Skip to main content

Functional Imaging of Blood Brain Barrier Permeability by Single Photon Emission Computerised Tomography and Positron Emission Tomography

  • Chapter
Advances and Technical Standards in Neurosurgery

Part of the book series: Advances and Technical Standards in Neurosurgery ((NEUROSURGERY,volume 19))

Abstract

A variety of insults, affecting the Central Nervous System (CNS) can alter the structure and function of brain endothelial cells, resulting in a disturbance of Blood-Brain Barrier (BBB) permeability. Alteration of permeability promotes the accumulation of osmotically active substances in the brain and development of an “open barrier” oedema1. This event may be the single most important factor in the outcome of patients with a variety of clinical disorders. On the other hand the entry into the brain ECS of substances which are normally excluded may directly affect, independently from the presence of oedema, the function and perhaps the structure of nervous cells2. Therefore, while the alteration of BBB permeability may be the consequence of a particular disease, it is also the cause of additional damage to the CNS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Betz AL, Iannotti F, Hoff JT (1989) Brain oedema: a classification based on blood-brain barrier integrity. Cerebrovasc Brain Metab Rev 1: 133–154

    PubMed  CAS  Google Scholar 

  2. Suzuki M, Iwasaki Y, Yamamoto T, Konno H, Kudo H (1988) Sequelae of the osmotic blood-brain barrier opening in rat. J Neurosurg 69: 421–428

    Article  PubMed  CAS  Google Scholar 

  3. Cordon-Cardo C, O’Brien JP, Casals D, Rittman-Grauer L, Biedler JL, Melamed MR, Bertino JR (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86: 695–698

    Article  PubMed  CAS  Google Scholar 

  4. Betz AL, Goldstein GW (1986) Specialized properties and solute transport in brain capillaries. Ann Rev Physiol 48: 241–250

    Article  CAS  Google Scholar 

  5. Reese T, Karnovsky M (1967) Fine structural localization of a blood-brain barrier to exogenous peroxidase. J Cell Biol 34: 207–217

    Article  PubMed  CAS  Google Scholar 

  6. Brightman MW, Reese TS (1969) Junctions between intimately apposed cell membranes in the vertebrate brain. J Cell Biol 40: 648–677

    Article  PubMed  CAS  Google Scholar 

  7. Pardridge WM (1983) Brain metabolism: a perspective from the blood-brain barrier. Physiol Rev 63: 1481–1535

    PubMed  CAS  Google Scholar 

  8. Goldstein GW, Betz AL (1986) The blood-brain barrier. Sci Am 255(3): 74–83

    Article  PubMed  CAS  Google Scholar 

  9. Robinson PJ, Rapoport SI (1987) Size selectivity of blood-brain barrier permeability at various time after osmotic opening. Am J Physiol 253: R 459–466

    CAS  Google Scholar 

  10. Nir I, Levanon D, Iosilevsky G (1989) Permeability of blood vessels in experimental gliomas: Uptake of 99 mTc-glucoheptonate and alteration in blood-brain barrier as determined by cytochemistry and electron microscopy. Neurosurgery 25: 523–532

    Article  PubMed  CAS  Google Scholar 

  11. Long DM (1970) Capillary ultrastructure and the blood-brain barrier in malignant brain tumours. J Neurosurg 32: 127–144

    Article  PubMed  CAS  Google Scholar 

  12. Simionescu N (1983) Cellular aspects of transcapillary exchange. Physiol Rev 63: 1536–1578

    PubMed  CAS  Google Scholar 

  13. Bundgaard M (1980) Transport pathways in capillaries — in search of pores. Annu Rev Physiol 42: 325–336

    Article  PubMed  CAS  Google Scholar 

  14. Miquel J, Haymaker W (1965) Astroglial reactions to ionizing radiation: with emphasis on glycogen accumulation. Prog Brain Res 15: 89–114

    Article  Google Scholar 

  15. Petito CK (1979) Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38: 222–234

    Article  PubMed  CAS  Google Scholar 

  16. Betz AL, Iannotti F, Hoff JT (1983) Ischaemia reduces blood-to-brain glucose transport in the gerbil. J Cereb Blood Flow Metab 3: 200–206

    Article  PubMed  CAS  Google Scholar 

  17. Blasberg RG, Fenstermacher JD, Patlak CS (1983) The transport of aminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3: 8–32

    Article  PubMed  CAS  Google Scholar 

  18. Blasberg RG, Kobayashi T, Horowitz M, Rice JM, Groothuis D, Molnar P, Fenstermacher JD (1983) Regional blood-to tissue transport in ethylnitrosurea-induced brain tumours. Ann Neurol 14: 202–215

    Article  PubMed  CAS  Google Scholar 

  19. Front D, Israel O, Kohn S, Nir I (1984) The blood-tissue barrier of human brain tumours: correlation of scintigraphic and ultrastructural findings: concise communication. J Nucl Med 25: 461–465

    PubMed  CAS  Google Scholar 

  20. Black KL, Hawkins RA, Kim KT, Beker DP (1989) Thallium-201 (SPECT): a quantitative technique to distinguish low-grade from malignant brain tumours. J Neurosurg 71: 342–346

    Article  PubMed  CAS  Google Scholar 

  21. Kim KT, Black KL, Marciano D, Mazziotta JC, Guze BH, Grafton S, Hawkins RA, Becker DP (1990) Thallium-201 SPECT imaging of brain tumours: methods and results. J Nucl Med 31: 965–969

    PubMed  CAS  Google Scholar 

  22. Gruber ML, Hochberg FH (1990) Systematic evaluation of primary brain tumours. Editorial. J Nucl Med 31: 969–971

    PubMed  CAS  Google Scholar 

  23. Phelps ME, Mazziotta JC, Huang SC (1982) Study of cerebral function with positron computed tomography. J Cereb Blood Flow Metab 2: 113–162

    Article  PubMed  CAS  Google Scholar 

  24. Fenstermacher JD, Blasberg RG, Patlak CS (1981) Methods for quantifying the transport of drugs across brain barrier systems. Pharmacol Ther 14: 217–248

    Article  PubMed  CAS  Google Scholar 

  25. Webb S, Ott RJ, Cherry SR (1989) Quantitation of blood-brain barrier permeability by positron emission tomography. Phys Med Biol 34: 1767–1771

    Article  PubMed  CAS  Google Scholar 

  26. Hawkins RA, Phelps ME, Huang SC, Wapenski JA, Grimm PD, Parker RG, Juillard G, Greenberg P (1984) A kinetic evaluation of blood-brain barrier permeability in human brain tumours with 68-GaEDT A and positron computed tomography. J Cereb Blood Flow Metab 4: 507–515

    Article  PubMed  CAS  Google Scholar 

  27. Iannotti F, Fieschi C, Alfano B, Picozzi P, Mansi L, Pozzilli C, Punzo A, Del Vecchio G, Lenzi GL, Salvatore M, Conforti P (1987) Simplified, noninvasive PET measurement of blood-brain barrier permeability. J Comput Assist Tomogr 11: 390–397

    Article  PubMed  CAS  Google Scholar 

  28. Gjedde A (1981) High and low affinity transport of D-glucose from blood to brain. J Neurochem 36: 1463–1471

    Article  PubMed  CAS  Google Scholar 

  29. Patlak CS, Blasberg RG (1985) Graphical evaluation of blood to brain barrier transfer constants from multiple time uptake data. Generalizations. J Cereb Blood Flow Metab 5: 584–590

    Article  PubMed  CAS  Google Scholar 

  30. Dhawan V, Jarden JO, Moeller JR, Strother SC, Rottemberg DA (1989) Positron emission tomographic measurement of blood-to-brain and blood-to-tumour transport of 82 Rb. II: Clinical data and validation of technique. Phys Med Biol 34: 1785–1794

    Article  PubMed  CAS  Google Scholar 

  31. Neuwelt EAS, Dahlborg SA (1989) Blood-brain barrier disruption in the treatment of brain tumours. Clinical implications. In: Implications of the blood-brain barrier and its manipulation, vol 2. Plenum Press, New York, pp 195–261

    Chapter  Google Scholar 

  32. Fishman RA (1987) Editorial: is there a therapeutic role for osmotic breaching of the blood-brain barrier? Ann Neurol 22: 298–299

    Article  PubMed  CAS  Google Scholar 

  33. Herholtz K, Wienard K, Pawlik G, Seldon L, Beil C, Heiss WD (1985) Functional imaging of reversible and irreversible 68 Ga-EDT A uptake in brain tumours. Acta Physiol Scand 72 [Suppl]: 127

    Google Scholar 

  34. Ilsen HW, Sato M, Pawlik G, Herholtz K, Wienard K, Heiss WD (1984) 68 Ga-EDTA positron emission tomography in the diagnosis of brain tumours. Neuroradiology 26: 393–398

    Article  PubMed  CAS  Google Scholar 

  35. Brooks DJ, Beany RP, Lammertsma AA, Leenders KL, Horlock PL, Kensett MJ, Marshall J, Thomas DGT, Jones T (1984) Quantitative measurement of blood-brain barrier permeability using rubidium-82 and positron emission tomography. J Cereb Blood Flow Metab 4: 535–845

    Article  PubMed  CAS  Google Scholar 

  36. Di Chiro G, DeLaPaz RL, Brooks RA (1982) Glucose utilization of cerebral gliomas measured by (18 F)fluoro-deoxyglucose and positron emission tomography. Neurology 32: 1323–1329

    PubMed  Google Scholar 

  37. Robinson PJ, Rapoport SI (1990) Model for drug uptake by brain tumours: effects of osmotic treatment and of diffusion in brain. J Cereb Blood Flow Metab 10: 153–161

    Article  PubMed  CAS  Google Scholar 

  38. Leenders KL, Beaney RP, Brooks DJ, Lammertsma AA, Heather JD, McKenzie CG (1985) Dexamethasone treatment of brain tumour patients: effects on regional cerebral blood flow, blood volume and oxygen utilization. Neurology 35: 1610–1616

    PubMed  CAS  Google Scholar 

  39. Iannotti F, Picozzi P, Sampaolo S, Mansi L, Alfano B, Punzo A, Lenzi GL, Salvatore M, Fieschi C, Cervos-Navarro J, Conforti P (1987) The relationship between blood to brain transfer constant (Ki) and vascular surface in human brain tumours. J Cereb Blood Flow Metab 7(1): S 335

    Google Scholar 

  40. Iannotti F, Conforti P, Picozzi P, Alfano B, Pozzilli C, Lenzi GL, Salvatore M, Fieschi C (1989) An evaluation by PET of oedema surrounding brain tumours. J Cereb Blood Flow Metab 9(1): S 390

    Google Scholar 

  41. Reulen HJ, Graber S, Huber P, Ito U (1988) Factors affecting the extension of peritumoural oedema. A CT study. Acta Neurochir (Wien) 95: 19–24

    Article  CAS  Google Scholar 

  42. Reulen HJ, Graham R, Spatz M, Klatzo I (1978) Role of pressure gradients and bulk flow in dynamics of vasogenic oedema. J Neurosurg 46: 24–31

    Google Scholar 

  43. Iannotti F, Schielke GP, Albanese V, Rotondo M, Hoff JT (1986) Brain tissue pressure in focal cerebral ischaemia with and without reperfusion. In: Miller JD, Teasdale GM, Rowan JO (eds) Intracranial pressure VI. Springer, Berlin Heidelberg New York, pp 566–569

    Google Scholar 

  44. Hedley-Whyte ET, Hsu DW (1986) Effect of dexamethasone on blood-brain barrier in the normal mouse. Ann Neurol 19: 373–377

    Article  PubMed  CAS  Google Scholar 

  45. Bodsch W, Rommel T, Ophoff BG, Menzel J (1987) Factors responsible for the retention of fluid in human tumour oedema and the effect of dexamethasone. J Neurosurg 67: 250–257

    Article  PubMed  CAS  Google Scholar 

  46. Jarden JO, Dhawan V, Moeller JR, Strother SC, Rottemberg DA (1989) The time course of steroid action on blood-to-brain and blood-to-tumour transport of 82 Rubidium: a positron emission tomographic study. Ann Neurol 25: 239–245

    Article  PubMed  CAS  Google Scholar 

  47. Hershey LA, Gado MH, Trotter JL (1979) Computerized tomography in the diagnostic evaluation of multiple sclerosis. Ann Neurol 5: 32–39

    Article  PubMed  CAS  Google Scholar 

  48. Juhler M (1988) Pathophysiological aspects of acute experimental allergic encephalomyelitis. Acta Neurol Scand 78 [Suppl] 119: 1–21

    Article  CAS  Google Scholar 

  49. Pozzilli C, Bernardi S, Mansi L, Picozzi P, Iannotti F, Alfano B, Bozzao L, Lenzi GL, Salvatore M, Conforti P, Fieschi C (1988) Quantitative assessment of blood-brain barrier permeability in multiple sclerosis using 68 Ga-EDTA and positron emission tomography. J Neurol Neurosurg Psychiatry 51: 1058–1062

    Article  PubMed  CAS  Google Scholar 

  50. Alafuzoff I, Adolfsson R, Grundke-Iqbal I, Winblad B (1987) Blood-brain barrier in Alzheimer dementia and in non-demented elderly. An immunocytochemical study. Acta Neuropathol (Berl) 73: 160–166

    Article  CAS  Google Scholar 

  51. Schlageter NL, Carson RE, Rapoport SI (1987) Examination of blood-brain barrier permeability in dementia of the Alzheimer type with 68 Ga-EDT A and positron emission tomography. J Cereb Blood Flow Metab 7: 1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag/Wien

About this chapter

Cite this chapter

Iannotti, F. (1992). Functional Imaging of Blood Brain Barrier Permeability by Single Photon Emission Computerised Tomography and Positron Emission Tomography. In: Symon, L., et al. Advances and Technical Standards in Neurosurgery. Advances and Technical Standards in Neurosurgery, vol 19. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6672-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6672-7_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82287-6

  • Online ISBN: 978-3-7091-6672-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics