Skip to main content
  • 154 Accesses

Abstract

These are the concluding words of an appreciation of the life and scientific work of Johan Frederik Eykman (1851–1915) published in Recueil Travaux Chimique des Pays-Bas, XXXV, 365–420 (1916), written by A. F.Holleman. It is very doubtful if the writer appreciated, at the time, the full significance of his words. Johan Frederik was the second of eight children born to Christiaan Eykman and his wife Johanna Alida in the village of Nijkerk. He qualified in pharmaceutical science in 1874 from the University of Amsterdam and a year later began to prepare to study for his doctorate in physical sciences at the University of Leiden. These studies were interrupted forever by an extraordinary circumstance.Eykman was approached by the Japanese government and nominated as director of a laboratory charged with the analysis of medicaments and research into indigenous materials. In 1881 he was elected to a chair in Chemistry in the Faculty of Medicine at the University of Tokyo; the first Dutchman to hold a chair in this University. In 1886 Eykman returned to Holland but before doing so he was received in audience by the Emperor who rewarded him for his services to the Empire with “l’ordre du Soleil Levant”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abeles, R.H., D.L. Anton, L. Hedstrom, and S.M. Fish: Mechanism of Enolpyruvylshikimate-3-phosphate Synthase Exchange of Phosphoenolpyruvate with Solvent Protons. Biochemistry, 22, 5903 (1983).

    Google Scholar 

  2. Abell, C., S. Balasubramanian, and J.R. Coggins: Observation of an Isotope Effect in the Chorismate Synthase Reaction. J. Amer. Chem. Soc., 112, 8581 (1990).

    Google Scholar 

  3. Amrhein, N.: Specific Inhibitors as Probes into the Biosynthesis of Aromatic Amino Acids. In: The Shikimic Acid Pathway (Recent Advances in Phytochemistry, Vol. 20) (E.E. Conn, ed.), pp. 83–117. New York: Plenum Press. 1986.

    Google Scholar 

  4. Amrhein, N., and H.C. Steinrucken: Enolpyruvylshikimate-3-phosphate Synthase of Klebsiella pneumoniae. Purification and Properties. Eur. J. Biochem., 143, 341 (1984).

    Google Scholar 

  5. Amrhein, N., and H.C. Steinrucken: Enolpyruvylshikimate-3-phosphate Synthase of Klebsiella pneumoniae, II: Inhibition by Glyphosate [N-(Phosphonomethyl)-glycine]. Eur. J. Biochem., 143, 351 (1984).

    Google Scholar 

  6. Amrhein, N., H.C. Steinrucken, B. Deus, and P. Gherke: The Site of Inhibition of the Shikimate Pathway by Glyphosate. Plant Physiol., 66, 830 (1980).

    CAS  Google Scholar 

  7. Anderson, K.S., and K.A. Johnson: Kinetic and Structural Analysis of Enzyme Intermediates: Lessons from EPSP Synthase. Chem. Rev., 90, 1131 (1990).

    CAS  Google Scholar 

  8. Anderson, K.S., J.A. Sikorski, and K.A. Johnson: Evaluation of 5-Enolpyruvyl-shikimate-3-phosphate Synthase Substrate and Inhibitor Binding by Stopped-Flow and Equilibrium Fluorescence Methods. Biochemistry, 27, 1604 (1988); A Tetrahedral Intermediate in the EPSP Synthase Reaction Observed by Rapid Quench Kinetics. Biochemistry, 27, 7395 (1988).

    CAS  Google Scholar 

  9. Anderson, K.S., J.A. Sikorski, A.J. Benesi, and K.A. Johnson: Isolation and Structural Elucidation of the Intermediate in the EPSP Synthase Enzymatic Pathway. J. Amer. Chem. Soc., 110, 6577 (1988).

    CAS  Google Scholar 

  10. Anton, La., S. Chaudhuri, and J.R. Coggins: Shikimate Dehydrogenase from Escherichia coli. Methods in Enzymology, 142, 315 (1987).

    Google Scholar 

  11. Asano, Y., J.J. Lee, T.L. Shiel, F. Spreafico, C. Kowl, and H.G. Floss: Steric Course of the Reactions Catalysed by 5-Enolpyruvylshikimate-3-phosphate Synthase, Chorismate Mutase and Anthranilate Synthase. J. Amer. Chem. Soc., 107,4314 (1995).

    Google Scholar 

  12. Atkinson, D.E.: Cellular Energy Metabolism and Its Regulation. New York: Academic Press. 1977.

    Google Scholar 

  13. Baker, I.T., and I.P. Crawford: Anthranilate Synthase. Partial Purification and Some Kinetic Studies on the Enzyme from Escherichia coli. J. Biol. Chem., 241, 5577 (1966).

    CAS  Google Scholar 

  14. Balasubramanian, S., G.M. Davies, J.R. Coggins, and C. Abell: Inhibition of Chorismate Synthase by (6R)-and (6S)-6-Fluoro-5-enolpyruvylshikimate-3-phos-phate. J. Amer. Chem. Soc., 113, 8945 (1991).

    CAS  Google Scholar 

  15. Bartlett, P.A., and C.R. Johnson: An Inhibitor of Chorismate Mutase Resembling the Transition-State Conformation. J. Amer. Chem. Soc., 107, 7792 (1985).

    CAS  Google Scholar 

  16. Bartlett, P.A., and K. Satake: Does Dehydroquinate Synthase Synthesise Dehydroquinate? J. Amer. Chem. Soc., 110, 1628 (1988).

    CAS  Google Scholar 

  17. Bauerle, R, J. Hess, and S. French: Anthranilate Synthase-Anthranilate Phosphoribosyltransferase Complex and Sub-Units of Salmonella typhimurium. Methods in Enzymology, 142, 366 (1987).

    CAS  Google Scholar 

  18. Bender, S. L.J.W. Frost, J.T. Kadonga, and J.R. Knowles: Dehydroquinate Synthase from Escherichia coli: Purification, Cloning and Construction of Overproducers of the Enzyme. Biochemistry, 23, 4470 (1984).

    Google Scholar 

  19. Bentley, R.: The Shikimate Pathway — A Metabolic Tree with Many Branches. Crit. Rev. Biochem. Mol. Biol, 25, 307 (1990).

    CAS  Google Scholar 

  20. Bhosedale, B.S., J.I. Rood, M.K. Sneddon, and J.F. Morrison: Production of Chorismate Mutase-Prephenate Dehydrogenase by a Strain of Escherichia coli Carrying a Multicopy tyrA Plasmid. Isolation and Properties of the Enzyme. Biochim. Biophys. Acta, 717, 6 (1982).

    Google Scholar 

  21. Bohm, B.A.: Shikimic Acid (3,4,5-Trihydroxy-l-cyclohexene-l-carboxylic Acid). Chem. Rev., 65, 435 (1965).

    CAS  Google Scholar 

  22. Bonner, C., and R.A. Jensen: Prephenate Aminotransferase. Methods in Enzymology, 142, 479 (1987).

    CAS  Google Scholar 

  23. Bonner, C., and R.A. Jensen: Arogenate Dehydrogenase. Methods in Enzymology, 142, 488 (1987).

    CAS  Google Scholar 

  24. Brown, K.D, and R.L. Somerville: Repression of Aromatic Amino Acid Biosynthesis in Escherichia coli K-12. J. Bacteriol., 108, 386 (1971).

    CAS  Google Scholar 

  25. Bu’lock, J.D.: The Biosynthesis of Natural Products — An Introduction to Secondary Metabolism. Maidenhead: McGraw-Hill. 1965.

    Google Scholar 

  26. Camarkis, H., D.E. Tribe, and J.A. Pittard: Constitutive and Repressible Enzymes of the Common Pathway of Aromatic Biosynthesis in Escherichia coli K-12: Regulation of Enzyme Synthesis at Different Growth Rates. J. Bacteriol., 127, 1085 (1979).

    Google Scholar 

  27. Campbell, M.M., M. Sainsbury, and P. A. Searle: The Biosynthesis and Synthesis of Shikimic Acid, Chorismic Acid and Related Compounds. Synthesis, 179 (1993).

    Google Scholar 

  28. Campbell, A.P, T.M. Tarasow, W. Massefski, P.E. Wright, and D. Hilvert: Binding of a High Energy Substrate Conformer in Antibody Catalysis. Proc. Natl. Acad. Sci. (U.S.A.), 90, 8663 (1993).

    CAS  Google Scholar 

  29. Champney, W.S., and R.A. Jensen: The Enzymology of Prephenate Dehydrogenase in Bacillus subtilis. J. Biol. Chem., 245, 3763 (1970).

    CAS  Google Scholar 

  30. Chaudhuri, S., and J.R. Coggins: The Purification of Shikimate Dehydrogenase from Escherichia coli. Biochem. J., 226, 217 (1985).

    CAS  Google Scholar 

  31. Chook, Y.M., H. Ke, and W.N. Lipscomb: Crystal Structures of the Monofunctional Chorismate Mutase from Bacillus subtilis and Its Complex with a Transition-State Analog. Proc. Natl. Acad. Sci. (U.S.A.), 90, 8600 (1993).

    CAS  Google Scholar 

  32. Christopherson, R.I., E. Heyde, and J.F. Morrison: Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli: Spatial Relationship of the Mutase and Dehydrogenase Sites. Biochemistry, 22, 1650 (1983).

    CAS  Google Scholar 

  33. Coggins, J.R., M.R. Boocock, S. Chaudhuri, J.M. Lambert, J. Lumsden, G.A. Nimmo, and D.S.S. Smith: The arom Multifunctional Enzyme from Neurospora crassa. Methods in Enzymology, 142, 325 (1987).

    CAS  Google Scholar 

  34. Conn, E.E. (ed.): The Shikimic Acid Pathway (Recent Advances in Phytochemistry, Vol. 20). New York: Plenum Press. 1986.

    Google Scholar 

  35. Copley, S.D., and J.R. Knowles: The Conformational Equilibrium of Chorismate in Solution: Implications for the Mechanism of the Non-enzymic and the Enzyme Catalysed Rearrangement of Chorismate to Prephenate. J. Amer. Chem. Soc., 107, 5008 (1987).

    Google Scholar 

  36. Copley, S.D., and J.R. Knowles: The Uncatalysed Claisen Rearrangement of Chorismate to Prephenate Prefers a Transition-State of Chair-like Geometry. J. Amer. Chem. Soc., 107, 5306 (1987).

    Google Scholar 

  37. Cotton, R.G.H., and F. Gibson: The Biosynthesis of Phenylalanine and Tyrosine: Enzymes Converting Chorismic Acid into Prephenic Acid and Their Relationships to Prephenate Dehydratase and Prephenate Dehydrogenase. Biochim. Biophys. Acta, 100, 76 (1965).

    CAS  Google Scholar 

  38. Cotton, R.G.H., and F. Gibson: The Biosynthesis of Phenylalanine and Tyrosine in the Pea (Pisum sativum): Chorismate Mutase. Biochim. Biophys. Acta, 100, 76 (1965).

