Skip to main content

A hypothesis about the mechanism of assembly of double-shelled rotavirus particles

  • Conference paper
Viral Gastroenteritis

Part of the book series: Archives of Virology ((ARCHIVES SUPPL,volume 12))

Summary

During double-shelled (ds) particle assembly, subviral particles [possibly single-shelled (ss) particles] acquire the outer capsid protein during their transport across the endoplasmic reticulum (ER) membrane by an exocytosis-like process, probably by a fusion-like mechanism. Fine reticular material is observed around the junction area between virus particles and the ER membrane on the cytoplasmic side of projecting ss particles, suggesting this is the site of assembly of ds particles. It is assumed that the reticular material may correspond to the hetero-oligometric complexes consisting of the non-structural glycoprotein NSP4, the structural proteins VP4 and VP7, and that both VP7 and VP4 may fold onto ss particles as a complex. On the other hand, the budding process simply serves as a vehicle to transport ss particles from the cytoplasm to the ER lumen. Thus, it is assumed that the production of protein complexes may be indispensable for virion assembly, in which NSP4 regulates VP4 folding as an ER chaperone and also the exocytosis-like or fusion-like transport systems through the ER membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Au KS, Chan WK, Estes MK (1989) Rotavirus morphogenesis involves an endoplasmic reticulum transmembrane glycoprotein. In: Compans RW, Helenius A, Oldstone MBA (eds) Cell biology of virus entry, replication, and pathogenesis. Alan R. Liss, New York, pp 257–267

    Google Scholar 

  2. Bellamy AR, Both GW (1990) Molecular biology of rotaviruses. In: Maramorosch K, Murphy RA, Shatkin AJ (eds) Advances in virus research. Academic Press, vol 38, pp 1–43

    Google Scholar 

  3. Dubois-Dalq M (1984) Assembly of rotaviruses. In: DuboisDalq M, Holmes KV, Rentier B (eds) Assembly of enveloped RNA viruses. Springer, Wien, New York, pp 171–184

    Chapter  Google Scholar 

  4. Estes MK, Graham DY, Ramig RF, Ericson BL (1982) Heterogeneity in the structural glycoprotein (VP7) of simian rotavirus SA11 Virology 122: 8–14

    CAS  Google Scholar 

  5. Estes MK, Cohen J (1989) Rotavirus gene structure and function. Microbiol Rev 53: 410–449

    PubMed  CAS  Google Scholar 

  6. Garoff H, Frischauf AM, Simons K, Lehrach H, Delius H (1980) Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature 288: 236–241

    Article  PubMed  CAS  Google Scholar 

  7. Gorziglia M, Hoshino Y, Nishikawa K, Maloy WL, Jones RW, Kapikian AZ, Chanock RM (1988) Comparative sequence analysis of the genomic 6 of four rotaviruses each with a different subgroup specificity. J Gen Virol 69: 1659–1669

    Article  PubMed  CAS  Google Scholar 

  8. Greenberg HB, McAuliffe V, Valdesuso J, Wyatt R, Flores J, Kalica A, Hoshino Y, Singh NH (1983) Serological analysis of the subgroup protein of rotavirus, using monoclonal antibodies. Infect and Immunity 39: 91–99

    CAS  Google Scholar 

  9. Helm CA, Israelachvili JN (1993) Forces between phospholipid bilayers and relationship to membrane fusion. Methods in Enzymology 220: 130–143

    Article  PubMed  CAS  Google Scholar 

  10. Kabcenell AK, Atkinson PH (1985) Processing of the rough endoplasmic reticulum membrane glycoproteins of rotavirus SA11. J Cell Biol 101: 1270–1280

    Article  PubMed  CAS  Google Scholar 

  11. Kabcenell AK, Poruchynsky MS, Bellamy AR, Greenberg HB, Atkinson PH (1988) Two forms of VP7 are involved in the assembly of SA11 rotavirus in the endoplasmic reticulum. J Virol 62: 2929–2941

    PubMed  CAS  Google Scholar 

  12. Kalica AR, Greenberg HB, Wyatt RG, Flores J, Sereno MM, Kapikian AZ, Chanock RM (1981) Genes of human (strain Wa) and bovine (strain UK) rotavirus that code for neutralization and subgroup antigens. Virology 112: 385–390

    Article  PubMed  CAS  Google Scholar 

  13. Lopez S, Lopez I, Romero P, Mendez E, Soberon X, Arias CF (1991) Rotavirus YM gene 4: analysis of its deduced amino acids sequence and prediction of the secondary structure of the VP4 protein. J Virol 65: 3738–3745

    PubMed  CAS  Google Scholar 

  14. Mass DR, Atkinson PH (1990) Rotavirus protein VP7, NS28, and VP4 from oligomeric structures. J Virol 64: 2632–2641

    Google Scholar 

  15. Mackow EAR, Shaw RD, Matsui SM, Dang VPT, Greenberg MH (1988) The rhesus rotavirus gene encoding protein VP3: location of amino acids involved in homologous and heterologous rotavirus neutralization and identification of a putative fusion region. PNAS, U.S.A. 85: 645–649

    Article  CAS  Google Scholar 

  16. Markham R, Frey S, Hill GJ (1963) Method for the enhancement of image detail and acceleration of structure in electron microscopy. Virology 20: 88–102

    Article  Google Scholar 

  17. Mintz PL, Kielian M (1991) Mutagenesis of the putative fusion domain of the Semliki Forest virus spike protein. J Virol 65: 4292–4300

    Google Scholar 

  18. Monck J, Fernandez JM (1994) The exocytotic fusion pore and neurotransmitter release. Neuron 12: 707–716

    Article  PubMed  CAS  Google Scholar 

  19. Petrie BL, Estes MK, Graham DY (1983) Effect of tunicamycin on rotavirus morphogenesis and infectivity. J Virol 46: 270–274

    PubMed  CAS  Google Scholar 

  20. Poruchyosky MS, Maess DR, Atkinson PH (1991) Calcium depletion blocks the maturation of rotavirus by altering the oligomerization of virus-encoded proteins in the ER. J Cell Biol 114: 651–661

    Article  Google Scholar 

  21. Sabara M, Babiuk LA, Gilchrist J, Misra V (1982) Effect of tunicamycin on rotavirus assembly and infectivity. J Virol 43: 1082–1090

    PubMed  CAS  Google Scholar 

  22. Shahrabadi MS, Lee PWK (1986) Bovine rotavirus maturation is a calcium-dependent process. Virology 152: 298–307

    Article  PubMed  CAS  Google Scholar 

  23. Simon K, Garoff H (1980) The budding mechanisms of enveloped animal viruses. J Gen Virol 50: 1–21

    Article  Google Scholar 

  24. Sticzaker SC, Whitfeld PL, Christie DL, Bellamy AR, Both GW (1987) Processing of rotavirus glycoprotein VP7: implications for the retention of the protein in the endoplasmic reticulum. J Cell Biol 105: 2897–2903

    Article  Google Scholar 

  25. Sticzaker SC, Both GW (1989) The signal peptide of rotavirus glycoprotein VP7 is essential for its retention in the ER as an integral membrane protein. Cell 56: 741–747

    Article  Google Scholar 

  26. Suzaki H, Sato T, Konno T, Kitaoka S, Ebina T, Ishida N (1984) Effect of tunicamycin on human rotavirus morphogenesis and infectivity. Arch Virol 81: 363–369

    Article  Google Scholar 

  27. Suzuki H, Konno T, Kitaoka S, Sato T, Ebina T, Ishida N (1984) Further observations on the morphogenesis of human rotavirus in MA104 cells. Arch Virol 79: 147–159

    Article  PubMed  CAS  Google Scholar 

  28. Suzaki H, Kitaoka S, Konno T, Sato T (1991) The localization and function of the neutralizing protein, VP4, in human rotavirus. Tohoku J Exper Med 163: 73–75

    Article  Google Scholar 

  29. Suzuki H, Konno T, Numazaki Y (1993) Electron microscopic evidence for budding process-independent assembly of double-shelled rotavirus particles during passage through endoplasmic reticulum membranes. J Gen Virol 74: 2015–2018

    Article  PubMed  Google Scholar 

  30. Whitfield PL, Tyndall C, Striczaker SC, Bellamy AR, Both GW (1987) Location of signal sequences within the rotavirus SA11 glycoprotein VP7 which direct it to the endoplasmic reticulum. Mol Cell Biol 7: 2491–2479

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag Wien

About this paper

Cite this paper

Suzuki, H. (1996). A hypothesis about the mechanism of assembly of double-shelled rotavirus particles. In: Chiba, S., Estes, M.K., Nakata, S., Calisher, C.H. (eds) Viral Gastroenteritis. Archives of Virology, vol 12. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6553-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6553-9_9

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-82875-5

  • Online ISBN: 978-3-7091-6553-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics