly resistant to attack by most micro-organisms (non-host or species resistance). The number of true host/ pathogen combinations is comparatively small, but these interactions cause signifieant losses in agriculture. Within a susceptible plant species, resistance may be expressed in a number of host cultivars to certain races of a pathogen (cultivar resistance). The biochemieal mechanisms of non-host resistance and cultivar resistance are similar and include a wide range of inducible defense responses. Many of these responses involve gene activation (e.g., the phytoalexin response), whereas others do not (e.g., callose formation). Compatible plant/pathogen combinations are characterized by a de1ay or apparent absence of the typical defense response, which may be caused by pathogen-mediated disturbances at any level of the reaction sequence(s) leading to successful resistance.


Fungal Elicitor Soybean Cell Elicitor Activity Nonhost Resistance Petroselinum Crispum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alexandre J., Lassalles J.P., Kado R.T. (1990) Opening of Ca2 + channels in isolated red beet root vacuole membrane by inositol 1,4,5-trisphosphate. Nature 343: 567–570CrossRefGoogle Scholar
  2. Apostol I., Heinstein P.F., Low P.S. (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Plant Physiol 90: 109– 116PubMedCrossRefGoogle Scholar
  3. Ayers A.R., Ebel J., Valent B., Albersheim P. (1976) Host–pathogen interactions X. Fractionation and biological activity of an elicitor isolated form the mycelial walls of Phytophthora megasperma var. sojae. Plant Physiol 57: 760– 765PubMedCrossRefGoogle Scholar
  4. Barz W., Bless W., Daniel S., Gunia W., Hinderer W., Jaques U., Kessmann H., Meier D., Tiemann K., Wittkampf U. (1989) Elicitation and suppression of isoflavones and pterocarpan phytoalexins in chickpea (Cicer arietinum L.) cell cultures. In: Kurz W.G.W. (ed) Primary and secondary metabolism of plant cell cultures. Springer, Berlin Heidelberg New York Tokyo, pp 208–218CrossRefGoogle Scholar
  5. Becker-André M., Schulze-Lefert P., Hahlbrock K. (1991) Structural comparison, modes of expression and putative cis-acting elements of two 4-coumarate: CoA ligase genes in potato. J Biol Chem 266: 8551 –8559PubMedGoogle Scholar
  6. Beissmann B., Reisener H.J. (1990) Isolation and purity determination of glycoprotein elicitors from wheat stern rust using medium press ure liquid chromatography. J Chromatogr 521: 187–197CrossRefGoogle Scholar
  7. Berridge M.J., Irvine R.F. (1989) Inositol phosphates and cell signalling. Nature 341: 197–205PubMedCrossRefGoogle Scholar
  8. Berridge M.J., Downes C.P., Hanley M.R. (1989) Neural and developmental actions of lithium: a unifying hypo thesis. Cell 59: 411 –419PubMedCrossRefGoogle Scholar
  9. Boller T. (1989) Primary signals and second messengers in the reaction of plants to pathogens. In: Boss W.F., Morré D.J. (eds) Second messengers in plant growth and development. AR Liss, New York, pp 227–255Google Scholar
  10. Boss W.F. (1989) Phosphoinositide metabolism: its relation to signal transduction in plants. In: Boss W.F., Morré D.J. (eds) Second messengers in plant growth and development. AR Liss, New York, pp 29–56Google Scholar
  11. Bruce R.J., West C.A. (1989) Elicitation of lignin biosynthesis and isoperoxidase activity by pectic fragments in suspension cultures of castor bean. Plant Physiol 91: 889–897PubMedCrossRefGoogle Scholar
  12. Busa W.B., Nuccitelli R. (1984) Metabolie regulation via intracellular pH. Am J Physiol 246: 409–438Google Scholar
  13. Chappell J., Hahlbrock K. (1984) Transcription of plant defence genes in response to UV light or fungal elicitor. Nature 311: 76–78CrossRefGoogle Scholar
  14. Cheong J.-J., Hahn M.G. (1991) A specific, high affinity binding site for the hepta-ß-glucoside elicitor exists in soybean membranes. Plant Cell 3: 137–147PubMedGoogle Scholar
  15. Cheong J.-J., Birberg W., Fügedi P., Pilotti Å., Garegg P.J., Hong N., Ogawa T., Hahn M.G. (1991) Structure-activity relationships of oligo-ß-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell 3: 127–136PubMedGoogle Scholar
  16. Colling C., Gilles R., Cramer M., Nass N., Moka R., Jaenicke L. (1988) Measurement of 3′:5′ cyclic AMP in biological sampies using a specific monoclonal antibody. Second Messengers Phosphoproteins 12: 123–133PubMedGoogle Scholar
  17. Conrath U., Domard A., Kauss H. (1989) Chitosan-elicited synthesis of callose and of coumarin derivatives by parsley cell suspensions. Plant Cell Rep 8: 152–155CrossRefGoogle Scholar
  18. Cosio E.G., Frey T., Ebel J. (1990a) Solubilization of soybean membrane binding sites for fungal ß-glucans that elicit phytoalexin accumulation. FEBS Lett 264: 235–238PubMedCrossRefGoogle Scholar
  19. Cosio E.G., Frey T., Verduyn R., van Boom J., Ebel J. (1990b) High-affinity binding of a synthetic heptaglucoside and fungal glucan phytoalexin elicitors to soybean membranes. FEBS Lett 271: 223–226PubMedCrossRefGoogle Scholar
  20. Cosio E.G., Pöpperl H., Schmidt W.E., Ebel J. (1988) High-affinity binding of fungal ß-glucan fragments to soybean (Glycine max L.) microsomal fractions and protoplasts. Eur I Biochem 175: 309–315CrossRefGoogle Scholar
  21. Cramer C.L., Edwards K., Dron M., Liang X., Dildine S.L., Bolwell G.P., Dixon R.A., Lamb C.J., Schuch W. (1989) Phenylalanine ammonia-Iyase gene organization and structure. Plant Mol Biol 12: 367–383CrossRefGoogle Scholar
  22. Cruickshank I.A.M., Perrin D.R. (1968) The isolation and partial characterization of monilicolin A, a polypeptide with phaseollin-inducing activity from Monilinia fructicola. Life Sci 7: 449–458CrossRefGoogle Scholar
  23. Dangl J.L., Hauffe K.D., Lipphardt S., Hahlbrock K., Scheel D. (1987) Parsley protoplasts retain differential responsiveness to u.v.light and fungal elicitor. EMBO J 6: 2551–2556PubMedGoogle Scholar
  24. Darvill A.G., Albersheim P. (1984) Phytoalexins and their e1icitors—a defense against microbial infection in plants. Annu Rev Plant Physiol 35: 243–275CrossRefGoogle Scholar
  25. Davis K.R., Hahlbrock K. (1987) Induction of defense responses in cultured parsley cells by plant cell wall fragments. Plant Physiol 85: 1286–1290CrossRefGoogle Scholar
  26. Davis.K.R, Darvill A.G., Albersheim P. (l986a) Host-pathogen interactions XXXI. Several biotic and ahiotic elicitors act synergistically in the induction of phytoalexin accumulation in soybean. Plant Mol Biol 6: 23–32Google Scholar
  27. Davis K.R., Darvill A.G., Albersheim P., Deli A. (1986b) Host-pathogen interactions XXX. Characterization of elicitors of phytoalexin accumulation in soybean released from soybean cell walls by endopolygalacturonic acid lyase. Z Naturforsch 41c: 39–48Google Scholar
  28. Dickens C.J., Gillespie J.I., GreenweIl J.R., Hutchinson P. (1990) Relationship between intracellular pH (pH) and calcium (Ca2+) in avian heart fibroblasts. Exp Cell Res 187: 39–46PubMedCrossRefGoogle Scholar
  29. Dietrich A., Mayer J.E., Hahlbrock K. (1990) Fungal elicitor triggers rapid, transient and specific pro tein phosphorylation in parsley cell suspension cultures. J Biol Chem 265: 6360–6368PubMedGoogle Scholar
  30. Dixon R.A., Harrison M.J. (1990) Activation, structure, and organization of genes involved in microbial defense in plants. Adv Genet 28; 165–234PubMedCrossRefGoogle Scholar
  31. Dixon R.A., Lamb C.J. (1990) Molecular communication in interactions between plants and microbial pathogens. Annu Rev Plant Physiol Plant Mol Biol 41: 339–367CrossRefGoogle Scholar
  32. Doke N. (1985) NADPH-dependent O2 generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27: 311–322CrossRefGoogle Scholar
  33. Douglas C., Hoffmann H., Schulz W., Hahlbrock K. (1987) Structure and elicitor or u.v.-light stimulated expression of two 4-coumarate: CoA ligase genes in parsley. EMBO J 6: 1189–1195PubMedGoogle Scholar
  34. Drobak B.K., Ferguson I.B. (1985) Release of Ca2+ from plant hypocotyl microsomes by inositol-1,4,5-trisphosphate. Biochem Biophys Res Commun 130: 1241–1246PubMedCrossRefGoogle Scholar
  35. Dron M., Clouse S.D., Dixon R.A., Lawton M.A., Lamb C.J. (1988) Glutathione and fungal elicitor regulation of a plant defense gene promoter in electroporated protoplasts. Proc Natl Acad Sci USA 85: 6738–6742PubMedCrossRefGoogle Scholar
  36. Ebel J. (1986) Phytoalexin synthesis: the biochemical analysis of the induction process. Annu Rev Phytopathol 24: 235 264CrossRefGoogle Scholar
  37. Ebel J., Grisebach H. (1988) Defense strategies of soybean against the fungus Phytophthora megasperma f. sp. glycinea: a molecular analysis. Trends Biochem Sci 13: 23–27PubMedCrossRefGoogle Scholar
  38. Ebel J., Cosio E.G., Feger M., Grab D., Habereder H. (1989) Elicitation of phytoalexin synthesis in soybean (Glycine max) by a fungal pathogen and a fungal ß-glucan. In: Lugtenberg B.J.J. (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin Heidelberg New York Tokyo, pp 203–210Google Scholar
  39. Farmer E.E., Helgeson J.P. (1987) An extracellular protein from Phytophthora parasitica var. nicotianae is associated with stress metabolite accumulation in tobacco callus. Plant Physiol 85: 733–740PubMedCrossRefGoogle Scholar
  40. Feinbaum R.L., Ausubel F.M. (1988) Transcriptional regulation of the Arabidopsis thaliana chalcone synthase gene. Mol Cell Biol 8: 1985–1992PubMedGoogle Scholar
  41. Felix G., Grosskopf D.G., Regenass M., Boiler T. (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci USA 88: 8831–8834PubMedCrossRefGoogle Scholar
  42. Fink J., Jeblick W., Blaschek W., Kauss H. (1987) Calcium ions and polyamines activate the plasma membrane-located 1,3-ß-glucan synthase. Planta 171: 130–135 Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9: 275–296Google Scholar
  43. Fügedi P., Birberg W., Garegg P.J., Pilotti Å. (1987) Synthesis ofa branched heptasaccharide having phytoalexin-elicitor activity. Carbohydr Res 164: 297–312CrossRefGoogle Scholar
  44. Grab D., Feger M, Ebel J. (1989) An endogenous factor from soybean (Glycine max L.) cell cultures activates phosphorylation of a protein which is dephosphorylated in vivo in elicitor-challenged cells. Planta 179: 340–348CrossRefGoogle Scholar
  45. Grisebach H., Ebel J. (1978) Phytoalexins, chemical defense substances of higher plants? Angew Chem Int Ed Engl 17: 635–647CrossRefGoogle Scholar
  46. Grosskopf D.G., Felix G., Boiler T. (1990) K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Lett 275: 177–180PubMedCrossRefGoogle Scholar
  47. Hadwiger L.A., Beckman J.M. (1980) Chitosan as a component of pea-Fusarium solani interactions. Plant Physiol 66: 205–211PubMedCrossRefGoogle Scholar
  48. Hahlbrock K., Scheel D. (1987) Biochemical responses of plants to pathogens. In: Chet I. (ed) Innovative approaches to plant disease control. Wiley, New York, pp 229–254Google Scholar
  49. Hahlbrock K., Scheel D. (1989) Physiology and molecular biology of phenylpropanoid metabolism. Annu Rev Plant Physiol Plant Mol Biol 40: 347–369CrossRefGoogle Scholar
  50. Hahn M.G., Grisebach H. (1983) Cydic AMP is not involved as a second messenger in the response of soybean to infection by Phytophthora megasperma f. sp. glycinea. Z Naturforsch 38c: 578–582Google Scholar
  51. Hahn M.G., Cheong J.-J., Birberg W., Fügedi P., Piloti Å., Garegg P., Hong N., Nakahara Y., Ogawa T. (1989) Elicitation of phytoalexins by synthetic oligoglucosides, synthetic oligogalacturonides, and their derivatives. In: Lugtenberg B.J.J. (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin Heidelberg New York Tokyo, pp91–97Google Scholar
  52. Hauffe K.D., Hahlbrock K., Scheel D. (1986) Elicitor-stimulated furanocoumarin biosynthesis in cultured parsley cells: S-adenosyl-L-methionine: bergaptol and S-adenosyl-Lmethionine: xanthotoxol O-methyltransferases. Z Naturforsch 41c: 228–239Google Scholar
  53. Hedrich R., Schroeder J.I. (1989) The physiology of ion channels and electrogenic pumps in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40: 539–569CrossRefGoogle Scholar
  54. Herrmann A., Schulz W., Hahlbrock K. (1988) Two alleles of the single-copy chaIcone synthase gene in parsley differ by a transposon-like element. Mol Gen Genet 212: 93–98PubMedCrossRefGoogle Scholar
  55. Horn M.A., Heinstein P.F., Low P.S. (1989) Receptor-mediated endocytosis in plant cells. Plant Cell 1: 1003–1009PubMedGoogle Scholar
  56. Hunter T. (1987) A thousand and one protein kinases. Cell 50: 823–829PubMedCrossRefGoogle Scholar
  57. Jahnen W., Hahlbrock K. (1988) Cellular localization of nonhost resistance reactions of parsley (Petroselinum crispum) to fungal infection. Planta 173: 197–204CrossRefGoogle Scholar
  58. Jin D.F., West C.A. (1984) Characteristics of galacturonic acid oligomers as elicitors of casbene synthetase activity in castor bean seedlings. Plant Physiol 74: 989–992PubMedCrossRefGoogle Scholar
  59. Kauss H. (1987) Some aspects of caIcium-dependent regulation in plant metabolism. Annu Rev Plant Physiol 38: 47 72CrossRefGoogle Scholar
  60. Kauss H., Jeblick W., Domard A. (1989a) The degrees of polymerization and N-acetylation of chitosan determine its ability to elicit callose formation in suspension cells and protoplasts of Catharanthus roseus. Planta 178: 385–392CrossRefGoogle Scholar
  61. Kauss H., Waldmann T., Jeblick W., Euler G., Ranjeva R., Domard A. (1989b) Ca2+ is an important but not the only signal in callose synthesis induced by chitosan, saponins and polyene antibiotics. In: Lugtenberg B.J.J. (ed)Signal molecules in plants and plant-microbe interactions. Springer, Berlin Heidelberg New York Tokyo, pp 107–116Google Scholar
  62. Kauss H., Waldmann T., Quader H. (1990) Ca 2+ as a signal in the induction of callose synthesis. In: Ranjeva R., Boudet A. (eds) Signal perception and transduction in higher plants. Springer, Berlin Heidelberg New York Tokyo, pp 117–132CrossRefGoogle Scholar
  63. Keen N.T., Bruegger B. (1977) Phytoalexins and chemicals that elicit their production in plants. In:Hedin P.A. (ed)Host plant resistance to pests. American Chemical Society, Washington, DC, pp 126Google Scholar
  64. Keen N.T., Dawson W.O. (1992) Pathogen avirulence genes and elicitors of plant defense. In: Boller T., Meins F. (eds) Genes involved in plant defense. Springer, Wien New York, pp 85–114 [Dennis E.S. et al (eds) Plant gene research. Basic knowledge and application]CrossRefGoogle Scholar
  65. Keen N.T., Tamaki S., Kobayashi D., Stayton M., Gerhold D., Shen H., Gold S., Lorang J., Thordal-Christensen H. (1989) Characterization and function of avirulence genes from Pseudomonas syringae pv. tomato. In:Lugtenberg B.J.J. (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin Heidelberg New York Tokyo, pp 183–188Google Scholar
  66. Knogge W., Hahn M., Lehnackers H., Rüpping E., Wevelsiep L. (1991) Fungal signals involved in the specificity of the interaction between barley and Rhynchosporium secalis. In: Hennecke H., Verma D.P.S. (eds) Advances in molecular genetics of plant-microbe interactions, vol 1. Kluwer, Dordrecht, pp 250–253Google Scholar
  67. Kogel G., Beissmann B., Reisener H.J., Kogel K.H. (1988) A single glycoprotein from Puccinia graminis f. sp. tritici cell walls elicits the hypersensitive lignification response in wheat. Physiol Mol Plant Pathol 33: 173–185CrossRefGoogle Scholar
  68. Kogel G., Beissmann B., Reisener H.J., Kogel K.-H. (1991) Specific binding of a hypersensitive lignification elicitor of Puccinia graminis f. sp. tritici to the plasma membrane from wheat (Triticum aestivum L.). Planta 183: 164–169CrossRefGoogle Scholar
  69. Köhle H., Young D.H., Kauss H. (1984) Physiological changes in suspension-cultured soybean cells elicited by treatment with chitosan. Plant Sci Lett 33:221–230CrossRefGoogle Scholar
  70. Köhle, H., Jeblick W., Poten F., Blaschek W., Kauss H. (1985) Chitosan-elicited callose synthesis in soybean cells as a Ca2 +-dependent process. Plant Physiol 77: 544–551PubMedCrossRefGoogle Scholar
  71. Kurosaki F., Tsurusawa Y., Nishi A. (1987a) The elicitation of phytoalexins by Ca2+ and cyclic AMP in carrot cells. Phytochemistry 26: 1919–1923CrossRefGoogle Scholar
  72. Kurosaki F., Tsurusawa Y., Nishi A. (l987b) Breakdown of phosphatidylinositol during the elicitation of phytoalexin production in cultured carrot cells. Plant Physiol 85: 601–604Google Scholar
  73. Lindner W.A., Hoffmann C., Grisebach H. (1988) Rapid elicitor-induced chemiluminescence in soybean cell suspension cultures. Phytochemistry 27: 2501–2503CrossRefGoogle Scholar
  74. Lois R., Dietrich A., Hahlbrock K., Schulz W. (1989) A phenylalanine ammonia-lyase gene from parsley: structure, regulation and identification of elicitor and light responsive cisacting elements. EMBO J 8:1641–1648PubMedGoogle Scholar
  75. Marmé D. (1989) The role of calcium and calmodulin in signal transduction. In: Boss W.F., Morré D.J. (eds) Second messengers in plant growth and development. AR Liss, New York, pp 57–80Google Scholar
  76. Moerschbacher B., Heck B., Kogel K.H., Obst O., Reisener H.J. (1986) An elicitor of the hypersensitive lignification response in wheat leaves isolated from the rust fungus Puccinia graminis f. sp. tritici. II. Induction of enzymes correlated with the biosynthesis of lignin. Z Naturforsch 41c: 839–844Google Scholar
  77. Niesbach-Klösgen U. (1987) Molekulare Analyse des C2 Gens aus Zea mays L. und Studien zur Evolution der Chalkonsynthase in Pflanzen. Dissertation, Universität zu Köln, Cologne, Federal Republic of GermanyGoogle Scholar
  78. Nothnagel E.A., McNeil M., Albersheim P., Dell A. (1983) Host-pathogen interactions XXII. A galacturonic acid oligosaccharide from plantcell walls e1icits phytoalexins. Plant Physiol 71: 916–926PubMedCrossRefGoogle Scholar
  79. Oguni I., Suzuki K., Uritani I. (1976) Terpenoid induction in sweet potato roots by cyclic-3′,5′adenosine monophosphate. Agricult Biol Chem 40:1251–1252CrossRefGoogle Scholar
  80. Ojalvo I., Rokem J.S., Navon G., Goldberg I. (1987) 31 P NMR study of elicitor treated Phaseolus vulgaris cell suspension cultures. Plant Physiol 85: 716–719PubMedCrossRefGoogle Scholar
  81. Palm C.J., Costa M.A., An G., Ryan C. (1990) Wound-inducible nuclear protein binds DNA fragments that regulate a proteinase inhibitor 11 gene from potato. Proc Natl Acad Sci USA 87: 603–607PubMedCrossRefGoogle Scholar
  82. Parker J.E., Hahlbrock K., Scheel D. (1988) Different cell-wall components from Phytophthora megasperma f. sp. glycinea elicit phytoalexin production in soybean and parsley. Planta 176: 75–82CrossRefGoogle Scholar
  83. Parker J.E., Schulte W., Hahlbrock K., Scheel D. (1991) An extracellular glycoprotein from Phytophthora megasperma f. sp. glycinea e1icits phytoalexin synthesis in cultured parsley cells and protoplasts. Mol Plant Microbe Interact 4: 19–27CrossRefGoogle Scholar
  84. Preisig C.L., Kuc J.A. (1985) Arachidonic acid-related elicitors of the hypersensitive response in potato and enhancement of their activities by glucans from Phytophthora infestans (Mont.) de Bary. Arch Biochem Biophys 236: 379–389PubMedCrossRefGoogle Scholar
  85. Ranjeva R., Boudet A.M. (1987) Phosphorylation of proteins in plants: regulatory effects and potential involvement in stimulus/response coupling. Annu Rev Plant Physiol 38: 73–93CrossRefGoogle Scholar
  86. Ricci P., Bonnet P., Huet J.-C., Sallantin M., Beauvais-Cante F., Bruneteau M., Billard V., Michel G., Pernollet J.-C. (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183: 555–563PubMedCrossRefGoogle Scholar
  87. Roby D., Gadelle A., Toppan A. (1987) Chitin oligosaccharides as elicitors of chitinase activity in melon plants. Biochem Biophys Res Commun 143: 885–892PubMedCrossRefGoogle Scholar
  88. Rogers K.R., Albert F., Anderson A.J. (1988) Lipid peroxidation is a consequence of e1icitor activity. Plant Physiol 86: 547–553PubMedCrossRefGoogle Scholar
  89. Ryan C.A. (1988) Oligosaccharides as recognition signals for the expression of defensive genes in plants. Biochemistry 27: 8879–8883CrossRefGoogle Scholar
  90. Scheel D., Hauffe K.D., Jahnen W., Hahlbrock K. (1986) Stimulation ofphytoalexin formation in fungus-infected plants and elicitor-treated cell cultures of parsley. In: Lugtenberg B. (ed) Recognition in microbe-plant symbiotic and pathogenic interactions. Springer, Berlin Heidelberg New York Tokyo, pp 325–331CrossRefGoogle Scholar
  91. Scheel D., Colling C., Keller H., Parker J., Schulte W., Hahlbrock K. (1989) Studies on elicitor recognition and signal transduction in host and non-host plant/fungus pathogenic interactions. In: Lugtenberg B.J.J. (ed) Signal molecules in plants and plant–microbe interactions. Springer, Berlin Heidelberg New York Tokyo, pp 211–218Google Scholar
  92. Scheel D., Colling C., Hedrich R., Kawalleck P., Parker E., Sacks W.R., Somssich I.E., Hahlbrock K. (1991) Signals in plant defense gene activation. In: Hennecke H, Verma D.P.S. (eds) Advances in molecular genetics of plant–microbe interactions, vol 1. Kluwer, Dordrecht, pp 373–380Google Scholar
  93. Schmelzer E., Krüger-Lebus S., Hahlbrock K. (1989) Temporal and spatial patterns of gene expression around sites of attempted fungal infection in parsley leaves. Plant Cell 1: 993– 1001PubMedGoogle Scholar
  94. Schmidt W.E., Ebel J. (1987) Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max. Proc Natl Acad Sci USA 84: 4117–4121PubMedCrossRefGoogle Scholar
  95. Schottens-Toma I.M.J., De Wit P.J.G.M. (1988) Purification and primary structure of a necrosis-inducing peptide from apoplastic fluids of tomato infected with Cladosporium fulvum (syn. Fulvia fulva). Physiol Mol Plant Pathol 33: 59–67CrossRefGoogle Scholar
  96. Schulz W., Eiben H.-G., Hahlbrock K. (1989) Expression in Escherichia coli of catalytically active phenylalanine ammonia-lyase from parsley. FEBS Lett 258: 335–338PubMedCrossRefGoogle Scholar
  97. Sharp J.K., McNeil M., Albersheim P. (1984) The primary structures of one elicitor-active and seven elicitor-inactive hexa (ß-D-glucopyranosyl)-D-glucitols isolated from the mycelial walls of Phytophthora mega sperma f. sp. glycinea. J Biol Chem 259: 11321–11336PubMedGoogle Scholar
  98. Sinclair J.B., Shurtleff M.C. (eds) (1975) Compendium of soybean diseases. American Phytopathological Society, St. Paul, MN Sommer H, Saedler H (1986) Structure of the chalcone synthase gene of Antirrhinum majus. Mol Gen Genet 202: 429–434Google Scholar
  99. Somssich I.E., Bollmann J., Hahlbrock K., Kombrink E., Schulz W. (1989) Differential early activation of defense-related genes in elicitor-treated parsley cells. Plant Mol Biol 12: 227–234CrossRefGoogle Scholar
  100. Stäb M.R., Ebel J. (1987) Effects of Ca2+ on phytoalexin induction by fungal elicitor in soybean cells. Arch Biochem Biophys 257: 416–423PubMedCrossRefGoogle Scholar
  101. Strasser H., Tietjen K.G., Himmelspach K., Matern U. (1983) Rapid effect of an elicitor on uptake and intracellular distribution of phosphate in cultured parsley cells. Plant Cell Rep 2: 140–143CrossRefGoogle Scholar
  102. Strasser H., Hoffmann C., Grisebach H., Matern U. (1986) Are polyphosphoinositides involved in signal transduction of elicitor-induced phytoalexin synthesis in cultured plant cells? Z Naturforsch 41c: 717–724Google Scholar
  103. Tietjen K.G., Hunkler D., Matern U. (1983) Differential response of cultured parsley cells to elicitors from two non-pathogenic strains of fungi. I. Identification of induced products as coumarin derivatives. Eur J Biochem 131: 401–407PubMedCrossRefGoogle Scholar
  104. Veluthambi K., Poovaiah B.W. (1986) In vitro and ih vivo protein phosphorylation in Avena sativa L. coleoptiles. Effects of Ca2 +, calmodulin antagonists, and auxin. Plant Physiol 81: 836–841Google Scholar
  105. Walker-Simmons M., Ryan C.A. (1984) Proteinase inhibitor synthesis in tomato leaves Induction by chitosan oligomers and chemically modified chitosan and chitin. Plant Physiol 76: 787–790PubMedCrossRefGoogle Scholar
  106. Walker-Simmons M., Hadwiger L., Ryan C.A. (1983) Chitosans and pectic polysaccharides both induce the accumulation of the antifungal phytoalexin pisatin in pea pods and antinutrient proteinase inhibitors in tomato leaves. Biochem Biophys Res Commun 110: 194–199PubMedCrossRefGoogle Scholar
  107. Walker-Simmons M., Jin D., West C.A., Hadwiger L., Ryan C.A. (1984) Comparison of proteinase inhibitor-inducing activities and phytoalexin elicitor activities of a pure fungal endopolygalacturonase, pectic fragments, and chitosans. Plant Physiol 76: 833–836PubMedCrossRefGoogle Scholar
  108. West C.A. (1981) Fungal elicitors of the phytoalexin response in higher plants. Naturwissenschaften 68: 447–457CrossRefGoogle Scholar
  109. West C.A., Bruce R., Ren Y.-Y. (1989) Second messengers in animals and their possible relevance for plants. In: Lugtenberg B.J.J. (ed) Signal molecules in plants and plant-microbe interactions. Springer, Berlin Heidelberg New York Tokyo, pp 27–40Google Scholar
  110. Wingender R., Röhrig H., Höricke C., Wing D., Schell J. (1989) Differential regulation of soybean chalcone synthase genes in plant defence, symbiosis and upon environmental stimuli. Mol Gen Genet 218: 315 322PubMedCrossRefGoogle Scholar
  111. Yamada T., Hashimoto H.. Shiraishi T., Oku H. (1989) Suppression of pisatin, phenylalanine ammonia-lyase mRNA, and chalcone synthase mRNA accumulation by a putative pathogenicity factor from the fungus Mycosphaerella pinodes. Mol Plant Microbe Interact 2: 256–261CrossRefGoogle Scholar
  112. Yoshikawa M., Keen N.T., Wang M.-C. (1983) A receptor on soybean membranes for a fungal elicitor of phytoalexin accumulation. Plant Physiol 73: 497–506PubMedCrossRefGoogle Scholar
  113. Zook M.N., Rush J.S. Kuc J.A. (1987) A role for Ca2+ in the elicitation of rishitin and lubimin accumulation in potato tuber tissue. Plant Physiol 84: 520–525PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 1992

Authors and Affiliations

  • Jürgen Ebel
    • 1
  • Dierk Scheel
    • 2
  1. 1.Biologisches Institut IIUniversität FreiburgFreiburgFederal Republic of Germany
  2. 2.Abteilung BiochemieMax-Planck-Institut für ZüchtungsforschungKöln 30Federal Republic of Germany

Personalised recommendations