    CAS  Google Scholar 

  39. Courtney-gutterson, N., C. Napoli, C. Lemieux, A. Morgan, E. Firoozabady, and K.E.P. Robinson: Modification of Flower Colour in Florist’s Chrysanthemum: Production of a White-flowering Variety Through Molecular Genetics. Biotechnology, 12, 268 (1994).

    CAS  Google Scholar 

  40. Crawford, I.P.: Synthesis of Tryptophan from Chorismate: Comparative Aspects. Methods in Enzymology, 142, 293 (1987).

    CAS  Google Scholar 

  41. Creighton, T.E., and C. Yanofsky: Chorismate to Tryptophan (Escherichia coli): Anthranilate Synthetase, PR Transferase, PRA Isomerase, InGP Synthetase and Tryptophan Synthetase. Methods in Enzymology, 17A, 365 (1970).

    Google Scholar 

  42. Davidson, B.E.: Chorismate Mutase-Prephenate Dehydratase from Escherichia coli. Methods in Enzymology, 142, 432 (1987).

    CAS  Google Scholar 

  43. Davidson, B.E., E.H. Blackburn, and T.A.A. Dopheide: Chorismate Mutase-Prephenate Dehydratase from Escherichia coli K-12. J. Biol. Chem., 247, 4441 (1972).

    CAS  Google Scholar 

  44. Davies, J.: Secondary Metabolites: Their Function and Evolution (Ciba Foundation Symposium, No. 171). Chichester: Wiley. 1992.

    Google Scholar 

  45. Davis, B.D.: Aromatic Biosynthesis, I: The Role of Shikimic Acid. J. Biol. Chem., 191, 315 (1951).

    CAS  Google Scholar 

  46. Davis, B.D.: Biochemical Explorations with Biochemical Mutants. Harvey Lectures, 50, 230 (1954/1955).

    Google Scholar 

  47. Feyter, R.: Shikimate Kinases from Escherichia coli K-12. Methods in Enzymology, 142, 355 (1987).

    Google Scholar 

  48. Feyter, R., and J. Pittard: Purification and Properties of Shikimate Kinase II from Escherichia coli K-12. J. Bacteriol., 165, 336 (1986).

    Google Scholar 

  49. Feyter, R., B. Davidson, and J. Pittard: Nucleotide Sequence of the Transcription Unit Containing the aroL and aroM Genes from Escherichia coli K-12. J. Bacteriol., 165, 233 (1986).

    Google Scholar 

  50. Eka, R.K., LA. Anton, B. Dunbar, and J.R. Coggins: The Characterisation of the Shikimate Pathway Enzyme Dehydroquinase from Pisum sativum. FEBS Lett., 349, 397 (1994).

    Google Scholar 

  51. De Leo, A.B., and D.B. Sprinson: Mechanism of 3-Deoxy-D-arabino-heptulosonate-7-phosphate (DAHP) Synthetase. Biochem. Biophys. Res. Comm., 32, 873 (1968).

    Google Scholar 

  52. Dell, K.A., and J.W. Frost: Identification and Removal of Impediments to Biocatalytic Synthesis of Aromatics from D-Glucose. Rate-Limiting Enzymes in the Common Pathway of Aromatic Amino Acid Biosynthesis. J. Amer. Chem. Soc., 115, 11581 (1993).

    CAS  Google Scholar 

  53. Draths, K.M., and J.W. Frost: Synthesis Using Plasmid-Based Catalysis: Plasmid Assembly and 3-Deoxy-D-arabino-heptulosonate Production. J. Amer. Chem. Soc., 112, 1657 (1990).

    CAS  Google Scholar 

  54. Draths, K.M., D.L. Pompliano, D.L. Conley, J.W. Frost, A. Berry, G.L. Disbrow, R.J. Staversky, and J.C. Lievene: Biocatalytic Synthesis of Aromatics from D-Glucose: The Role of Transketolase. J. Amer. Chem. Soc., 114, 3956 (1992).

    CAS  Google Scholar 

  55. Duncan, K., S. Chaudhuri, and J.R. Coggins: 3-Dehydroquinate Dehydratase from Escherichia coli. Methods in Enzymology, 142, 320 (1987).

    Google Scholar 

  56. Duncan, K., R.M. Edwards, and J.R. Coggins: The Pentafunctional arom Enzyme of Saccharomyces cerevisiae Is a Mosaic of Monofunctional Domains. Biochem. J., 246, 375 (1987).

    CAS  Google Scholar 

  57. Ely, R., and J. Pittard: Aromatic Amino Acid Biosynthesis: Regulation of Shikimate Kinase in Escherichia coli K-12. J. Bacteriol., 138, 933 (1979).

    CAS  Google Scholar 

  58. Fischer, H.O.L., and G.L. Dangschat: Abbau der Chinasaure zur Zitronensaure. Helv. Chim. Acta, 17, 1196 (1934).

    CAS  Google Scholar 

  59. Fischer, H.O.L., and G.L. Dangschat: Konstitution der Shikimisaure. Helv. Chim. Acta, 17, 1200 (1934).

    CAS  Google Scholar 

  60. Fischer, H.O.L., and G.L. Dangschat: Abbau der Shikimisaure zur Aconitsaure. Helv. Chim. Acta, 18, 1204 (1935).

    CAS  Google Scholar 

  61. Fischer, H.O.L., and G.L. Dangschat: Zur Konfiguration der Shikimisaure. Helv. Chim. Acta, 18, 1206 (1935).

    CAS  Google Scholar 

  62. Fischer, H.O.L., and G.L. Dangschat: Uber die Konfiguration der Shikimisaure und ihren Abbau zur Glucodesonsaure. Helv. Chim. Acta, 20, 705 (1937).

    CAS  Google Scholar 

  63. Fischer, R, and R.A. Jensen: Arogenate Dehydratase. Methods in Enzymology, 142, 495 (1987).

    CAS  Google Scholar 

  64. Fischer, R, and R.A. Jensen: Prephenate Dehydrogenase (Monofunctional). Methods in Enzymology, 142, 503 (1987).

    CAS  Google Scholar 

  65. Fischer, R, and R.A. Jensen: Prephenate Dehydratase (Monofunctional). Methods in Enzymology, 142, 507 (1987).

    CAS  Google Scholar 

  66. Floss, H.G., D.K. Onderka, and M. Carroll: Stereochemistry of the 3-Deoxy-D-arabino-heptulosonate-7-phosphate Reaction and the Chorismate Synthase Reaction. J. Biol. Chem., 247, 736 (1972).

    CAS  Google Scholar 

  67. Freudenberg, K.: Biogenesis and Constitution of Lignin. J. Pure Appl. Chem., 5, 9 (1962).

    CAS  Google Scholar 

  68. Frost, J.W., and K.M. Draths: Conversion of D-Glucose into Catechol: The Not-So-Common Pathway of Aromatic Biosynthesis. J. Amer. Chem. Soc., 113, 9361 (1991).

    Google Scholar 

  69. Gaertner, F.H.: Unique Catalytic Functions of Enzyme Clusters. Trends Biochem. Sci., 3, 63 (1978).

    CAS  Google Scholar 

  70. Gaertner, F.H.: Chorismate Synthase: A Bifunctional Enzyme from Neurospora crassa. Methods in Enzymology, 142, 362 (1987).

    CAS  Google Scholar 

  71. Ganem, B.: From Glucose to Aromatics: Recent Developments in Natural Products of the Shikimate Pathway. Tetrahedron, 34, 3353 (1978).

    CAS  Google Scholar 

  72. Gilchrist, D.G., and J.A. Connelly: Chorismate Mutase from Mung Bean and Sorghum. Methods in Enzymology, 142, 450 (1987).

    CAS  Google Scholar 

  73. Gollub, E.G., H. Zalkin, and D.B. Sprinson: Correlation of Genes and Enzymes and Studies of the Regulation of the Aromatic Pathway in Salmonella. J. Biol. Chem., 242, 5323 (1967).

    CAS  Google Scholar 

  74. Gould, S.J., and R.L. Eisenberg: The Origin of the C-2 Hydroxyl in the Isochoris-mate Synthase Reaction. Tetrahedron, 47, 5979 (1991).

    CAS  Google Scholar 

  75. Gray, J.V., B. Golinelli-Pimpaneau, and J.R. Knowles: Monofunctional Chorismate Mutase from Bacillus subtilis. Purification of the Protein, Molecular Cloning of the Gene and Overexpression of the Gene Product in Escherichia coli. Biochemistry, 29, 376 (1990).

    CAS  Google Scholar 

  76. Grewe, R., and W. Lorenzen: Die Überführung der Shikimisaiire in Chinasaure. Chem. Ber., 86, 928 (1953).

    CAS  Google Scholar 

  77. Grewe, R., and A. Bokranz: Shikimisaure und Diazomethan. Chem. Ber., 88, 49 (1955).

    CAS  Google Scholar 

  78. Grewe, R., H. Jensen, and M. Schnoor: Darstellung und Eigenschaften des Shikimialkohols. Chem. Ber., 89, 898 (1956).

    CAS  Google Scholar 

  79. Grewe, R, and H. Buttner: Darstellung und Eigenschaften des Shikimialdehydes. Chem. Ber., 91, 2452 (1958).

    CAS  Google Scholar 

  80. Guilford, W.J., S.D. Copley, and J.R. Knowles: On the Mechanism of the Chorismate Mutase Reaction. J. Amer. Chem. Soc., 109, 5013 (1987).

    CAS  Google Scholar 

  81. Harris, J., C. Kleanthous, J.R. Coggins, A.R. Hawkins, and C. Abell: Different Mechanistic and Stereochemical Courses for the Reactions Catalysed by Type I and Type II Dehydroquinases. J. Chem. Soc. Chem. Commun, 1080 (1993).

    Google Scholar 

  82. Hasan, N, and E.W. Nester: Purification of Chorismate Synthase from Bacillus subtilis. J. Biol. Chem., 253, 4993 (1978).

    CAS  Google Scholar 

  83. Hasan, N, and E.W. Nester: Purification and Characterisation of NADPH-Dependent Flavin Reductase, an Enzyme Required for the Activation of Chorismate Synthase in Bacillus subtilis. J. Biol. Chem., 253, 4987 (1978).

    CAS  Google Scholar 

  84. Hasan, N, and E.W. Nester: Dehydroquinate Synthase in Bacillus subtilis, an Enzyme Associated with Chorismate Synthase and Flavin Reductase. J. Biol. Chem., 253, 4999 (1978).

    CAS  Google Scholar 

  85. Haslam, E.: The Shikimate Pathway. London: Butterworths. 1974.

    Google Scholar 

  86. Haslam, E.: Shikimic Acid — Metabolism and Metabolites. Chichester: Wiley. 1993.

    Google Scholar 

  87. Haslam, E, and R.J. Ife: The Shikimate Pathway, Part III: The Stereochemical Course of the L-Phenylalanine Ammonia Lyase Reaction. J. Chem. Soc. (C), 2818 (1971).

    Google Scholar 

  88. Hawkes, T.R, T. Lewis, J.R. Coggins, D.M. Mousdale, D.J. Lowe, and R.F. Thorneley: Chorismate Synthase. Pre-Steady State Kinetics of Phosphate Release from 5-Enolpyruvylshikimate-3-phosphate. Biochem. J., 265, 899 (1990).

    CAS  Google Scholar 

  89. Herrmann, K., and R. Schoner: 3-Deoxy-D-arabinoheptulosonate 7-phosphate Synthase. Purification and Molecular Characterisation of the Tyrosine Sensitive Isoenzyme from Escherichia coli. J. Biol. Chem., 251, 5440 (1976).

    Google Scholar 

  90. Herrmann, K., R.J. McCandliss, and M.D. Poling: 3-Deoxy-D-arabinoheptulosonate 7-phosphate Synthase. Purification and Molecular Characterisation of the Phenylalanine Sensitive Isoenzyme from Escherichia coli. J. Biol. Chem., 253, 4259 (1978).

    Google Scholar 

  91. Hilvert, D., S.H. Carpenter, K.D. Nadred, and M.-T.M. Auditor: Catalysis of Concerted Reactions by Antibodies: The Claisen Rearrangement. Proc. Natl. Acad. Sci. (U.S.A.), 85, 4953 (1988).

    CAS  Google Scholar 

  92. Holton, T.A., and Y. Tanake: Blue Roses — A Pigment of Our Imagination? Trends in Biotechn., 12, 40 (1994).

    Google Scholar 

  93. Holton, T.A., F. Brugliera, D.R. Lester, Y. Tanaka, C.D. Hyland, J.G.T. Menting, C.Y. Lu, E. Farcy, T.W. Stevenson, and E.C. Cornish: Cloning and Expression of Cytochrome P-450 Genes Controlling Flower Colour. Nature, 366, 276 (1993).

    CAS  Google Scholar 

  94. Hommell, U., A. Lustig, and K. Kirschner: Purification and Characterisation of Yeast Anthranilate Phosphoribosyl Transferase. Eur. J. Biochem., 180, 33 (1989).

    Google Scholar 

  95. Hu, C.Y., and D.B. Sprinson: Properties of Tyrosine-Inhibitable 3-Deoxy-D-arabinoheptulosonic Acid-7-phosphate Synthase from Salmonella. J. Bacteriol., 129, 177 (1977).

    CAS  Google Scholar 

  96. Huang, L., A.L. Montoya, and E.W. Nester: Purification and Characterisation of Shikimate Kinase Enzyme Activity in Bacillus subtilis. J. Biol. Chem., 250, 7675 (1975).

    CAS  Google Scholar 

  97. Hudson, G.S., V. Wong, and B.E. Davidson: Chorismate Mutase/Prephenate Dehydrogenase from Escherichia coli: Purification, Characterisation and Identification of a Reactive Cysteine. Biochemistry, 23, 6240 (1984).

    CAS  Google Scholar 

  98. Hudson, G.S., and B.E. Davidson: Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli: Methods in Enzymology, 142, 440 (1987).

    Google Scholar 

  99. Hutter, R., P. Niederberger, and J.A. Demoss: Tryptophan Biosynthetic Genes in Eukaryotic Micro-Organisms. Ann. Rev. Microbiol., 40, 55 (1986).

    CAS  Google Scholar 

  100. Hyde, C.C., S.A. Ahmed, E.A. Padlam, E.W. Miles, and D.R. Davies: The Three-Dimensional Structure of the Tryptophan Synthase α2β2 Multienzyme Complex from Salmonella typhimurium. J. Biol. Chem., 263, 17857 (1988).

    CAS  Google Scholar 

  101. Jackman, L.M., and J.M. Edwards: Chorismic Acid. A Branch Point Intermediate in Aromatic Biosynthesis. Aust. J. Chem., 18, 1227 (1965).

    Google Scholar 

  102. Jackson, D.Y., J.W. Jacobs, R. Sugaswara, S.H. Reich, P.A. Bartlett, and P. G. Schulz: An Antibody Catalysed Claisen Rearrangement. J. Amer. Chem. Soc., 110, 4841 (1988).

    CAS  Google Scholar 

  103. Jensen, R.A.: Tyrosine and Phenylalanine Biosynthesis: Relationship Between Alternative Pathways, Regulation and Subcellular Location. In: The Shikimic Acid Pathway (Recent Advances in Phytochemistry, Vol. 20), (E.E. Conn, ed.), pp. 57–81. New York: Plenum. 1986.

    Google Scholar 

  104. Jensen, R.A., and R. Fischer: The Post-Prephenate Biochemical Pathways to Phenylalanine and Tyrosine — An Overview. Methods in Enzymology, 142, 472 (1987).

    CAS  Google Scholar 

  105. Kaplan, J.B., W.K. Merkel, and B.P. Nichols: Evolution of Glutamidotransferase Genes. Nucleotide Sequence of the pabA Genes from Salmonella typhimurium, Klebsiella aerogenes and Serratia marcescens. J. Mol. Biol., 183, 327 (1985).

    CAS  Google Scholar 

  106. Keller, B., E. Keller, H. Gorisch, and F. Lingens: Zur Biosynthese von Phenylalanin und Tyrosin in Streptomyceten. Hoppe-Seyler’s Z. Physiol. Chem., 364, 455 (1989).

    Google Scholar 

  107. Kirschner, K., H. Szadowski, T.S. Jardetzky, and V. Hager: Phosphoribosylanthranilate Isomerase-Indoleglycerol Phosphate Synthase from Escherichia coli. Methods in Enzymology, 142, 386 (1987).

    CAS  Google Scholar 

  108. Kleanthous, C., R. Deka, K. Davis, S.M. Kelly, A. Cooper, S.E. Harding, N.C. Price, A.R. Hawkins, and J.R. Coggins: A Comparison of the Enzymological and Biophysical Properties of Two Distinct Classes of Dehydroquinase Enzymes. Biochem. J., 282, 687 (1992).

    CAS  Google Scholar 

  109. Knowles, J.R.: Mechanistic Ingenuity in Enzyme Catalysis. Aldrichim. Acta, 22, 59 (1989).

    CAS  Google Scholar 

  110. Knowles, J.R., S. Mehdi, and J.W. Frost: Dehydroquinate Synthase from Escherichia coli and Its Substrate 3-Deoxy-D-arabinoheptulosonic Acid-7-phosphate. Methods in Enzymology, 142, 306 (1987).

    Google Scholar 

  111. Koch., G.L.E., D.C. Shaw, and F. Gibson: The Purification and Characterisation of Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli. Biochim. Biophys. Acta, 229, 795 (1971).

    CAS  Google Scholar 

  112. Koch., G.L.E., D.C. Shaw, and F. Gibson: Studies on the Relationship Between the Active Sites of Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli and Aerobacter aerogenes. Biochim. Biophys. Acta, 258, 719 (1971).

    Google Scholar 

  113. Koukol, J., and E.E. Conn: The Metabolism of Aromatic Compounds in Higher Plants, IV: Purification and Properties of the Phenylalanine Deaminase of Hordeum vulgare. J. Biol. Chem., 236, 2692 (1961).

    CAS  Google Scholar 

  114. Van Der Krol, A.R., P.E. Lenting, J. Veenstra, I.M. Van Der Meer, R.E. Koes, A.G.M. Gerats, J.N.M. Mol, and A.R. Stuitje: An Anti-Sense Chalcone Synthase Gene in Transgenic Plants Inhibits Flower Pigmentation. Nature, 333, 866 (1988).

    Google Scholar 

  115. Lawrence, J., G.B. Cox, and F. Gibson: Biosynthesis of Ubiquinone in Escherichia coli K-12. Biochemical and Genetic Characterisation of a Mutant Unable to Convert Chorismate into 4-Hydroxybenzoate. J. Bacteriol., 118, 41 (1974).

    CAS  Google Scholar 

  116. Levin, J.G., and D.B. Sprinson: The Enzymatic Formation and Isolation of 3-Enolpyruvylshikimate-5-phosphate. J. Biol. Chem., 239, 1142 (1964).

    Google Scholar 

  117. Lewendon, A., and J.R. Coggins: 3-Phosphoshikimate-l-carboxyvinyl Transferase. Methods in Enzymology, 142, 342 (1987).

    CAS  Google Scholar 

  118. Liu, J., K. Duncan, and C.T. Walsh: Nucleotide Sequence of a Cluster of Escherichia coli Enterobactin Biosynthesis Genes: Identification of entA and Purification of Its Product 2,3-Dihydro-2,3-dihydroxybenzoate Dehydrogenase. J. Bacteriol., 171, 791 (1989).

    CAS  Google Scholar 

  119. Liu, J., N. Quin, G.A. Berchtold, and C.T. Walsh: Overexpression, Purification and Characterisation of Isochorismate Synthase (entC), the First Enzyme Involved in the Biosynthesis of Enterobactin from Chorismate. Biochemistry, 29, 1417 (1990).

    CAS  Google Scholar 

  120. Loomis, L.D, and K.N. Raymond: Solution Equilibria of Enterobactin and Metal-Enterobactin Complexes. Inorg. Chem., 30, 906 (1991).

    CAS  Google Scholar 

  121. Maitra, U.S., and D.B. Sprinson: 5-Dehydro-3-deoxy-D-arabinoheptulosonic Acid-7-phosphate. An Intermediate in the 3-Dehydroquinate Synthase Reaction. J. Biol. Chem., 253, 5426 (1978).

    CAS  Google Scholar 

  122. Mcquade, J.F, and T.E. Creighton: Purification and Comparison of the N-(5’-Phosphoribosyl)anthranilic Acid Isomerase/Indole-3-glycerol Synthetase of Tryptophan Biosynthesis from Three Species of Enterobacteriaceae. Eur. J. Biochem, 16, 199 (1970).

    CAS  Google Scholar 

  123. Mehdi, S., S.L. Bender, and J.R. Knowles: Dehydroquinate Synthase: The Role of Divalent Metal Cations and of Nicotinamide Adenine Dinucleotide in Catalysis. Biochemistry, 28, 7555 (1989).

    Google Scholar 

  124. Meyer, P., I. Heidmann, G. Forkman, and H. Saeder: A New Petunia Flower Colour Generated by Transformation of a Mutant with a Maize Gene. Nature, 330, 677 (1987).

    CAS  Google Scholar 

  125. Mills, E.W., R. Bauerle, and S.A. Ahmed: Tryptophan Synthase from Escherichia coli and Salmonella typhimurium. Methods in Enzymology, 142, 398 (1987).

    Google Scholar 

  126. Millar, G., and J.R. Coggins: The Complete Amino Acid Sequence of 3-Dehydroquinate Synthase from Escherichia coli K-12. FEBS Lett, 200, 11 (1986).

    CAS  Google Scholar 

  127. Mol, J.N.M., A.R. Stuitje, and A. Van der Krol: Genetic Manipulation of Floral Pigmentation Genes. Plant Mol. Biol. 12, 287 (1989).

    Google Scholar 

  128. Morell, H., M.J. Clark, P.F. Knowles, and D.B. Sprinson: The Enzymic Synthesis of Chorismic and Prephenic Acid from 3-Enolpyruvylshikimic Acid 5-Phosphate. J. Biol. Chem., 242, 82 (1967).

    CAS  Google Scholar 

  129. Mousdale, D.M., and J.R. Coggins: Detection and Sub-cellular Localisation in a Higher Plant of Chorismate Synthase. FEBS Lett, 205, 328 (1986).

    CAS  Google Scholar 

  130. Mousdale, D.M., and J.R. Coggins: 3-Phosphoshikimate-l-carboxyvinyl Transferase from Pisum sativum. Methods in Enzymology, 142, 348 (1987).

    CAS  Google Scholar 

  131. Mousdale, D.M., M.S. Campbell, and J.R. Coggins: Purification and Characterisation of Bifunctional Dehydroquinase — Shikimate: NADP Oxidoreductase from Pea Seedlings. Phytochemistry, 26, 2665 (1987).

    CAS  Google Scholar 

  132. Nichols, B.P, A.M. Seibold, and S.K. Doktor: para-Aminobenzoate Synthesis from Chorismate Occurs in Two Steps. J. Biol. Chem., 264, 8597 (1989).

    CAS  Google Scholar 

  133. Ogino, T., C. Garner, J.L. Markley, and K. Herrmann: Biosynthesis of Aromatic Compounds: 13CNMR Spectroscopy of Whole Escherichia coli Cells. Proc. Natl. Acad. Sci. (U.S.A), 79, 5828 (1982).

    CAS  Google Scholar 

  134. Ozenberger, B.A., T.J. Brickman, and M.A. MCiNtosh: Nucleotide Sequence of Escherichia coli Isochorismate Synthase Gene entC and Evolutionary Relationships of Isochorismate Synthase and Other Chorismate Utilising Enzymes. J. Bacteriol., 171, 775 (1989).

    CAS  Google Scholar 

  135. Patel, N, S.L. Stenmark-Cox, and R.A. Jensen: Enzymological Basis of Reluctant Auxotrophy for Phenylalanine and Tyrosine in Pseudomonas aeruginosa. J. Biol. Chem., 253, 2972 (1978).

    CAS  Google Scholar 

  136. Pittard, A.J.: Biosynthesis of the Aromatic Amino Acids in Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Vol. I (F.C. Niedhart, ed.), p. 368–394. Washington: American Soc. Microbiol, 1987.

    Google Scholar 

  137. Poulsen, C., and R. Verpoorte: Roles of Chorismate Mutase, Isochorismate Synthase and Anthranilate Synthase in Plants. Phytochemistry, 30, 377 (1991).

    CAS  Google Scholar 

  138. Priestle, J.P, M.G. Grutter, J.L. White, M.G. Vincent, M. Kama, E.W. Isou, T.S. Jardetzky, K. Kirschner, and J.N. Jansonius: Three-Dimensional Structure of the Bifunctional Enzyme N-(5′-Phosphoribosyl)-anthranilate Isomerase-Indole-glycerol-3-phosphate Synthase from Escherichia coli. Proc. Natl. Acad. Sci.(U.S.A), 84, 5690 (1987).

    CAS  Google Scholar 

  139. Ramjee, N, J.R. Coggins, T.R. Hawkes, D.J. Lowe, and R.N.F. Thorneley: Spectrophotometric Detection of a Modified Flavin Mononucleotide (FMN) Intermediate Formed During the Catalytic Cycle of Chorismate Synthase. J. Amer. Chem. Soc., 113, 8566 (1991).

    CAS  Google Scholar 

  140. Ramjee, N, S. Balasubramanian, C. Abell, J.R. Coggins, G.M. Davies, T.R. Hawkes, D.J. Lowe, and R.N.F. Thorneley: Reaction of (6R)-6-F-EPSP with Recombinant Escherichia coli Chorismate Synthase Generates a Stable Flavin Mononucleotide Semiquinone Radical. J. Amer. Chem. Soc., 114, 3151 (1992).

    CAS  Google Scholar 

  141. Rusnak, F., J. Liu, N. Quin, G.A. Berchtold, and C.T. Walsh: Subcloning of the Enterobactin Biosynthetic Gene ent B: Expression, Purification, Characterisation and Substrate Specificity of Isochorismatase. Biochemistry, 29, 1425 (1990).

    CAS  Google Scholar 

  142. Samfrathkumar, P., and J.F. Morrison: Chorismate Mutase-Prephenate Dehydrogenase from Escherichia coli. Purification and Properties of the Bifunctional Enzyme. Biochim. Biophys. Acta, 702, 204 (1982).

    Google Scholar 

  143. Schmidheim, T., H.-U. Mosch, J.N.S. Evans, and G. Braus: Yeast Allosteric Chorismate Mutase is Locked in the Activated State by a Single Amino Acid Substitution. Biochemistry, 29, 3660 (1990).

    Google Scholar 

  144. Sogo, S.G., T.S. Widlanski, J.H. Hoare, C.E. Grimshaw, G.E. Berchtold, and J.R. Knowles: Stereochemistry of the Rearrangement of Chorismate to Prephenate Chorismate Mutase Involves a Chair Transition State. J. Amer. Chem. Soc., 106, 2701 (1984).

    CAS  Google Scholar 

  145. Smith., D.S.S., and J.R. Coggins: Isolation of a Bifunctional Domain from the Pentafunctional arom Complex of Neurospora crassa. Biochem. J., 213, 405 (1983).

    CAS  Google Scholar 

  146. Srinivasan, P.R., J. Rothschild, and D.B. Sprinson: The Enzyme Conversion of 3-Deoxy-D-arabinoheptulosonic Acid-7-phosphate to 5-Dehydroquinate. J. Biol. Chem., 238, 3176 (1976).

    Google Scholar 

  147. Steinrucken, H.C., A. Schulz, N. Amrhein, C.A. Porter, and R.T. Fraley: Overproduction of 5-Enolpyruvylshikimate-3-phosphate Synthase in Glyphosate Tolerant Petunia hybrida Cell Line. Arch. Biochem. Biophys, 244, 169 (1986).

    CAS  Google Scholar 

  148. Stenmark, S.L., D.L. Pierson, G.I. Glover, and R.A. Jensen: Blue-Green Bacteria Synthesise L-Tyrosine by the Pretyrosine Pathway. Nature, 247, 290 (1974).

    CAS  Google Scholar 

  149. Stewart, J., D.B. Wilson, and B. Ganem: A Genetically Engineered Monofunctional Chorismate Mutase. J. Amer. Chem. Soc., 112, 4582 (1991).

    Google Scholar 

  150. Stewart, J., D.B. Wilson, and B. Ganem: Chorismate Mutase/Prephenate Dehydratase from Escherichia coli: Subcloning, Overproduction and Purification. Tetrahedron, 47, 2573 (1991).

    CAS  Google Scholar 

  151. Teng, C.-T., and B. Ganem: Shikimate Derived Metabolites, 13: A Key Intermediate in the Biosynthesis of Anthranilate from Chorismate. J. Amer. Chem. Soc., 106, 2463 (1984).

    CAS  Google Scholar 

  152. Walsh., C.T., M.D. Erion, A.E. Watts, J.J. Delany, and G.A. Berchtold: Chorismate Aminations: Partial Purification of Escherichia coli PABA Synthase and Mechanistic Comparison with Anthranilate Synthase. Biochemistry, 26, 4734 (1987).

    CAS  Google Scholar 

  153. Walsh., C.T., J. Liu, F. Rusnak, and M. Sakaitani: Molecular Studies on Enzymes in Chorismate Metabolism and the Enterobactin Biosynthetic Pathway. Chem. Rev., 90, 1105 (1990).

    CAS  Google Scholar 

  154. Weaver, L.M., and K. Herrmann: Cloning of an aroF Allele Encoding a Tyrosine-Insensitive 3-Deoxy-D-arabinoheptulosonate-7-phosphate Synthase. J. Bacteriol., 172, 6581 (1990).

    CAS  Google Scholar 

  155. Weiss, U., and J.M. Edwards: Biosynthesis of Aromatic Compounds. New-York: Wiley-Interscience. 1980.

    Google Scholar 

  156. White, P.J., G. Millar, and J.R. Coggins: The Overexpression, Purification and Complete Amino Acid Sequence of Chorismate Synthase from Escherichia coli K-12 and Its Comparison with the Enzyme from Neurospora crassa. Biochem. J., 251, 313 (1988).

    CAS  Google Scholar 

  157. Wightman, R.H, J. Staunton, A.R. Battersby, and K.R. Hanson: Studies of Enzyme Mediated Reactions, Part 1: Synthesis of Deuterium-or Tritium-Labelled (3S)-and (3R)-Phenylalanines: Stereochemical Course of the Elimination Catalysed by L-Phenylalanine Ammonia Lyase. J. Chem. Soc. (Perkin Trans. I), 2355 (1972); Ellis, B.E, M.H. Zenk, G.W. Kirby, J. Michael, and H.G. Floss: Steric Course of the Tyrosine Ammonia-Lyase Reaction. Phytochem. 12, 1057 (1973).

    Google Scholar 

  158. Yaniv, H., and C. Gilvarg: Aromatic Biosynthesis, XIV: 5-Dehydroshikimic Reductase. J. Biol. Chem., 213, 787 (1955).

    CAS  Google Scholar 

  159. Young, I.G., and F. Gibson: Regulation of the Enzymes Involved in the Biosynthesis of 2,3-Dihydroxybenzoic Acid in Aerobacter aerogenes and Escherichia coli. Biochim. Biophys. Acta, 177, 401 (1969).

    CAS  Google Scholar 

  160. Young, I.G., T.J. Batterham, and F. Gibson: The Isolation, Identification and Properties of Isochorismic Acid, an Intermediate in the Biosynthesis of 2,3-Dihydroxybenzoic Acid. Biochim. Biophys. Acta, 177, 389 (1969).

    CAS  Google Scholar 

  161. Young, I.G., L.M. Jackman, and F. Gibson: The Isolation, Identification and Properties of 2,3-Dihydro-2,3-dihydroxybenzoic Acid, an Intermediate in the Biosynthesis of 2,3-Dihydroxybenzoic Acid. Biochim. Biophys. Acta, 177, 401 (1969).

    CAS  Google Scholar 

  162. Zalkin, H.: Anthranilate Synthase. Methods in Enzymology, 113, 287 (1985).

    CAS  Google Scholar 

  163. Zimmerman, A., and K. Hahlbrock: Light Induced Changes of Enzyme Activities in Parsley Cell Cultures. Purification and Properties of Phenylalanine Ammonia Lyase (EC 4.3.1.5). Arch. Biochem. Biophys., 166, 54 (1975).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this chapter

Cite this chapter

Haslam, E. (1996). Aspects of the Enzymology of the Shikimate Pathway. In: Herz, W., Kirby, G.W., Moore, R.E., Steglich, W., Tamm, C. (eds) Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products. Fortschritte der Chemie organischer Naturstoffe / Progress in the Chemistry of Organic Natural Products, vol 69. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6578-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6578-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7354-1

  • Online ISBN: 978-3-7091-6578-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics