Skip to main content

Inverse Obstacle Scattering with Modulus of the Far Field Pattern as Data

  • Chapter
Inverse Problems in Medical Imaging and Nondestructive Testing

Abstract

For the two-dimensional inverse scattering problem for a sound-soft or perfectly conducting obstacle we may distinguish between uniqueness results on three different levels. Consider the scattering of a plane wave u i(x) = e ikx·d (with wave number k > 0 and direction d of propagation) by an obstacle D, that is, a bounded domain D ⊂ IR2 with a connected boundary ∂D. Then the total wave u is given by the superposition u = u i + u s of the incident wave u i and the scattered wave u s and obtained through the solution of the Helmholtz equation

$$\bigtriangleup u+k^{2} u = \textup{0 in IR}^{2} \setminus \bar{D}$$

subject to the Dirichlet boundary condition

$$u = \textup{0 on }\partial D$$

and the Sommerfeld radiation condition

$$\underset{r\rightarrow \infty} {\textup{lim}}\sqrt{r}\left ( \frac{\partial u^{s}}{\partial r}-iku^{s} \right )= 0, r = \left | x \right |$$

, uniformly with respect to all directions. The exterior Dirichlet problem (1)–(3) has a unique solution provided the boundary ∂D is of class C 2 (see [1, 2]).

This research was supported in part by grants from the Deutsche Forschungsgemeinschaft and the National Science Foundation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Colton, D., and Kress, R.: Integral Equation Methods in Scattering Theory. Wiley-Interscience Publication, New York 1983.

    MATH  Google Scholar 

  2. Colton, D., and Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer-Verlag, Berlin Heidelberg New York 1992.

    MATH  Google Scholar 

  3. Colton, D., and Sleeman, B.D.: Uniqueness theorems for the inverse problem of acoustic scattering. IMA J. Appl. Math. 31, 253–259 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  4. Hanke, M., Hettlich, F. and Scherzer, O.: The Landweber Iteration for an Inverse Scattering Problem. In: Proceedings of the 1995 Design Engineering Technical Conferences, Vol. 3 Part C, Vibration Control, Analysis, and Identification, ( Wang et. al., eds) 909–915. The American Society of Mechanical Engineers, New York, 1995.

    Google Scholar 

  5. Hanke, M., Neubauer, A. and Scherzer, O.: A convergence analysis of the Landweber iteration for nonlinear ill-posed problems. Numer. Math. 72, 21–37 (1995).

    Article  MathSciNet  MATH  Google Scholar 

  6. Hettlich, F.: An iterative method for the inverse scattering problem from soundhard obstacles. In: Proceedings of the ICIAM 95, Vol. II, Applied Analysis, ( Mahrenholz & Mennicken, eds), Akademie Verlag, Berlin, 1996.

    Google Scholar 

  7. Hettlich, F., and Rundell, W.: A quasi-Newton method in inverse obstacle scattering. Inverse Problems 12, 251–266 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  8. Kirsch, A.: The domain derivative and two applications in inverse scattering theory. Inverse Problems 9, 81–96 (1993).

    Article  MathSciNet  MATH  Google Scholar 

  9. Kirsch, A.: Numerical algorithms in inverse scattering theory, In: Ordinary and Partial Differential Equations, Vol. IV, ( Jarvis & Sleeman, eds) Pitman Research Notes in Mathematics 289, 93–111, Longman, London 1993.

    Google Scholar 

  10. Kress, R.: A Newton method in inverse obstacle scattering, In: Inverse Problems in Engineering Mechanics, ( Bui et al, eds) 425–432, Balkema, Rotterdam 1994.

    Google Scholar 

  11. Kress, R.: Integral equation methods in inverse obstacle scattering, Engineering Anal. with Boundary Elements 15, 171–179 (1995)

    Article  Google Scholar 

  12. Kress, R., and Rundell, W.: A quasi-Newton method in inverse obstacle scattering, Inverse Problems 10, 1145–1157 (1994).

    Article  MathSciNet  MATH  Google Scholar 

  13. Mönch, L.: A Newton method for solving the inverse scattering problem for a sound-hard obstacle. Inverse Problems 12, 309–323 (1996).

    Article  MathSciNet  MATH  Google Scholar 

  14. Potthast, R.: Fréchet differentiability of boundary integral operators in inverse acoustic scattering. Inverse Problems 10, 431–447 (1994).

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag Wien

About this chapter

Cite this chapter

Kress, R., Rundell, W. (1997). Inverse Obstacle Scattering with Modulus of the Far Field Pattern as Data. In: Engl, H.W., Louis, A.K., Rundell, W. (eds) Inverse Problems in Medical Imaging and Nondestructive Testing. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6521-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6521-8_7

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83015-4

  • Online ISBN: 978-3-7091-6521-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics