Skip to main content

Molecular systematics of oxygenic photosynthetic bacteria

  • Chapter
Origins of Algae and their Plastids

Part of the book series: Plant Systematics and Evolution ((SYSTEMATICS,volume 11))

Abstract

Molecular phylogenetic analyses of available small ribosomal subunit RNA sequences from cyanobacteria (Cyanophyta) and oxychlorobacteria (Prochlorophyta) were conducted to infer evolutionary relationships among oxygenic photoautotrophic bacteria and plastids. Matrices of pairwise evolutionary distances estimated under two models of molecular evolution provided a basis for phylogenetic analysis using two methods of tree inference. The sequences fell into ten discrete groups of taxa that were subsequently examined more thoroughly using maximum likelihood, maximum parsimony, and distance matrix methods. — Results confirmed those of previous studies, including the deep branching of Pseudanabaena strains and Gloeoebacter violaceus, and the monophyletic grouping of heterocystous cyanobacteria. Several phenotypic characters traditionally used to classify cyanobacteria and oxychlorobacteria do not correlate with the phylogenetic relationships inferred from sequence analysis. In particular, the cyanobacterial genera Synechococcus and Leptolyngbya are clearly polyphyletic. Numerous other genera are paraphyletic. An unexpected result is an association of the pleurocapsalean cyanobacterium Chroococcidiopsis thermalis as a sister taxon to the heterocyst-forming nostocalean and stigonematalean cyanobacteria, distinctly apart from other pleurocapsalean cyanobacteria. — The plastids of photosynthetic eukaryotes constitute a monophyletic subtree within the cyanobacterial line of descent with no apparent relationship to any oxychlorobacteria which are themselves polyphyletic. No strong candidate for the sister taxon to plastids is indicated. Other molecular phylogenetic analyses are reviewed in the light of these results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anagnostidis, K., Komárek, J., 1985: Modern approach to the classification system of cyanophytes 1 — Introduction. — Arch. Hydrobiol. [Suppl.] 71, Algol. Stud. 38/39: 291–302.

    Google Scholar 

  • --1988: Modem approach to the classification system of cyanophytes 3-Oscillatoriales. — Arch. Hydrobiol. [Suppl.] 80, Algol. Stud. 50/53: 327–472.

    Google Scholar 

  • --1990: Modern approach to the classification system of cyanophytes 5-Stigonematales. — Arch. Hydrobiol. [Suppl.] 86, Algol. Stud. 59: 1–73.

    Google Scholar 

  • Baum, B. R., Estabrook, G. F., 1996: Impact of outgroup inclusion on estimates by parsimony of undirected branching of ingroup phylogenetic lines. — Taxon 45: 243–257.

    Google Scholar 

  • Billi, D., Grilli Caiola, M., 1996: Effects of nitrogen limitation and starvation on Chroococcidiopsis sp. (Chroococcales). — New Phytol. 133: 563–571.

    CAS  Google Scholar 

  • Bonen, L., Doolittle, W. F., 1975: On the prokaryotic nature of red algal chloroplasts. — Proc. Natl. Acad. Sci. USA 72: 2310–2314.

    PubMed  CAS  Google Scholar 

  • --1976: Partial sequences of 16S rRNA and the phylogeny of blue-green algae and chloroplasts. — Nature 261: 669–673.

    PubMed  CAS  Google Scholar 

  • --1978: Ribosomal RNA homologies and the evolution of the filamentous blue-green bacteria. — J. Molec. Evol. 10: 283–291.

    PubMed  CAS  Google Scholar 

  • --Fox, G. E., 1979: Cyanobacterial evolution: results of 16S ribosomal ribonucleic acid sequence analyses. — Canad. J. Biochem. 57: 879–888.

    CAS  Google Scholar 

  • Bornet, E., Flahault, C., 1886-1888. Revision des Nostocacees heterocystees. — Ann. Sci. Nat., Bot. 7, Ser. 3: 323–381; 4: 343–373 5: 52–129; 7: 178–262.

    Google Scholar 

  • Bourelly, P., 1970: Les algues d’eau douce. Initiation a la systematique. 3. Les algues bleues et rouges. — Paris: Boubee.

    Google Scholar 

  • -1979: Les cyanophycees, algues ou bacteries? — Rev. Algol., N.S., 14: 5–9.

    Google Scholar 

  • Bremer, B., Bremer, K., 1988: Cladistic analysis of blue-green procaryote interrelationships and chloroplast origin based on 16s rRNA oligonucleotide catalogues. — J. Evol. Biol. 2: 13–30.

    Google Scholar 

  • Britschgi, T. B., Giovannoni, S. J., 1991: Phylogenetic analysis of a natural marine bacterioplankton population by rRNA cloning and sequencing. — Appl. Environ. Microbiol. 57: 1707–1713.

    PubMed  CAS  Google Scholar 

  • Brösius, J., Dull, T. J., Sleeter, D. D., Noller, H. F., 1981: Gene organization and primary structure of a ribosomal RNA Operon from Escherichia coli. — J. Molec. Biol. 148: 107–127.

    PubMed  Google Scholar 

  • Bryant, D. A., 1982: Phycoerythrocyanin and phycoerythrin: properties and occurrence in cyanobacteria. — J. Gen. Microbiol. 128: 835–844.

    CAS  Google Scholar 

  • -1992: Puzzles of chloroplast ancestry. — Curr. Biol. 2: 240–242.

    PubMed  CAS  Google Scholar 

  • Bullerjahn, G. S., Post, A. F., 1993: The prochlorophytes: are they more than just chlorophyll a/b-containing cyanobacteria?. — Crit. Rev. Microbiol. 19: 43–59.

    PubMed  CAS  Google Scholar 

  • Burger-Wiersma, T., Mur, L. R., 1989: Genus “Prochlorothrix” Burger-Wiersma, Veenhuis, Korthals, van de Wiel and Mur 1986. — In Staley, J. T., Bryant, M. P., Pfennig, N., Holt, J. G., (Eds): BERGEY’S manual of systematic bacteriology. 3, pp. 1805–1806. — Baltimore: Williams & Wilkins.

    Google Scholar 

  • Campbell, S. E., 1985: “Oscillatoria limnetica” from Solar Lake, Sinai, is a Phormidium (Cyanophyta or Cyanobacteria). — Arch. Hydrobiol. [Suppl.] 71, Algol. Stud. 38/39: 175–190.

    Google Scholar 

  • Castenholz, R. W., 1989a: Subsection III, order Oscillatoriales. — In Staley, J.T., Bryant, M. P., Pfennig, N., Holt, J. G., (Eds): BERGEY’S manual of systematic bacteriology. 3, pp. 1771–1780. — Baltimore: Williams & Wilkins.

    Google Scholar 

  • -1989b: Subsection IV, order Nostocales. — In Staley, J. T., Bryant, M. P., Pfennig, N., Holt, J. G., (Eds): BERGEY’S manual of systematic bacteriology. 3, pp. 1780–1793. — Baltimore: Williams & Wilkins.

    Google Scholar 

  • -1989c: Subsection V, order Stigonematales. — In Staley, J. T., Bryant, M.P., Pfennig, N., Holt, J. G., (Eds): BERGEY’S manual of systematic bacteriology. 3, pp. 1794–1799. — Baltimore: Williams & Wilkins.

    Google Scholar 

  • -1992: Species usage, concept, and evolution in the cyanobacteria (blue-green algae). — J. Phycol. 28: 737–745.

    Google Scholar 

  • -Waterbury, J. B., 1989: Oxygenic photosynthetic bacteria (sect. 19), group I. Cyanobacteria. — In Staley, J. T., Bryant, M. P., Pfennig, N., Holt, J. G., (Eds): BERGEY’S manual of systematic bacteriology. 3, pp. 1710–1728. — Baltimore: Williams & Wilkins.

    Google Scholar 

  • Cavalli-Sforza, L. L., Edwards, A. W. F., 1967: Phylogenetic analysis: models and estimation procedures. — Evolution 32: 550–570.

    Google Scholar 

  • Chédin, F., Dervyn, E., Dervyn, R., Ehrlich, S. D., Noirot, P., 1994: Frequency of deletion formation decreases exponentially with distance between short direct repeats. — Molec. Microbiol. 12: 561–569.

    Google Scholar 

  • Cohan, F. M., 1994: Genetic exchange and evolutionary divergence in prokaryotes. — Trends Ecol. Evol. 9: 175–180.

    PubMed  CAS  Google Scholar 

  • -1996: The role of genetic exchange in bacterial evolution. — A.S.M. News 62: 631–636.

    Google Scholar 

  • Cohen, Y., Padan, E., Shilo, M., 1975: Facultative anoxygenic photosynthesis in the cyanobacterium Oscillatoria limnetica. — J. Bacteriol. 123: 855–861.

    PubMed  CAS  Google Scholar 

  • Cox, G., 1986: Comparison of Prochloron from different hosts. I. Structural and ultrastructural characteristics. — New Phytol. 104: 429–445.

    Google Scholar 

  • -Dibbayawan, T., 1987: A chloroplast-like DNA arrangement in Synechocystis trididemni (Chrooccales, Cyanophyta). — Phycologia 26: 148–151.

    Google Scholar 

  • -Hiller, R.G., Larkum, A. W. D., 1985: An unusual cyanophyte, containing phycourobilin and symbiotic with ascidians and sponges. — Mar. Biol. 89: 149–163.

    Google Scholar 

  • Delwiche, C. F., Palmer, J. D., 1996: Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. — Molec. Biol. Evol. 13: 873–882.

    PubMed  CAS  Google Scholar 

  • --1997: The origin of plastids and their spread via secondary symbiosis. — Pl. Syst. Evol., [Suppl.] 11: 53–86.

    Google Scholar 

  • Desikachary, T. V., 1959: Cyanophyta. — New Delhi: Indian Council of Agricultural Research.

    Google Scholar 

  • -1973: Status of classical taxonomy. — In Carr, N. G., Whitton, B. A., (Eds): The biology of blue-green algae, pp. 473–486. — Oxford: Blackwell.

    Google Scholar 

  • Diner, B. A., Ries, D. F., Cohen, B. N., Metz, J. G., 1988: COOH-terminal processing of polypeptide D1 of the photosystem II reaction center of Scenedesmus obliquus is necessary for the assembly of the oxygen-evolving complex. — J. Biol. Chem. 263: 8972–8980.

    PubMed  CAS  Google Scholar 

  • Dolganov, N., Grossman, A. R., 1993: Insertional inactivation of genes to isolate mutants of Synechococcus sp. strain PCC 7942: isolation of filamentous strains. — J. Bacteriol. 175: 7644–7651.

    PubMed  CAS  Google Scholar 

  • Douglas, S. E., Carr, N., 1988: Examination of genetic relatedness of marine Synechococcus spp. by using restriction fragment length polymorphisms. — Appl. Environm. Microbiol. 54: 3071–3078.

    CAS  Google Scholar 

  • -Turner, S., 1991: Molecular evidence for the origin of plastids from a cyanobacteriumlike ancestor. — J. Molec. Evol. 33: 267–273.

    PubMed  CAS  Google Scholar 

  • Drouet, F., 1981: Revision of the Stigonemataceae with a summary of the classification of the blue-green algae. — Beih. Nova Hedwigia, 66. — Vaduz: Cramer.

    Google Scholar 

  • Elenkin, A. A., 1938 & 1949: Sinezelenye vodorosli SSSR (Monographia algarum cyanophycearum aquidulcium et terrestrium in finibus URSS inventarum). Systematic part, 1 & 2. — Moscow, Leningrad: Akad. Nauk. SSSR.

    Google Scholar 

  • Erikson, J. M., Rahire, M., Rochaix, J.-D., 1984: Chlamydomonas reihnardii [sic] gene for the 32 000 mol. wt. protein of photosystem II contains four large introns and is located entirely within the chloroplast inverted repeat. — E.M.B.O. J. 3: 2753–2762.

    Google Scholar 

  • Felsenstein, J., 1981: Maximum likelihood and minimum-steps methods for estimating evolutionary trees from data on discrete characters. — Syst. Zool. 22: 240–249.

    Google Scholar 

  • -1993: PHYLIP (Phylogeny Inference Package) version 3.5c-Distributed by the author. — Seattle: Department of Genetics, University of Washington.

    Google Scholar 

  • Ferris, M. J., Ruff-Roberts, A. L., Kopczynski, E. D., Bateson, M. M., Ward, D. M., 1996: Enrichment culture and microscopy conceal diverse thermophilic Synechococcus populations in a single hot spring microbial mat habitat. — Appl. Environm. Microbiol. 62: 1045–1050.

    CAS  Google Scholar 

  • Fitch, W. M., Margoliash, E., 1967: Construction of phylogenetic trees. — Science 155: 279–284.

    PubMed  CAS  Google Scholar 

  • Fox, G. E., Pechman, D. R., Woese, C. R., 1977: Comparative cataloging of the 16S ribosomal ribonucleic acid: molecular approach to procaryotic systematics. — Int. J. Syst. Bacteriol. 27: 44–57.

    CAS  Google Scholar 

  • -Wisotzkey, J. D., Jurtshuk, P., 1992: How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. — Int. J. Syst. Bacteriol. 42: 166–170.

    PubMed  CAS  Google Scholar 

  • Friedmann, E. I., Borowitzka, L. J., 1982: The symposium on taxonomic concepts in bluegreen algae: towards a compromise with the bacteriological code? — Taxon 3: 673–683.

    Google Scholar 

  • -Ocampo-Friedmann, R., Hua, M., 1994: Chroococcidiopsis, the most primitive living cyanobacterium? — Origins Life Evol. Biosphere 24: 269–270.

    Google Scholar 

  • Fritsch, F. E., 1959: The structure and reproduction of the algae. 1. — Cambridge: Cambridge University Press.

    Google Scholar 

  • Geitler, L., 1932: Cyanophyceae. — RABENHORST’S Kryptogamenflora von Deutschland, Österreich und der Schweiz, 14. — Leipzig: Akademische Verlagsgesellschaft (Repri. 1971; New York: Johnson.)

    Google Scholar 

  • -1979: Einige kritische Bemerkungen zu neuen zusammenfassenden Darstellungen der Morphologie und Systematik der Cyanophyceen. — Pl. Syst. Evol. 132: 153–160.

    Google Scholar 

  • Giovannoni, S. J., Turner, S., Olsen, G. J., Barns, S., Lane, D. J., Pace, N. R., 1988: Evolutionary relationships among cyanobacteria and green chloroplasts. — J. Bacteriol. 170: 3584–3592.

    PubMed  CAS  Google Scholar 

  • -Britschgi, T. B., Moyer, C. L., Field, K. G., 1990: Genetic diversity in Sargasso Sea bacterioplankton. — Nature 345: 60–63.

    PubMed  CAS  Google Scholar 

  • Goericke, R., Repeta, D. J., 1992: The pigments of Prochlorococcus marinus: the presence of divinyl chlorophyll a and b in a marine procaryote. — Limnol. & Oceanogr. 37: 425–433.

    CAS  Google Scholar 

  • Golden, S. S., Nalty, M. S., Cho, D.-S. C., 1989: Genetic relationship of two highly studied Synechococcus strains designated Anacystis nidulans. — J. Bacteriol. 171: 24–29.

    PubMed  CAS  Google Scholar 

  • Golubic, S., 1976: Taxonomy of extant stromatolite building cyanophytes. — In Walter, M. R., (Ed.): Stromatolites. — New York: Elsevier Developments in Sedimentology 20: 127–140.

    Google Scholar 

  • -1979: Cyanobacteria (blue-green algae) under the bacteriological code? An ecological objection. — Taxon 28: 387–389.

    Google Scholar 

  • Gomont, M., 1892: Monographie des Oscillariees. — Ann. Sci. Nat., Bot. 7, Ser. 15: 263–368, 16: 91–264. (Reprinted 1962; Weinheim: Cramer.)

    Google Scholar 

  • Gorelova, O. A., Baulina, O. I., Shchelmanova, A. G., Korzhenevskaya, T. G., Gusev, M. V., 1996: Heteromorphism of the cyanobacterium Nostoc sp., a microsymbiont of the Blasia pusilla moss. — Microbiology 65: 791–726 (English translation of Mikrobio-logiya 65: 824–832).

    Google Scholar 

  • Gray, M. W., 1988: Organelle origins and ribosomal RNA. — Biochem. Cell Biol. 66: 325–348.

    PubMed  CAS  Google Scholar 

  • -1992: The endosymbiont hypothesis revisited. — Int. Rev. Cytol. 141: 233–357.

    PubMed  CAS  Google Scholar 

  • -1993: Origin and evolution of organelle genomes. — Curr. Opin. Genet. Developm. 3: 884–890.

    CAS  Google Scholar 

  • -Doolittle, W. F., 1982: Has the endosymbiont hypothesis been proven? — Microbiol. Rev. 46: 1–42.

    Google Scholar 

  • Green, B. R., Durnford, D. G., 1996: The chlorophyll-carotenoid proteins of oxygenic photosynthesis. — Annual Rev. Pl. Physiol. Pl. Molec. Biol. 47: 685–714.

    CAS  Google Scholar 

  • Grilli Caiola, M., Canni, A., Ocampo-Friedmann, R., 1996: Iron superoxide dismutase (Fe-SOD) localization in Chroococcidiopsis sp. (Chroococcales, Cyanobacteria). — Phycologia 35: 90–94.

    Google Scholar 

  • Guglielmi, G., Cohen-Bazire, G., 1984a: Étude taxonomique d’un genre de cyanobactérie oscillatoriacée: le genre Pseudanabaena LAUTERBORN. I. Étude ultrastructurale. — Protistologica 20: 377–391.

    Google Scholar 

  • --1984b: Étude taxonomique d’un genre de cyanobactérie oscillatoriacée: le genre Pseudanabaena LAUTERBORN. II. Analyse de la composition moléculaire et de al structure des phycobilisomes. — Protistologica 20: 393–413.

    CAS  Google Scholar 

  • --Bryant, D. A., 1981: The structure of Gloeobacter violaceus and its phycobilisomes. — Arch. Microbiol. 129: 181–189.

    CAS  Google Scholar 

  • Gutell, R. R., 1993: Collection of small subunit (16S-and 16S-like) ribosomal RNA structures. — Nucl. Acids Res. 21: 3051–3054.

    PubMed  CAS  Google Scholar 

  • -Weiser, B., Woese, C. R., Noller, H. F., 1985: Comparative anatomy of 16S-like ribosomal RNA. — Prog. Nucl. Acid Res. Molec. Biol. 32: 155–216.

    Google Scholar 

  • Hasegawa, M., Kishino, H., Yano, T., 1985: Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. — J. Molec. Evol. 22: 132–147.

    Google Scholar 

  • Hess, W. R., Weihe, A., Loiseaux-De Goër, S., Partensky, F., Vaulot, D., 1995: Characterization of the single psbA gene of Prochlorococcus marinus CCMP 1375 (Prochlorophyta). — Pl. Molec. Biol. 27: 1189–1196.

    CAS  Google Scholar 

  • -Partensky, F., van der Staay, G.W. M., Garcia-Fernandez, J. M., Borner, T., Vaulot, D., 1996: Coexistence of phycoerythrin and a chlorophyll a/b antenna in a marine prokaryote. — Proc. Natl. Acad. Sci. USA 93: 11126–11130.

    PubMed  CAS  Google Scholar 

  • Herdman, M., Janvier, M., Waterbury, J. B., Rippka, R., Stanier, R. Y., Mandel, M., 1979a: Deoxyribonucleic acid base composition of cyanobacteria. — J. Gen. Microbiol. 111: 63–71.

    CAS  Google Scholar 

  • --Rippka, R., Stanier, R. Y., 1979b: Genome size of cyanobacteria. — J. Gen. Microbiol. 111: 73–85.

    Google Scholar 

  • Hillis, D. M., Huelsenbeck, J. P., Swofford, D. L., 1994: Hobglobin of phylogenetics? — Nature 369: 363–364.

    PubMed  CAS  Google Scholar 

  • Hoffmann, L., 1988: Criteria for the classification of blue-green algae (cyanobacteria) at the genus and at the species level. — Arch. Hydrobiol. [Suppl.] 80, Algol. Stud. 50–53: 131–139.

    Google Scholar 

  • Hollerbach, M. M., Kosinskaja, E. K., Poljanskij, V. I., 1953: Sinezelenye vodorosli. [Blue-green algae.]. — In: Opred. presnov. vodoros. SSSR, 2. — Moskva: Sov. Nauka.

    Google Scholar 

  • Ingram, L. O., Blackwell, M. M., 1974: Macromolecular requirements for the physical initiaion of cell division in a filamentous mutant of Agmenellum quadruplicatum. — Biochim. Biophys. Acta 335: 295–302.

    CAS  Google Scholar 

  • -Olson, G. J., Blackwell, M. M., 1975: Isolation of a small-cell mutant in the bluegreen bacterium Agmenellum quadruplicatum. — J. Bacteriol. 123: 743–746.

    PubMed  CAS  Google Scholar 

  • Jensen, T. E., 1985: Cell inclusions in the Cyanobacteria. — Arch. Hydrobiol. [Suppl] 71, Algol. Stud. 38/39: 33–73.

    Google Scholar 

  • -1989: Thylakoids in aged cyanobacterial cells suggest origin of eukaryotic nuclear membranes. — Cytobios 60: 47–61.

    Google Scholar 

  • -1991: Autogenous bacterial origin of the eukaryotic cell. — Endocytobiosis Cell Res. 8: 1–16.

    Google Scholar 

  • Jin, L., Nei, M., 1990: Limitations of the evolutionary parsimony method of phylogenetic analysis. — Molec. Biol. Evol. 7: 82–102.

    PubMed  CAS  Google Scholar 

  • Karabin, G. D., Farley, M., Hallick, R. B., 1984: Chloroplast gene for Mr 32,000 polypeptide of photosystem II in Euglena gracilis is interrupted by four introns with conserved boundary sequences. — Nucl. Acids Res. 12: 5801–5812.

    PubMed  CAS  Google Scholar 

  • Kelly, M. L., Cowie, D. B., 1972: DNA-DNA hybridization studies of blue-green algae. — Carnegie Inst. Wash. Yearbook 71: 276–281.

    Google Scholar 

  • Kishino, H., Hasegawa, M., 1989: Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in Hominoidea. — J. Molec. Evol. 29: 170–179.

    PubMed  CAS  Google Scholar 

  • -Miyata, T., Hasegawa, M., 1990: Maximum likelihood inference of protein phylogeny and the origin of chloroplasts. — J. Molec. Evol. 31: 151–160.

    CAS  Google Scholar 

  • Komárek, J., Anagnostidis, K., 1986: Modern approach to the classification system of cyanophytes 2-Chroococcales. — Arch. Hydrobiol. [Suppl.] 73, Algol. Stud. 43: 157–226.

    Google Scholar 

  • --1989: Modern approach to the classification system of cyanophytes 4-Nostocales. — Arch. Hydrobiol. [Suppl.] 82, Algol. Stud. 56: 247–345.

    Google Scholar 

  • Kondrateva, N.V., 1968: Cyanophyta. — In Vizn. Prisnov. Vodorost. Ukr. RSR 1.2. — Kiev: Vid. “Naukova dumka”.

    Google Scholar 

  • Kondratyeva [sic], N. V., 1982: On difference of opinions of phycologists and bacteriologists concerning the nomenclature of cyanophyta. — Arch. Protistenk. 126: 247–259.

    Google Scholar 

  • Kuhner, M. K., Felsenstein, J., 1994: A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. — Molec. Biol. Evol. 11: 459–468.

    PubMed  CAS  Google Scholar 

  • Kumar, S., Rzhetsky, A., 1996: Evolutionary relationships of eukaryotic kingdoms. — J. Molec. Evol. 42: 183–193.

    PubMed  CAS  Google Scholar 

  • Lachance, M.-A., 1981: Genetic relatedness of heterocystous cyanobacteria by deoxyribonucleic acid-deoxyribonucleic acid reassociation. — Int. J. Syst. Bacteriol. 31: 139–147.

    Google Scholar 

  • Larkum, A. W. D., 1991: The evolution of chlorophylls. — In Scheer, H., (Ed.): Chlorophylls, pp. 367–383. — Boca Raton: CRC Press.

    Google Scholar 

  • -Scaramuzzi, C., Cox, G. C., Hiller, R. G., Turner, A. G., 1994: Light-harvesting chlorophyll c-like pigment in Prochloron. — Proc. Natl. Acad. Sci. USA 91: 679–683.

    Google Scholar 

  • La Roche, J., Partensky, F., Falkowski, P., 1995: The major light-harvesting antenna of Prochlorococcus marinus is similar to CP43′, a chl binding protein induced by iron limitation in cyanobacteria. — In Mathis, P., (Ed.): Photosynthesis: from light to biosphere, 1, pp. 171–174. — Dordrecht: Kluwer.

    Google Scholar 

  • -Van Der Staay, G. W. M., Partensky, F., Ducret, A., Aebersold, R., Li, R., Golden, S. S., Hiller, R. G., Wrench, P. M., Larkum, A. W. D., Green, B. R., 1996: Independent evolutionary of the prochlorophyte and green plant chlorophyll a/b light-harvesting proteins. — Proc. Natl. Acad. Sci. USA 93: 15244–15248.

    Google Scholar 

  • Lewin, R. A., 1979: Formal taxonomic treatment of cyanophytes. — Int. J. Syst. Bacteriol. 29: 411–412.

    Google Scholar 

  • -1989: Group II. Order Prochlorales LEWIN 1977. — In Staley, J. T., Bryant, M. P., Pfennig, N., Holt, J. G., (Eds): BERGEY’S manual of systematic bacteriology. 3, pp. 1805–1806. — Baltimore: Williams & Wilkins.

    Google Scholar 

  • Lloyd, D. G., Calder, V. L., 1991: Multi-residue gaps, a class of molecular characters with exceptional reliability for phylogenetic analyses. — J. Evol. Biol. 4: 9–21.

    Google Scholar 

  • Lockhart, P. J., Penny, D., Hendy, M. D., Larkum, A. D. W., 1993: Is Prochlorothrix hollandica the best choice as a prokaryotic model for higher plant chl a/b photosynthesis? — Photosyn. Res. 37: 61–68.

    CAS  Google Scholar 

  • Loiseaux-de Goër, S., 1994: Plastid lineages. — Progr. Phycol. Res. 10:137–177.

    Google Scholar 

  • Ludwig, W., Schleifer, K. H., 1994: Bacterial phylogeny based on 16S and 23S rRNA sequence analysis. — F.E.M.S. Microbiol. Rev. 15:155–173.

    CAS  Google Scholar 

  • -Neumaier, J., Klugbauer, N., Brockmann, E., Roller, C., Jilg, S., Reetz, K., Schachtner, I., Ludvigsen, A., Bachleitner, M., Fischer, U., Schleifer, K. H., 1993: Phylogenetic relationships of Bacteria based on comparative sequence analysis of elongation facter Tu and ATP-synthase β-subunit genes. — Antonie van Leeuwenhoek 64:285–305.

    PubMed  CAS  Google Scholar 

  • Maddison, W. P., Maddison, D. R., 1992: MacClade: Analysis of phylogeny and character evolution. Version 3.0. — Sunderland, MA: Sinauer.

    Google Scholar 

  • Maidak, B. L., Olsen, G. J., Larsen, N., Overbeek, R., McCaughey, M. J., Woese, C. R., 1996: The ribosomal data base project (RDP). — Nucl. Acids Res. 24:82–85.

    PubMed  CAS  Google Scholar 

  • Marder, J. B., Goloubinoff, P., Edelman, M., 1984: Molecular architecture of the rapidly metabolized 32-kilodalton protein of photosystem II. — J. Biol. Chem. 259:3900–3908.

    PubMed  CAS  Google Scholar 

  • Matthijs, H. C. P., van der Staay, G. W. M., Mur, L. R., 1994: Prochlorophytes: the ‘other’ cyanobacteria?. — In Bryant, D. A., (Ed.): The molecular biology of cyanobacteria, pp. 49–64. — The Netherlands: Kluwer.

    Google Scholar 

  • Meffert, M.-E., 1988: Limnothrix MEFFERT nov. gen. The unsheathed planktic cyanophycean filaments with polar and central gas vacuoles. — Arch. Hydrobiol. [Suppl.] 80, Algol. Stud. 50–53:269–276.

    Google Scholar 

  • Mereschkowsky, C., 1905: Über die Natur und den Ursprung der Chromatophoren im Pflanzenreiche. — Biol. Centralbl. 25:593–604.

    Google Scholar 

  • -1910: Theorie der zwei Plasmaarten als Grundlage der Symbiogenesis, einer neuen Lehre von der Entstehung der Organismen. — Biol. Centralbl. 30:278–303, 321–347, 353–367.

    Google Scholar 

  • Miyashita, H., Ikemoto, H., Kurano, N., Adachi, K., Chihara, M., Miyachi, S., 1996a: Chlorophyll d as a major pigment. — Nature 383:402.

    CAS  Google Scholar 

  • -Kurano, N., Miyachi, S., 1996b: A new oxygenic photosynthetic prokaryote containing chlorophyll d as a major pigment. — Pl. Cell Physiol. 37 [Suppl.]: s48.

    Google Scholar 

  • Miroshnichenko Dolganov, N. A., Bhaya, D., Grossman, A. R., 1995: Cyanobacterial protein with similarity to the chlorophyll a/b binding proteins of higher plants: evolution and regulation. — Proc. Natl. Acad. Sci. USA 92:636–640.

    Google Scholar 

  • Morden, C. W., Golden, S. S., 1989a: psbA genes indicate common ancestry of prochlorophytes and chloroplasts. — Nature 337:382–385.

    PubMed  CAS  Google Scholar 

  • -1989b: Corrigendum: psbA genes indicate common ancestry of prochlorophytes and chloroplasts. — Nature 339:400.

    Google Scholar 

  • -1991: Sequence analysis and phylogenetic reconstruction of the genes encoding the large and small subunits of ribulose-1, 5-bisphosphate carboxylase/oxygenase from the chlorophyll b-containing prokaryote Prochlorothrix hollandica. — J. Molec. Evol. 32:379–395.

    Google Scholar 

  • -Delwiche, C. F., Kuhsel, M., Palmer, J. D., 1992: Gene phylogenies and the endosymbiotic origin of plastids. — BioSystems 28:75–90.

    PubMed  CAS  Google Scholar 

  • Neilan, B. A., Cox, P. T., Hawkins, P. R., Goodman, A. E., 1994: 16S ribosomal RNA gene sequence and phylogeny of toxic Microcystis sp. (cyanobacteria). — DNA Sequence 4:333–337.

    PubMed  CAS  Google Scholar 

  • -Jacobs, D., Del Dot, T., Blackall, L. L., Hawkins, P. R., Cox, P. T., Goodman, A. E., 1997: rRNA sequences and evolutionary relationships among toxic and nontoxic cyanobacteria of the genus Microcystis. Int. J. Syst. Bacteriol. 47:693–697.

    PubMed  CAS  Google Scholar 

  • Nelissen, B., Wilmotte, A., De Baere, R., Haes, F., Van de Peer, Y., Neefs, J.-M., De Wachter, R., 1992: Phylogenetic study of cyanobacteria on the basis of 16S ribosomal RNA sequences. — Belg. J. Bot. 125:210–213.

    Google Scholar 

  • --Neefs, J.-M., De Wachter, R., 1995a: Phylogenetic relationships among filamentous helical cyanobacteria investigated on the basis of 16S ribosomal RNA gene sequence analysis. — Syst. Appl. Microbiol. 17:206–210.

    Google Scholar 

  • -Van de Peer, Y., Wilmotte, A., De Wachter, R., 1995b: An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S rRNA sequences. — Molec. Biol. Evol. 12:1166–1173.

    PubMed  CAS  Google Scholar 

  • -De Baere, R., Wilmotte, A., De Wachter, R., 1996: Phylogenetic relationships of nonaxenic filamentous cyanobacterial strains based on 16S rRNA sequence analysis. — J. Molec. Evol. 42:194–200.

    PubMed  CAS  Google Scholar 

  • Olsen, G. J., Matsuka, H., Hagstrom, R., Overbeek, R., 1994: fastDNAml: A tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. — Computer Applic. Biosci. 10:41–48.

    CAS  Google Scholar 

  • Palinska, K. A., Liesack, W., Rhiel, E., Krumbein, W. E., 1996: Phenotype variability of identical genotypes: the need for a combined approach in cyanobacterial taxonomy demonstrated on Merismopedia-like isolates. — Arch. Microbiol. 166:224–233.

    PubMed  CAS  Google Scholar 

  • Partensky, F., Hoepffner, N., Li, W. K. W., Ulloa, D., Vaulot, D., 1993: Photoacclimation of Prochlorococcus sp. (Prochlorophyta) strains isolated from the North Atlantic and the Mediterranean Sea. — Pl. Physiol. 101:285–296.

    CAS  Google Scholar 

  • Porra, R. J., Schäfer, W., Gad’on, N., Katheder, I., Drews, G., Scheer, H., 1996: Origin of the two carbonyl oxygens of bacteriochlorophyll a. Demonstration of two different pathways for the formation of ring E in Rhodobacter sphaeroides and Roseobacter denitrificans, and a common hydratase mechanism for 3-acetyl group formation. — Eur. J. Biochem. 239:85–92.

    PubMed  CAS  Google Scholar 

  • Post, A. F., Bullerjahn, G. S., 1994: The photosynthetic machinery in prochlorophytes: structural properties and ecological significance. — F.E.M.S Microbiol. Rev. 13:393–414.

    CAS  Google Scholar 

  • Prufert-Bebout, L., Garcia-Pichel, F., 1994: Field and cultivated Microcoleus chthonoplastes: The search for clues to its prevalence in marine microbial mats. — In Stal, L. L., Caumette, P., (Eds): Microbial mats. Structure development and environmental significance, pp. 111–116, — Berlin, Heidelberg New York: Springer.

    Google Scholar 

  • Raven, P. H., 1970: A multiple origin for plastids and mitochondria. — Science 169:641–646.

    PubMed  CAS  Google Scholar 

  • Rippka, R., 1988: Recognition and identification of cyanobacteria. — Meth. Enzymol. 167:28–67.

    Google Scholar 

  • -Cohen-Bazire, G., 1983: The Cyanobacteriales: a legitimate order based on the type strain Cyanobacterium stanieri? — Ann. Microbiol. 134B:21–36.

    Google Scholar 

  • -Herdman, H., 1992: Pasteur Culture Collection of Cyanobacteria catalogue & taxonomic handbook. 1. Catalogue of strains. — Paris: Institut Pasteur.

    Google Scholar 

  • -Waterbury, J., Cohen-Bazire, G., 1974: A cyanobacterium which lacks thylakoids. — Arch. Microbiol. 100:419–436.

    Google Scholar 

  • -Deruelles, J., Waterbury, J. B., Herdman, M., Stanier, R. Y., 1979: Generic assignments, strain histories and properties of pure cultures of cyanobacteria. — J. Gen. Microbiol. 111:1–61.

    Google Scholar 

  • Rodrigo, A. G., 1992: Two optimality criteria for selecting subsets of most parsimonious trees. — Syst. Biol. 41:33–40.

    Google Scholar 

  • Sagan, L., 1967: On the origin of mitosing cells. — J. Theoret. Biol. 14:225–274.

    CAS  Google Scholar 

  • Saitou, N., Nei, M., 1987: The neighbor-joining method: a new method for reconstructing phylogenetic trees. — Molec. Biol. Evol. 4:406–425.

    PubMed  CAS  Google Scholar 

  • Schimper, A. F. W., 1883: Ueber die Entwickelung der ChlorophyllkÖrner und FarbkÖrper. — Bot. Zeitung (Leipzig) 41:105–112.

    Google Scholar 

  • Schopf, J. W., 1994: Disparate rates, differing fates: tempo and mode of evolution changed from the Precambrian to the Phanerozoic. — Proc. Natl. Acad. Sci. USA 91:6735–6742.

    PubMed  CAS  Google Scholar 

  • Seewaldt, E., Stackebrandt, E., 1982: Partial sequence of 16S ribosomal RNA and the phylogeny of Prochloron. — Nature 295:618–620.

    CAS  Google Scholar 

  • Selstam, E., Campbell, D., 1996: Membrane lipid composition of the unusual cyanobacterium Gloeobacter violaceus sp. PCC 7421, which lacks sulfoquinovosyl diacylglycerol. — Arch. Microbiol. 166:132–135.

    CAS  Google Scholar 

  • Stackebrandt, E., Goebel, B. M., 1994: Taxonomic note: A place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. — Int. J. Syst. Bacteriol. 44:846–849.

    CAS  Google Scholar 

  • -Seewaldt, E., Fowler, V. J., Schleifer, K.-H., 1982: The relatedness of Prochloron sp. isolated from different didemnid ascidian hosts. — Arch. Microbiol. 132:216–217.

    Google Scholar 

  • Stam, W. T., 1980: Relationships between a number of filamentous blue-green algal strains (Cyanophyceae) revealed by DNA-DNA hybridization. — Arch. Hydrobiol. [Suppl.] 56, Algol. Stud. 25:351–374.

    Google Scholar 

  • -Venema, G., 1977: The use of DNA-DNA hybridization for determination of the relationship between some blue-green algae (Cyanophyceae). — Acta Bot. Neerl. 26:327–342.

    Google Scholar 

  • -Boele-Bos, S. A., Stulp, B. K., 1985: Genotypic relationships between Prochloron samples from different localities and hosts as determined by DNA-DNA reassociations. — Arch. Microbiol. 142:340–341.

    Google Scholar 

  • Stanier, R. Y., van Niel, C. B., 1962: The concept of a bacterium. — Arch. Mikrobiol. 42:17–35.

    PubMed  CAS  Google Scholar 

  • -Sistrom, W. R., Hansen, T. A., Whitton, B. A., Castenholz, R. W., Pfennig, N., Gorlenko, V. N., Kondratieva, E. N., Eimhjellen, K. E., Whittenbury, R., Gherna, R. L., Truper H. G., 1978: Proposal to place the nomenclature of the cyanobacteria (blue-green algae) under the rules of the International Code of Nomenclature of Bacteria. — Int. J. Syst. Bacteriol. 28:335–336.

    Google Scholar 

  • Starmach, K., 1996: Cyanophyta-sinice, Glaucophyta-glaukofity. — Flora Slodkowodna Polski, 2. — Warszawa: Panstwowe wydawnietwo naukowe.

    Google Scholar 

  • Strimmer, K., von Haeseler, A., 1996: Quartet puzzling: a quartet maximum-likelihood method for reconstructing tree topologies. — Molec. Biol. Evol. 13:964–969.

    CAS  Google Scholar 

  • Stulp, B. K., Stam, W. T., 1984: Genotypic relationships between strains of Anabaena (Cyanophyceae) and their correlation with morphological affinities. — Brit. Phycol. J. 19:287–301.

    Google Scholar 

  • Swofford, D. L., 1993: PAUP: Phylogenetic analysis using parsimony, version 3.1. — Computer program distributed by the Illinois Natural History Survey, Champaign, Illinois.

    Google Scholar 

  • Takahashi, Y., Nakane, H., Kojima, H., Satoh, K., 1990: Chromatographic purification and determination of the carboxy-terminal sequences of photosystem II reaction center proteins, D1 and D2. — Pl. Cell Physiol. 31:273–280.

    CAS  Google Scholar 

  • Tamura, K., Nei, M., 1993: Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. — Molec. Biol. Evol. 10:512–526.

    PubMed  CAS  Google Scholar 

  • Thuret, G., 1875: Essai de classification des Nostochinees. — Ann. Sci. Nat., Bot. 6, Ser. 1:372–382.

    Google Scholar 

  • Tomioka, N., Shinozaki, K., Sugiura, M., 1981: Molecular cloning and characterization of ribosomal RNA genes from a blue-green alga, Anacystis nidulans. — Molec. Gen. Genet. 184:359–363.

    CAS  Google Scholar 

  • Turner, S., De Long, E. F., Giovannoni, S. J., Olsen, G. J., Pace, N. R., 1989a: Phylogenetic analysis of microorganisms and natural populations by using rRNA sequences. — In Cohen, Y., Rosenberg, E., (Eds): Microbial mats. Physiological ecology of benthic microbial communities, pp. 390–401. — Washington D. C.: American Society for Microbiology.

    Google Scholar 

  • -Burger-Wiersma, T., Giovannoni, S. J., Mur, L. R., Pace, N. R., 1989b: The relationship of a prochlorophyte, Prochlorothrix hollandica, to green chloroplasts. — Nature 337:380–382.

    PubMed  CAS  Google Scholar 

  • Urbach, E., Robertson, D. L., Chisholm, S. W., 1992: Multiple evolutionary origins of prochlorophytes within the cyanobacterial radiation. — Nature 335:267–270.

    Google Scholar 

  • VAN DER Staay, G. W. M., Ducret, A., Aebersold, R., Li, R., Golden, S. S., Hiller, R. G., Wrench, P. M., Larkum, A. W. D., Green, B. R., 1995: The chl a/b antenna from prochlorophytes is related to the iron stress-induced chl a antenna (isiA) from cyanobacteria. — In Mathis, P., (Ed.): Photosynthesis: from light to biosphere, 1, pp. 175–178. — Dordrecht: Kluwer.

    Google Scholar 

  • Van Valen, L. M., 1982: Phylogenies in molecular evolution: Prochloron. — Nature 298:493–494.

    Google Scholar 

  • Wakeley, J., 1996: The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. — Trends Ecol. Evol. 11:158–163.

    PubMed  CAS  Google Scholar 

  • Ward, D. M., Ferris, M. J., Nold, S. C., Bateson, M. M., Kopczynski, E. D., Ruff-Roberts, A. L., 1994: Species diversity in hot spring microbial mats as revealed by both molecular and enrichment culture approaches-relationship between biodiversity and community structure. — In Stal, L. L., Caumette, P. (Eds): Microbial mats. Structure development and environmental significance, pp. 33–44. — Berlin, Heidelberg New York: Springer.

    Google Scholar 

  • Waterbury, J. B., 1989: Subsection II, order Pleurocapsales GEITLER 1925, emend. Waterbury & Stanier 1978. — In Staley, J. T., Bryant, M. P., Pfennig, N., Holt, J. G., (Eds): BERGEY’S manual of systematic bacteriology. 3, pp. 1746–1770. — Baltimore: Williams & Wilkins.

    Google Scholar 

  • -Rippka, R., 1989: Subsection I, order Chroococcales WETTSTEIN 1924, emend. RIPPKA et al., 1979. — In Staley, J. T., Bryant, M. P., Pfennig, N., Holt, J. G., (Eds): BERGEY’S manual of systematic bacteriology. 3, pp. 1728–1746. — Baltimore: Williams & Wilkins.

    Google Scholar 

  • Weller, R., Weller, J. W., Ward, D. M., 1991: 16S rRNA sequences of uncultivated hot springs cyanobacterial mat inhabitants retrieved as randomly primed cDNA. — Appl. Environm. Microbiol. 57:1146–1151.

    CAS  Google Scholar 

  • -Bateson, M. M., Heimbuch, B. K., Kopczynski, E. D., Ward, D. M., 1992: Uncultivated cyanobacteria, Chlorflexus-like inhabitants, and spirochete-like inhabitants of a hot spring microbial mat. — Appl. Environm. Microbiol. 58:3964–3969.

    CAS  Google Scholar 

  • -Whitton, B. A., 1989: Genus 1. Calothrix AGARDH 1824. — In Staley, J. T., Bryant, M. P., Pfennig, N., Holt, J. G., (Eds): BERGEY’S manual of systematic bacteriology. 3 pp. 1791–1793. — Baltimore: Williams & Wilkins.

    Google Scholar 

  • Wilmotte, A., 1991: Taxonomic study of marine oscillatoriacean strains (Cyanophyceae, Cyanobacteria) with narrow trichomes. I. Morphological variability and autecological features. — Archiv. Hydrobiol. [Suppl.] 92, Algol. Stud. 64:215–248.

    Google Scholar 

  • -1994: Molecular evolution and taxonomy of the cyanobacteria. — In Bryant, D. A., (Ed.): The molecular biology of Cyanobacteria, pp. 1–25. — The Netherlands: Kluwer.

    Google Scholar 

  • -Golubic, S., 1991: Morphological and genetic criteria in the taxonomy of Cyanophyta/ Cyanobacteria. — Archiv. Hydrobiol. [Suppl.] 92, Algol. Stud. 64:1–24.

    Google Scholar 

  • -Stam, W. T., 1984: Genetic relationships among cyanobacterial strains originally designated as ‘Anacystis nidulans’ and some other Synechococcus strains. — J. Gen. Microbiol. 130:2737–2740.

    Google Scholar 

  • -Urner, S., Van De Peer, Y., Pace, N. R., 1992: Taxonomic study of marine Oscillatoriacean strains (Cyanophyceae, Cyanobacteria) with narrow trichomes. II. Nucleotide sequence analysis of the 16S ribosomal RNA. — J. Phycol. 28:828–838.

    Google Scholar 

  • -Vander Auwera, G., De Wachter, R., 1993: Structure of the 16S ribosomal RNA of the thermophilic cyanobacterium Chlorogloeopsis HTF (‘Mastigocladus laminosus HTF’) strain PCC7518, and phylogenetic analysis, — F.E.B.S Lett. 317:96–100.

    Google Scholar 

  • -Neefs, J.-M., De Wachter, R., 1994: Evolutionary affiliation of the marine nitrogenfixing cyanobacterium Trichodesmium sp. strain NIBB 1067, derived by 16S ribosomal RNA sequence analysis. — Microbiology 140:2159–2164.

    Google Scholar 

  • Woese, C. R., 1987: Bacterial evolution. — Microbiol. Rev. 51:221–271.

    PubMed  CAS  Google Scholar 

  • -Sogin, M. L., Bonen, L., Stahl, D., 1975: Sequence studies on 16S ribosomal RNA from a blue-green alga. — J. Molec. Evol. 4:307–315.

    Google Scholar 

  • -Kandler, O., Wheelis, M. L., 1990: Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. — Proc. Natl. Acad. Sci. USA 87:4576–4579.

    Google Scholar 

  • Wood, A. M., Townsend, D., 1990: DNA polymorphism within the WH7803 serogroup of marine Synechococcus spp. (Cyanobacteria). — J. Phycol. 26:576–585.

    CAS  Google Scholar 

  • Yamada, T., 1991: Repetitive sequence-mediated rearrangements in Chlorella ellipsoidea chloroplast DNA: completion of nucleotide sequence of the large inverted repeat. — Curr. Genet. 19:139–147.

    PubMed  CAS  Google Scholar 

  • Yang, Z., 1994: Statistical properties of the maximum likelihood method of phylogenetic estimation and comparison with distance matrix methods. — Syst. Biol. 43:329–342.

    Google Scholar 

  • Zimmerman, W. J., Bergman, B., 1990: The Gunnera symbiosis: DNA restriction fragment length polymorphism and protein comparisons of Nostoc symbionts. — Microbial Ecol. 19:291–302.

    CAS  Google Scholar 

  • -Rosen, B. H., 1992: Cyanobiont diversity within and among cycads of one field site. — Canad. J. Microbiol. 38:1324–1328.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Turner, S. (1997). Molecular systematics of oxygenic photosynthetic bacteria. In: Bhattacharya, D. (eds) Origins of Algae and their Plastids. Plant Systematics and Evolution, vol 11. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6542-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6542-3_2

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83035-2

  • Online ISBN: 978-3-7091-6542-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics