Skip to main content

Modeling Nano-Structure Devices

  • Conference paper
  • 286 Accesses

Abstract

Fundamental problems of and approaches to modeling nanostructure devices are reviewed. First the requirements for modeling charge transport in classical and nanostructure devices are compared and contrasted. Then the quantum mechanical concepts of transmission probabilities and eigen energies in nanostructures are related back to the classical concepts of resistance and capacitance, respectively. Next a small illustrative sampling of numerical approaches to calculation of the quantum mechanical properties of nanostructures is presented. Finally examples are given of how such theoretical concepts and numerical methods can be applied to modeling existing and future devices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Bardeen and W. H. Brattain, Phys. Rev. 74, 230 (1948).

    Article  Google Scholar 

  2. A carrier density of 1018/cm3 translates to one carrier per 1,000 cubic nanometers.

    Google Scholar 

  3. Mesoscopic Phenomena in Solids, ed. by B. L. Altshuler, P. A. Lee and R. A. Webb (North-Holland, Amsterdam, 1991). (Vol. 30 of Modern Problems in Condensed Matter Sciences, ed. by V. M. Agranovich and A. A. Maradudin.)

    Google Scholar 

  4. Nanostructures and Mesoscopic Systems, ed. by W. P. Kirk and M. A. Reed (Academic Press, Boston, 1992).

    Google Scholar 

  5. J. R. Tucker and M. J. Feldman, Reviews of Modern Physics 57, 1055 (1985).

    Article  Google Scholar 

  6. R. Landauer, IBM J. Res. and Develop. 1, 233 (1957).

    Article  MathSciNet  Google Scholar 

  7. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986).

    Article  Google Scholar 

  8. A. D. Stone and A. Szafer, IBM J. Res. Develop. 32, 384 (1988).

    Article  Google Scholar 

  9. J. Bardeen, Phys. Rev. Lett 6, 57 (1961).

    Article  Google Scholar 

  10. C. B. Duke in Solid State Physics, ed. by F. Seitz, D. Turnbull and H. Ehrenreich (Academic Press, New York, 1969) Vol. 10, pp 24–32.

    Google Scholar 

  11. Because electrons most easily exhibit quantum mechanical behavior in semiconductors, they are usually referred to here. However, the theoretical and numerical methods discussed here apply equally well to holes.

    Google Scholar 

  12. F. Sols, Annals of Physics 214, 386 (1992).

    Article  Google Scholar 

  13. F. Sols, unpublished.

    Google Scholar 

  14. See, for example, P. Lorrain and D. R. Corson, Electromagnetic Fields and Waves (W. H. Freeman and Company, San Francisco, 1970), p76.

    Google Scholar 

  15. M. Macucci, K. Hess and G. J. Iafrate, unpublished.

    Google Scholar 

  16. Condensed Matter: Special Issue on Single Charge Tunneling85, ed. by H. Grabert, 319 (1991).

    Google Scholar 

  17. D. V. Averin, A. N. Korotkov, and K. K. Likharev, Phys. Rev. B 44, 6199 (1991).

    Article  Google Scholar 

  18. Y. Meir, N. S. Wingreen, and P. A. Lee, Phys. Rev. Lett. 66 3048 (1991).

    Article  Google Scholar 

  19. M. Macucci and K. Hess, Phys. Rev. B bf 46, 15357 (1992).

    Article  Google Scholar 

  20. L. F. Register, U. Ravaioli and K. Hess, J. Appl. Phys. 69, 7153 (1991). [Erratum: 71, 1555 (1992).]

    Article  Google Scholar 

  21. L. F. Register and K. Hess, unpublished.

    Google Scholar 

  22. B. Tanatar and D. M. Ceperley, Phys. Rev. B 39, 5005 (1989).

    Article  Google Scholar 

  23. M. Grupen and K. Hess, unpublished.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Wien

About this paper

Cite this paper

Hess, K., Register, L.F. (1993). Modeling Nano-Structure Devices. In: Selberherr, S., Stippel, H., Strasser, E. (eds) Simulation of Semiconductor Devices and Processes. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6657-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6657-4_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7372-5

  • Online ISBN: 978-3-7091-6657-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics