Skip to main content

Simulation of Self-Heating Effects in a Power p-i-n Diode

  • Conference paper

Abstract

To accurately predict the effects of self-heating in a power p-i-n diode, we have applied self-consistent device simulation using a thermodynamically rigorous electrothermal model [1] implemented in the device/circuit simulator Simul [2]. Results of steady-state and high-voltage turn-off simulations with external electrical and thermal circuit elements are presented comparing the isothermal and self-heating cases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Wachutka, “Rigorous thermodynamic treatment of heat generation and conduction in semiconductor device modeling,” IEEE Trans., vol. CAD-9, pp. 1141–1149, 1990.

    Google Scholar 

  2. IIS, Simul Manual. Integrated Systems Laboratory, ETH Zurich, Switzerland, 1.0 (alpha) ed., 1992.

    Google Scholar 

  3. P. Wolbert, Modeling and Simulation of Semiconductor Devices in TRENDY. PhD thesis, University Twente, 1991. publ. by PROSA, P.O. Box 8091, 7550 KB Hengelo, Netherlands.

    Google Scholar 

  4. V. Alwin, D. Navon, and L. Turgeon, “Time-dependent carrier flow in a transistor structure under nonisothermal conditions,” IEEE Trans. Elec. Dev., vol. ED-24, pp. 1297–1304, 1977.

    Article  Google Scholar 

  5. P. Gough, P. Walker, and K. Wright, “Electrothermal simulation of power semiconductor devices,” in Proc. ISPSD, pp. 89–94, 1991.

    Google Scholar 

  6. J. W. Slotboom and H. C. de Graaff, “Bandgap narrowing in silicon bipolar transistors,” IEEE Trans. Elec. Dev., vol. ED-24, no. 8, pp. 1123–25, 1977.

    Article  Google Scholar 

  7. J. del Alamo, S. Swirhun, and R. M. Swanson, “Measuring and modeling minority carrier transport in heavily doped Silicon,” Solid-State Electronics, vol. 28, no. 1, pp. 4754, 1985.

    Google Scholar 

  8. D. B. M. Klaassen, J. W. Slotboom, and H. C. de Graaff, “Unified apparent bandgap narrowing in n-and p-type Silicon,”Solid-State Electronics, vol. 35, no. 2, pp. 125–29, 1992.

    Article  Google Scholar 

  9. R. Kraus, T. Türkes, and H. Mattausch, “Modelling the self-heating of power devices,” in Proc. ISPSD, pp. 124–129, 1992.

    Google Scholar 

  10. D. Kakati, S. Ramanan, and V. Ramamurthy, “Computer-aided electrothermal analysis of a semiconductor device,” in Proc. of NASECODE IV Conf., pp. 326–331, 1985.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this paper

Cite this paper

Kells, K., Müller, S., Wachutka, G., Fichtner, W. (1993). Simulation of Self-Heating Effects in a Power p-i-n Diode. In: Selberherr, S., Stippel, H., Strasser, E. (eds) Simulation of Semiconductor Devices and Processes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6657-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6657-4_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7372-5

  • Online ISBN: 978-3-7091-6657-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics