Skip to main content

Neuronale Verschaltungen

  • Chapter
  • 76 Accesses

Zusammenfassung

Die Analyse des vielschichtigen Prozesses des synaptischen Informationstransfers vom vorgeschalteten (präsynaptischen) auf das nachgeschaltete (postsynaptische) Neuron war zunächst auf die Aspekte der Signalgeneration (Neurotransmittersynthese und -freisetzung) und Signalidentifikation (Neurotransmitterrezeptoren) beschränkt; im vergangenen Jahrzehnt sind die Aspekte der postrezeptorialen Signaltransduktion und -amplifikation (Effektorsysteme) mit Erfolg bearbeitet worden. Die methodischen Fortschritte auf dem Gebiet der Isolierung und Identifikation neuronaler Phosphorproteine haben in jüngster Zeit nun auch die Analyse eines besonders faszinierenden Aspekts in der Kaskade des Informationstransfers, nämlich der intraneuronalen Signalintegration im postsynaptischen Neuron (cross talk zwischen den Effektorsystemen), ermöglicht. Die Fähigkeit des postsynaptischen Neurons, eine Vielzahl unterschiedlicher extraneuronaler Transmitter-Signale innerhalb kürzester Zeit zu einer auf die aktuellen Erfordernisse abgestimmten physiologischen Zellantwort zu integrieren, setzt effiziente Mechanismen der Informationsverarbeitung voraus; ein Mechanismus, die Fülle der verschiedenartigen Neurotransmittersignale ohne Informationsverlust zu verarbeiten, besteht darin, sie in einheitliche Informationsträger, die intraneuralen Mediatoren, umzukodieren. Derart transformiert, fließt so die Vielfalt unterschiedlicher Neurotransmitter-Signale in einigen wenigen intraneuronalen Signalsystemen zusammen; das unterschiedliche Ausmaß der Aktivität dieser Effektorsysteme, das von der Intensität der in ihnen konvergierenden Primärsignale abhängt, bestimmt über grundlegende neurobiochemische Reaktionen wie Phosphorylierung und Dephosphorylierung funktionell bedeutender Schlüsselproteine (Enzyme des second messenger-Metabolismus, Rezeptorproteine oder Ionenkanalproteine) das neuronale Reaktionsniveau, das sich in einer Effektorzellantwort äußert, die der Resultante aus dem jeweiligen Aktivitätsmuster der verschiedenen Effektorsysteme entspricht.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Berger B, Febvret A, Greengard P, Goldman-Rakic PS (1990) DARPP-32, a phosphoprotein enriched in dopaminoceptive neurons bearing D1 receptors: distribution in the cerebral cortex of the newborn and adult rhesus monkey. J Comp Neurol 299: 327–348.

    Article  PubMed  CAS  Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14: 21–27.

    Article  PubMed  CAS  Google Scholar 

  • Carlsson A (1988) The current status of the dopamine hypothesis of schizophrenia. Neuropsychopharmacology 1: 179–186.

    Article  PubMed  CAS  Google Scholar 

  • Freund TF, Pawell JF, Smith AD (1984) Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines. Neuroscience 13: 1189–1215.

    Article  PubMed  CAS  Google Scholar 

  • Friedman DP, Murray EA, O’Neill JB, Mishkin M (1986) Cortical connections of the somatosensory fields of the lateral sulcus of macaques: evidence for a corticolimbic pathway for touch. J Comp Neurol 252: 323–347.

    Article  PubMed  CAS  Google Scholar 

  • Goldman-Rakic PS, Lidow MS, Gallager DW (1990) Overlap of dopaminergic, adrenergic and serotoninergic receptors and complementarity of their subtypes in primate prefrontal cortex. J Neurosci 10: 2125–2138.

    PubMed  CAS  Google Scholar 

  • Halpain S, Girault JA, Greengard P (1990) Activation of NMDA receptors induces dephosphorylation of DARPP-32 in rat striatal slices. Nature 343: 369–372.

    Article  PubMed  CAS  Google Scholar 

  • Hemmings HC, Walaas SI, Quimet CC, Greengard P (1987) Dopamine regulation of protein phosphorylation in the striatum: DARPP-32. Trends Neurosci 10: 377–383.

    Article  CAS  Google Scholar 

  • Izzo PN, Bolam JP (1988) Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J Comp Neurol 269: 219–234.

    Article  PubMed  CAS  Google Scholar 

  • Jakob H, Beckmann H (1986) Prenatal developmental disturbances in the limbic allocortex in schizophrenics. J Neural Transm 65: 303–326.

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett 20: 379–382.

    Article  PubMed  CAS  Google Scholar 

  • Kubota Y, Inagaki S, Shimeda S, Kito S, Wu JY (1987) Glutamate decarboxylase-like immunoreactive neurons in the rat caudate putamen. Brain Res Bull 18: 687–697.

    Article  PubMed  CAS  Google Scholar 

  • Wachtel H, Turski L (1990) Glutamate: a new target in schizophrenia?. Trends Pharmacol Sci 11: 219–220.

    Article  PubMed  CAS  Google Scholar 

  • Weinberger DR (1988) Schizophrenia and the frontal lobe. Trends Neurosci 11: 367–370.

    Article  PubMed  CAS  Google Scholar 

Literatur

  • Albin RL, Aldridge JW, Young AB, Gilman S (1989a) Feline subthalamic nucleus neurons containing glutamate-like but not GABA-like or glycine-like immunoreactivity. Brain Res 491: 185–188.

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Young AB, Penney JB (1989b) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375.

    Article  PubMed  CAS  Google Scholar 

  • Albin RL, Reiner A, Anderson KD, Penney JB, Young AB (1990) Striatal and nigral neuron subpopulations in rigid Huntington’s disease: implications for the functional anatomy of chorea and rigidity-akinesia. Ann Neurol 27: 357–365.

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE (1987) Selective neuronal discharge in monkey putamen reflects intended direction of planned limb movements. Exp Brain Res 67: 623–634.

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD (1990a) Functional architecture of basal ganglia circuits: neural substrates of parallel processing. Trends Neurosci 13: 266–271.

    Article  PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD (1990b) Preperation of movement: neural representations of intended direction in three motor areas of the monkey. J Neurophysiol 64: 133–150.

    PubMed  CAS  Google Scholar 

  • Alexander GE, Crutcher MD (1990c) Neural representation of the target (goal) of visually guided arm movements in three motor areas of the monkey. J Neurophysiol 64: 164–178.

    PubMed  CAS  Google Scholar 

  • Alexander GE, DeLong MR, Strick PL (1986) Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci 9: 357–381.

    Article  PubMed  CAS  Google Scholar 

  • Balldin J, Granérus AK, Lindstedt G, Modigh K, Wålinder J (1981) Predictors for improvement after electroconvulsive therapy in Parkinsonian patients with on-off symptoms. J Neural Transm 52: 199–211.

    Article  PubMed  CAS  Google Scholar 

  • Bannon MJ, Elliott PJ, Bunney EB (1987) Striatal tachykinin biosynthesis: regulation of mRNA and peptide levels by dopamin agonists and antagonists. Mol Brain Res 3: 31–37.

    Article  CAS  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger F (1973) Brain dopamine and the syndroms of Parkinson and Huntington. J Neurosci 20: 415–455.

    CAS  Google Scholar 

  • Birkmayer W, Riederer P (1985) Die Parkinson-Krankheit: Biochemie, Klinik, Therapie, 2. Aufl. Springer, Wien New York.

    Google Scholar 

  • Björklund A (1986) Catecholaminergic brain stem regulatory systems. In: Mountcastle VB, Bloom FE, Geiger SR (eds) Handbook of physiology, sect 1. The nervous system, vol IV. Intrinsic regulatory systems of the brain. American Physiological Society, p 155.

    Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia — implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13: 272–276.

    Article  PubMed  CAS  Google Scholar 

  • Chevalier C, Deniau JM (1990) Desinhibition as a basic process in the expression of the striatal functions. Trends Neurosci 13: 277–280.

    Article  PubMed  CAS  Google Scholar 

  • Cooper JR, Bloom FE, Roth RH (1978) The biochemical basis of neuropharmacology. Oxford University Press, New York, p 161.

    Google Scholar 

  • Crossman AR, Mitchell IJ, Sambrook MA (1985) Regional brain uptake in N-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine (MPTP)-induced Parkinsonism in the Macaque monkey. Neuropharmacology 24: 587–591.

    Article  PubMed  CAS  Google Scholar 

  • Crutcher MD, DeLong MR (1984) Single cell studies of the primate putamen. Exp Brain Res 53: 233–243.

    Article  PubMed  CAS  Google Scholar 

  • Crutcher MD, Alexander GE (1990) Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. J Neurophysiol 64: 151–163.

    PubMed  CAS  Google Scholar 

  • DeLong MR (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13: 281–285.

    Article  PubMed  CAS  Google Scholar 

  • DeLong MR, Georgopoulos AP (1981) Motor functions of the basal ganglia. In: Brookhart JM, Mountcastle VB, Brooks VB, Geiger SR (eds) Handbook of physiology. The nervous system. II. Motor control, part 2. American Physiological Society, p 1017.

    Google Scholar 

  • DeLong MR, Crutcher MD, Georgopoulos AP (1985) Primate globus pallidus and subthalamic nucleus: functional organization. J Neurophysiol 53: 530–543.

    PubMed  CAS  Google Scholar 

  • Deutsch SI, Mastropaolo J, Schwartz BL, Rosse RB, Morihisa JM (1989) A “glutamatergic hypothesis” of schizophrenia. Clin Neuropharmacol 12: 1–13.

    Article  PubMed  CAS  Google Scholar 

  • DiFiglia M (1990) Excitotoxic injury of the neo-striatum: a model for Huntington’s disease. Trends Neurosci 13: 286–289.

    Article  PubMed  CAS  Google Scholar 

  • Donohue JP, Herkenham M (1986) Neostriatal projections from individual cortical fields conform histochemically distinct striatal compartments in the rat. Brain Res 365: 397–403.

    Article  Google Scholar 

  • Evarts EV, Nimura M, Wurtz RH, Hikosaka O (1984) Behavioural correlates of activity in basal ganglia neurons. Trends Neurosci 7: 447–453.

    Article  Google Scholar 

  • Filion M, Temblay L, Bédard PJ (1989) Excessive and unselective responses of pallidal neurons to both passive movement and striatal stimulation in monkeys with MPTP induced parkinsonism. In: Crossman AR, Sambrook MA (eds) Neural mechanisms in disorders of movement. John Libbey, p 157.

    Google Scholar 

  • Gerfen CR (1984) The neostriatal mosaic. I. Compartimentalization of corticostriatal input and strionigral output system. Nature 311: 461–464.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR (1985) The neostriatal mosaic. I. Compartimental organization of projections from the striatum to the substantia nigra in the rat. J Comp Neurol 236: 454–476.

    Article  PubMed  CAS  Google Scholar 

  • Gerfen CR, Herkenham M, Thibault J (1987a) The neostriatal mosaic. II. Patch-and matrix-directed mesostriatal dopaminergic and non-dopaminergic systems. J Neurosci 7: 3915–3934.

    PubMed  CAS  Google Scholar 

  • Gerfen CR, Baimbridge KG, Thibault J (1987b) The neostriatal mosaic. III. Biochemical and developmental dissociation of patch-matrix mesostriatal systems. J Neurosci 7: 3935–3944.

    PubMed  CAS  Google Scholar 

  • Gerlach M, Riederer P (1989) Pathobiochemie des Parkinson-Syndroms. TW Neurol Psychiatr 3 (Sonderheft): 34–48.

    Google Scholar 

  • Gerlach M, Riederer P (1991) Pathobiochemistry of Parkinson’s disease: an update. In: Caraceni T, Nappi G (eds) Focus on Parkinson’s disease. Masson, Milano, pp 41–60.

    Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosd 13: 244–254.

    Article  CAS  Google Scholar 

  • Graybiel AM, Ragsdale CW Jr (1983) Biochemical anatomy of the striatum. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, p 427.

    Google Scholar 

  • Gundlach AL, Largent BL, Snyder SH (1986) Phen-cyclidine (PCP) receptors: autoradiographic localization in brain with the selective ligand, [3H]TCP. Brain Res 386: 266–279.

    Article  PubMed  CAS  Google Scholar 

  • Heimer L (1983) The human brain and spinal cord. Springer, New York Berlin Heidelberg.

    Book  Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989a) Functional properties of the monkey caudate neurons. I. Activities related to saccadic eye movements. J Neurophysiol 61: 780–798.

    PubMed  CAS  Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989b) Functional properties of the monkey caudate neurons. II. Visual and auditory responses. J Neurophysiol 61: 799–813.

    PubMed  CAS  Google Scholar 

  • Hikosaka O, Sakamoto M, Usui S (1989c) Functional properties of the monkey caudate neurons. III. Activities releated to expectation of target and reward. J Neurophysiol 61: 814–832.

    PubMed  CAS  Google Scholar 

  • Hong JS, Yang H-YT, Gillin JC, Costa E (1980) Effects of long-term administration of antipsychotic drugs on enkephalinergic neurons. In: Cattabeni F (ed) Advances in biochemical psychopharmacology, vol 24. Raven Press, New York, p 223.

    Google Scholar 

  • Hudson A, Woodruff GN (1989) Localisation of [3H]-MK-801 binding sites in rat brain following lesions of striatum or substantia nigra. Br J Pharmacol 97: 576.

    Google Scholar 

  • Ilinsky LA, Kultas-Ilinsky K (1987) Sagittal cytoarchitectonic maps of the Macaca mulatta thalamus with a revised nomenclatura of the motor-related nuclei validated by observation on their connectivity. J Comp Neurol 262: 331–364.

    Article  PubMed  CAS  Google Scholar 

  • Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B (1980) Low cerebrospinal fluid glutamate in schizophrenic patients and new hypothesis on schizophrenia. Neurosci Lett 20: 379–382.

    Article  PubMed  CAS  Google Scholar 

  • Kish SI, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease: pathophysiology and clinical implications. N Engl J Med 318: 876–880.

    Article  PubMed  CAS  Google Scholar 

  • Kitai ST, Kita H (1987) Anatomy and physiology of the subthalamic nucleus: a driving force of the basal ganglia. In: Carpenter MB, Jayaraman A (eds) The basal ganglia II. Plenum Press, New York, p 357.

    Chapter  Google Scholar 

  • Kornhuber J, Mack-Burkhardt F, Riederer P, Hebenstreit GF, Reynolds GP, Andrews HB, Beckmann H (1989) [3H]MK-801 binding sites in postmortem brain regions of schizophrenic patients. J Neural Transm 77: 231–236.

    Article  PubMed  CAS  Google Scholar 

  • Kornhuber J, Kornhuber ME (1986) Presynaptic dopaminergic modulation of cortical input to the striatum. Life Sci 39: 669–674.

    Article  CAS  Google Scholar 

  • Kornhuber J, Bormann J, Hübers M, Rusche K, Riederer P (1991) Effects of the 1-amino-adamantanes at the MK-801-binding site of the NMDA-receptor-gated ion channel: a human post mortem brain study. Eur J Pharmacol [Mol Pharmacol Sect] 206: 297–300.

    Article  CAS  Google Scholar 

  • Leander JD (1989) Tricyclic antidepressants block N-Methyl-D-aspartic acid-induced lethality of mice. Br J Pharmacol 96: 256–258.

    Article  PubMed  CAS  Google Scholar 

  • Lehmann J, Langer SZ (1983) The striatal cholinergic interneurons: synaptic target of dopaminergic terminals?. Neuroscience 10: 1105–1120.

    Article  PubMed  CAS  Google Scholar 

  • Liles SL, Updyke BV (1985) Projection of the digit and wrist area of precentral gyrus to the putamen: relation between topography and physiological properties of neurons in the putamen. Brain Res 339: 245–255.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Björklund A (1983) Dopamine-and norepinephrinecontaining neuron systems: their anatomy in the rat brain. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, p 229.

    Google Scholar 

  • Lloyd KG, Davidson L(1979) Involvement of GABA neurons and receptors in Parkinson’s disease and Huntington’s Chorea: a compensatory mechanism? In: Poirier LJ, Sourkes TL, Bédard PJ (eds) Advances in neurology, vol 24. Raven Press, New York, p 293.

    Google Scholar 

  • Lloyd KG, Möhler H, Heitz P, Bartholini G (1975) Distribution of choline acetyltransferase and glutamat decarboxylase within the substantia nigra and in other brain regions from control and parkinsonian patients. J Neurochem 25: 789–795.

    Article  PubMed  CAS  Google Scholar 

  • Marsden CD (1982) The mysterious motor function of the basal ganglia: the Robert Wartenberg lecture. Neurology 32: 514–539.

    Article  PubMed  CAS  Google Scholar 

  • Maurer K, Riederer P, Heinsen H, Beckmann H (1989) Altered p300 topography due to functional and structural disturbances in the limbic system in dementia and to pharmacological conditions. Psychiatry Res 29: 391–393.

    Article  PubMed  CAS  Google Scholar 

  • Mocchetti I, Naranjo JR, Costa E (1987) Regulation of striatal enkephalin turnover in rats receiving antagonists of specific dopamine receptor subtypes. J Pharmacol Exp Ther 241: 1120–1124.

    PubMed  CAS  Google Scholar 

  • Mogi M, Harada M, Kiuchi K, Kojima K, Kondo T, Narabayashi H, Rausch D, Riederer P, Jellinger K, Nagatsu T (1988) Homospecific activity (activity per enzyme protein) of tyrosine hydroxylase increases in parkinsonian brain. J Neural Transm 72: 77–81.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Kato T, Numata Y, Ihuta K, Sano M, Nagatsu I, Kondo Y, Inagaki S, Ilzuka R, Hori A, Narabayashi H (1977) Phenylethanolamine-N-methyltransferase and other enzymes of catecholamine metabolism in human brain. Clin Chim Acta 75: 221–232.

    Article  PubMed  CAS  Google Scholar 

  • Nagatsu T, Kato T, Nagatsu I, Kondo Y, Inagaki S, Izuka R, Narabayashi H (1979) Catecholaminerelated enzymes in the brain of patients with Parkinsonism and Wilson’s disease. In: Poirier LJ, Sourkes TL, Bédard PJ (eds) Advances in neurology, vol 24. Raven Press, New York, p 283.

    Google Scholar 

  • Nauta WJH, Smith GP, Faull RLM, Domesick VB (1978) Efferent connections and nigral afferents of the nucleus accumbens septi in the rat. Neuroscience 3: 385–401.

    Article  PubMed  CAS  Google Scholar 

  • Nieuwenhuys R, Voogd J, Huijzen C (1990) The human central nervous system. Springer, Berlin Heidelberg New York, pp 341, 348

    Google Scholar 

  • Nishikawa T, Takashima M, Toru N (1983) Increased [3H]kainic acid binding in the prefrontal cortex in schizophrenia. Neurosci Lett 40: 245–250.

    Article  PubMed  CAS  Google Scholar 

  • OlneyJW, Price MT, Labruyere J, Salles KS, Frierdich G, Mueller M, Silverman E (1987) Anti-parkinson agents are phencyclidine agonists and N-methyl-D-aspartate antagonists. Eur J Pharmacol 142: 319.

    Article  PubMed  CAS  Google Scholar 

  • Pan HS, Penney JB, Young AB (1985) y-Aminobutyric acid and benzodiazepine receptor changes induced by unilateral 6-hydroxydopamine lesions of the medial forebrain bundle. J Neurochem 45: 1396–1404.

    Article  PubMed  CAS  Google Scholar 

  • Papez JW (1937) A proposed mechanism of emotion. Arch Neurol Psychiatry 38: 725–743.

    Article  Google Scholar 

  • Parent A (1990) Extrinsic connections of the basal ganglia. Trends Neurosci 13: 254–258.

    Article  PubMed  CAS  Google Scholar 

  • Penney JB, Young AB (1981) GABA as the pallidothalamic neurotransmitter: implications for basal ganglia function. Brain Res 207: 195–199.

    Article  PubMed  CAS  Google Scholar 

  • Pierce JR (1985) Klang; Musik mit den Ohren der Physik. Spectrum der Wissenschaft, Heidelberg.

    Google Scholar 

  • Reiner A, Albin RL, Anderson KD, D’Amato CJ, Penney JB, Young AB (1988) Differential loss of striatal projection neurons in Huntington disease. Proc Natl Acad Sci 85: 5733–5737.

    Article  PubMed  CAS  Google Scholar 

  • Reynolds IR, Miller RJ (1988) Tricyclic antidepressants block N-Methyl-D-Aspartat receptors: similarities to the action of zink. Br J Pharmacol 95: 95–102.

    Article  PubMed  CAS  Google Scholar 

  • Riederer P, Gerlach M (1990) Morbus Parkinson — der aktuelle Stand der Forschung. In: Hebenstreit GF, Pinggera WF (Hrsg) Der medizinische Notfall IV. Interdisziplinäres Forum für medizinische Fortbildung, Neuhofen/Ybbs, S 39.

    Google Scholar 

  • Riederer P, Sofic E, Konradi C (1986) Neurobiochemische Aspekte zur Progression der Parkinson-Krankheit: Postmortem-Befunde und MPTP-Modell. In: Fischer PA (Hrsg) Spätsyndrome der Parkinson-Krankheit. Edition Roche, Basel, S 37.

    Google Scholar 

  • Rinne UK, Sonninen V, Siirtola T (1976) Long-term treatment of Parkisonism with L-Dopa and decarboxylase inhibitor: a clinical and biochemical approach. In: Birkmayer W, Hornykiewicz O (eds) Advances in parkinsonism (biochemistry, physiology, treatment). Edition Roche, Basel, p 555.

    Google Scholar 

  • Robertson RG, Farmery SM, Sambrook MA, Crossman AR (1989) Dyskinesia in the primate following injection of an excitatory amino acid antagonist into the medial segment of the globus pallidus. Brain Res 476: 317–322.

    Article  PubMed  CAS  Google Scholar 

  • Scatton B, Javoy-Agid F, Rouquier L, Dubois B, Agid Y (1983) Reduction of cortical dopamine, nor-adrenaline, serotonin and their metabolites in Parkinson’s disease. Brain Res 275: 321–328.

    Article  PubMed  CAS  Google Scholar 

  • Selemon LD, Goldman-Rakic PS (1985) Longitudinal topography and interdigitation of corticostriatal projections in the rhesus monkey. J Neurosci 5: 776–794.

    PubMed  CAS  Google Scholar 

  • Smith Y, Hazrati L-N, Parent A (1990) Efferent projections of the subthalamic nucleus in the Squirrel monkey as studied by the PHA-L anterograde tracing method. J Comp Neurol 294: 306–323.

    Article  PubMed  CAS  Google Scholar 

  • Snyder SH (1980) Phencyclidine. Nature 285: 355–356.

    Article  PubMed  CAS  Google Scholar 

  • Somogyi P, Bolam JP, Totterdale S, Smith AD (1981) Monosynaptic input from the accumbens-ventral striatum region to retrogradely labelled nigrostriatal neurons. Brain Res 217: 245–263.

    Article  PubMed  CAS  Google Scholar 

  • Steinbusch HWM, Nieuwenhuys R (1983) The raphe nuclei of the rat brainstemm: a cytoarchitectonic and immunohistochemical study. In: Emson PC (ed) Chemical neuroanatomy. Raven Press, New York, p 131.

    Google Scholar 

  • Strick PL (1976) Activity of ventrolateral thalamic neurons during arm movements. J Neurophysiol 39: 1032–1044.

    PubMed  CAS  Google Scholar 

  • Young AB (1986) Huntington’s disease in Venezuela: neurologic features and functional decline. Neurology 36: 224–249.

    Article  Google Scholar 

  • Young WS III, Bonner TI, Brann MR (1986) Mesencephalic dopamine neurons regulate the expression of neuropeptide mRNAs in the rat forebrain. Proc Natl Acad Sci 83: 9827–9831.

    Article  PubMed  CAS  Google Scholar 

  • Zigmond MJ, Abercombie ED, Berger TW, Grace AA, Stricker EM (1990) Compensation after lesions of central dopaminergic neurons: some clinical and basical implications. Trends Neurosci 13: 290–295.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Wien

About this chapter

Cite this chapter

Wachtel, H., Berger, W., Riederer, P. (1992). Neuronale Verschaltungen. In: Riederer, P., Laux, G., Pöldinger, W. (eds) Neuro-Psychopharmaka. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6674-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6674-1_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7377-0

  • Online ISBN: 978-3-7091-6674-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics