Skip to main content

Spinal cord bioelectrical activity, edema and cell injury following a focal trauma to the rat spinal cord. An experimental study using pharmacological and morphological approaches

  • Chapter
Book cover Spinal Cord Monitoring

Abstract

Trauma to the spinal cord is associated with problems of sensory and motor disturbances along with abnormalities of reflex activities (Faden, 1987; Tator and Fehlings, 1991 ; Faden and Salzman, 1992; Faden, 1993a; Schwab and Bartholdi, 1996). The prevalence of spinal cord injury is about 30 to 50 cases per million population per year in the United States of America which is quite comparable to Europe and other continents (Tator and Edmonds, 1979; Schwab and Bartholdi, 1996) (Table 1). The victims of cord trauma are mainly young men in their early 20 to 30 years of age and only 20 to 30% of spinal cord injury cases involves women. The major cause of spinal cord injury is motor vehicle accidents followed by fall, penetrating injuries like gun shot, knife wounds or sports injuries (Tator and Fehlings, 1991; Schwab, and Bartholdi, 1996). The cervical spinal cord and thoracolumbar junctions are mostly affected following such injuries (Kakulas, 1984; Kakulas and Taylor, 1991). About half of the patients with cord trauma have complete injuries without any signs of voluntary motor or sensory perception below the level of the lesion (Schwab and Bartholdi, 1996). The symptoms of spinal cord injury includes quadruplegia that involves paralysis of the upper and lower extremities followed by paraplegia involving only the lower extremity. The other leading causes of paralysis involving spinal cord are multiple sclerosis, ischemia and tumours (Kakulas, 1984; Ducker, 1976).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen AR (1911) Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column. Preliminary report. JAMA 57: 878–880

    Google Scholar 

  • Allen AR (1914) Remarks on the histopathological changes in the spinal cord due to impact. An experimental study. J Nerv Ment Dis 41: 141–147

    Google Scholar 

  • Anderson DK, Prockop LD, Means ED, Hartley LE (1976) Cerebrospinal fluid lactate and electrolyte levels following experimental spinal cord injury. J Neurosurg 44: 715–722

    PubMed  CAS  Google Scholar 

  • Araki T, Eccles JC, Ito M (1960) Correlation of the inhibitory postsynaptic potential of motoneurones with the latency and time course of inhibition of monosynaptic reflexes. J Physiol 154: 354–377

    PubMed  CAS  Google Scholar 

  • Arenander AT, Vellis JD (1984) Frontiers of glial physiology. In: Rosenberg RN, Willis Jr WD (eds) The Clinical Neurosciences, Vol V. Neurobiology. Raven Press, New York, pp 53–91

    Google Scholar 

  • Ashford T, Palmerio C, Fine J (1966) Structural analogue in vascular muscle to the functional disorder in refractory traumatic shock and reversal by corticosteroid: Electron microscopic evaluation. Ann Surg 164, p 575

    PubMed  CAS  Google Scholar 

  • Austin GM, McCouch GP (1955) Presynaptic component of intermediary cord potential. J Neurophysiol 18: 441–451

    PubMed  CAS  Google Scholar 

  • Balentine JD (1978) Pathology of experimental spinal cord trauma II Ultrastructure of axons and myelin. Lab Invest 39: 254–266

    PubMed  CAS  Google Scholar 

  • Balentine JD (1988) Spinal cord trauma: in search of the meaning of granular axoplasm and vesicular myelin. J Neuropath Exp Neurol 47: 77–92

    PubMed  CAS  Google Scholar 

  • Balentine JD, Spector M (1977) Calcification of axons in experimental spinal cord trauma. Ann Neurol 2: 520–523

    PubMed  CAS  Google Scholar 

  • Barbeau H, Chau C, Rossignol S (1993) Noradrenergic agonists and locomotor training recovery after cord transection in adult cats. Brain Res Bull 30: 387–393

    PubMed  CAS  Google Scholar 

  • Barron DH, Matthews BHC (1938) The interpretation of potential changes in the spinal cord. J Physiol 92: 276–321

    PubMed  CAS  Google Scholar 

  • Bennet HM (1984) Correlations of ascending and descending conduction block following ischemic and compressive insult to the spinal cord of cat. In: Homma S, Tamaki T (eds) Fundamentals and clinical application of spinal cord monitoring. Saikon, Tokyo, pp 125–134

    Google Scholar 

  • Bernhard CG (1953) The spinal cord potentials in leads from the cord dorsum in relation to peripheral source of afferent stimulation. Acta Physiol Scand 106 [Suppl] 29: 1–29

    Google Scholar 

  • Bignami AD, Dahl D, Rueger DC (1980) Glial fibrillary acidic protein (GFAP) in normal neural cells and in pathological conditions. Adv Cell Neurobiol 1: 285–319

    CAS  Google Scholar 

  • Bracken MB, Holford TR (1993) Effects of timing of methylprednisolone or naloxone administration on recovery of segmental and long-tract neurological function in NASCIS 2. J Neurosurg 79: 500–507

    PubMed  CAS  Google Scholar 

  • Braughler JM, Hall ED (1982) Correlation of methylprednisolone levels in cat with its effects on (Na+ K+)-ATPase, lipid peroxidation, and alpha motor neuron function. J Neurosurg 56: 838–844

    PubMed  CAS  Google Scholar 

  • Brooks C McC, Fuortes MGF (1952) The relation of dorsal and ventral root potentials to reflex activity in mammals. J Physiol 116: 380–394

    PubMed  CAS  Google Scholar 

  • Burke RE, Rudomin P (1977) Spinal neurons and synapses. In: Kandel E (ed) Handbook of Physiology: section I, The Nervous System. American Physiology Society, Bethesda, pp 877–944

    Google Scholar 

  • Campbell B (1945) The distribution of potential fields within the spinal cord. Anat Rec 91: 77–88

    Google Scholar 

  • Cervós-Navarro J, Ferszt R (1980) Brain Edema: Pathology, Diagnosis and Therapy. Adv Neurol 20: 1–450

    Google Scholar 

  • Cervós-Navarro J, Sharma HS, Westman J, Bongcum-Rudloff E (1998) Glial cell reactions in the central nervous system following heat stress. In: Sharma HS, Westman J (eds) Brain Function in Hot Environment, Progress in Brain Research. Elsevier, Amsterdam 115: 241–274

    Google Scholar 

  • Chaouloff F (1993) Physiopharmacological interactions between stress hormones and central serotonergic systems. Brain Res Rev 18: 1–32

    PubMed  CAS  Google Scholar 

  • Chieuh CC, Gilbert DL, Colton CA (1994) The neurobiology of NO&#c2019; and OH&#c2019;. Ann NY Acad Sci 738: 1–471

    Google Scholar 

  • Choi DW (1992) Excitotoxic cell death. J Neurobiol 23: 1261–1276

    PubMed  CAS  Google Scholar 

  • Choi DW, Barde Y-A, Kosic KS, Muller HW, Schwartz R, Schwartz M, Shooter EM, Siesjo BK, Unsicker K (1991) Group report: neuronal death and survival. In: Price D L, Thoenen H, Aguayo AJ (eds) Neurodegenerative Disorders: Mechanisms and Prospects for Therapy. Wiley, West Sussex, pp 233–248

    Google Scholar 

  • Chrousos GP, McCarty R, Pacak KG, Sternberg E, Gold PW, Kvetnansky R (1995) Stress: Mechanisms and clinical implications. Ann NY Acad Sci 771: 1–471

    PubMed  Google Scholar 

  • Clasen RA, Cooke PM, Pandolfi S, Carnecki G (1963) The effects of focal freezing on the central nervous system. Presbyterian St Luke’s Med Bull 2: 36–46

    CAS  Google Scholar 

  • Clendendon NR, Allen N, Ito T, Gordon WA, Yashon D (1978) Response of lysosomal hydrolases of dog spinal cord and cerebrospinal fluid to experimental trauma. Neurology 28: 78–84

    Google Scholar 

  • Constantini S, Young W (1994) The effects of methylprednisolone and the ganglioside GM1 on acut e spinal cord injury in rats. J Neurosurg 80: 97–111

    PubMed  CAS  Google Scholar 

  • Coombs JS, Curtis DR, Landgren S (1956) Spinal cord potentials generated by impulses in muscle and cutaneous afferent fibers. J Neurophysiol 19: 452–467

    PubMed  CAS  Google Scholar 

  • Dawson GD (1947) Cerebral responses to electrical stimulation of peripheral nerve in man. J Neurol Neurosurg Psychiatry 10: 137–139

    Google Scholar 

  • Dawson VL, Dawson TM (1996) Nitric oxide neurotoxicity. J Chem Neuroanat 10: 179–190

    PubMed  CAS  Google Scholar 

  • D’Anglo CM, Gilder JCV, Taub AT (1973) Evoked cortical potentials in experimental spinal cord trauma. J Neurosurg 38: 322–336

    Google Scholar 

  • de la Torre JC (1981) Spinal cord injury. Review of basic and applied research. Spine 6: 315–335

    Google Scholar 

  • Demediuk P, Faden AI (1988) Traumatic spinal cord injury in rats causes increases in tissue thromboxane but not peptidoleukotrienes. J Neurosci Res 20: 115–121

    PubMed  CAS  Google Scholar 

  • Dey PK, Sharma HS (1983) Ambient temperature and development of traumatic brain edema in anaesthetized animals. Indian J Med Res 77: 554–563

    PubMed  CAS  Google Scholar 

  • Dey PK, Sharma HS (1984) Influence of ambient temperature and drug treatments on brain edema induced by impact injury on skull in rat. Indian J Physiol Pharmacol 28: 177–186

    PubMed  CAS  Google Scholar 

  • Dimitrijevic MR, Dimitrijevic MM, Faganel J, Sherwood AM (1984) Suprasegmentally induced motor unit activity in paralyzed muscles of patients with established spinal cord injury. Ann Neurol 16: 216–221

    PubMed  CAS  Google Scholar 

  • Dimitrijevic MR, Hsu CY, McKay WB (1992) Neurophysiological assessment of spinal cord and head injury. J Neurotrauma 9 [Suppl] 1: 293–300

    Google Scholar 

  • Dohrmann GJ, Jr FCW, Bucy PC (1971) The microvasculature in transitory traumatic paraplegia. An electron microscopic study in the monkey. J Neurosurg 35: 263–271

    CAS  Google Scholar 

  • Ducker TB (1976) Experimental injury of the spinal cord. In: Vinken PJ, Bruyn GW (eds) Handbook of Clinical Neurology, Vol. 9. Elsevier, New York, pp 26–68

    Google Scholar 

  • Ducker TB, Brown RH (1989) Neurophysiology and Standards of Spinal Cord Monitoring. Elsevier, Amsterdam

    Google Scholar 

  • Ducker TB, Kindt GW, Kempe LG (1971) Pathological findings in acute experimental spinal cord trauma. J Neurosurg 35: 700–708

    PubMed  CAS  Google Scholar 

  • Duffy PE (1984) Astrocytes: normal, reactive and neoplastic. Raven Press, New York

    Google Scholar 

  • Eccles JC (1957) The physiology of nerve cells. Johns Hopkins, Baltimore

    Google Scholar 

  • Eccles JC (1964) The physiology of synapses. Springer, Wien New York

    Google Scholar 

  • Eccles JC, Fatt P, Landgren S, Winsbury GJ (1954) Spinal cord potentials generated by volly in the large muscle afferents. J Physiol 125: 590–606

    PubMed  CAS  Google Scholar 

  • Eccles JC, Kostyuk PG, Schmidt RF (1962) Central pathways responsible for depolarization of primary afferent fibres. J Physiol 161: 237–257

    PubMed  CAS  Google Scholar 

  • Eidelberg E, Sullivan J, Brigham A (1975) Immediate consequences of spinal cord injury: Possible role of potassium in axonal conduction block. Surg Neurol 3: 317–324

    PubMed  CAS  Google Scholar 

  • Faden AI (1987) Pharmacotherapy in spinal cord injury: a critical review of recent developments. Clin Neuropharmacol 10: 193–204

    PubMed  CAS  Google Scholar 

  • Faden AI (1990) Opioid and non opioid mechanisms may contribute to dynorphin’s pathophysiological actions in spinal cord injury. Ann Neurol 27: 67–74

    PubMed  CAS  Google Scholar 

  • Faden AI (1993a) Experimental neurobiology of central nervous system trauma. Crit Rev Neurobiol 7: 175–186

    PubMed  CAS  Google Scholar 

  • Faden AI (1993b) Role of endogenous opioids and opioid receptors in central nervous system. Handbook Exp Pharmacol 104(I): 325–341

    Google Scholar 

  • Faden AI, Simon RP (1988) A potential role for excitotoxins in the pathophysiology of spinal cord injury. Ann Neurol 23: 623–626

    PubMed  CAS  Google Scholar 

  • Faden AI, Vink R, Mclntosh TK (1989) Thyrotropin releasing hormone and central nervous system trauma. In: Metcalf G, Jackson IMD, (eds) Thyrotropin Releasing Hormone. Biomedical Significance. Ann NY Acad Sci, pp 380–384

    Google Scholar 

  • Faden AI, Halt P (1992) Platelet-activating factor reduces spinal cord blood flow and causes behavioral deficits after intrathecal administration in rats through a specific receptor mechanism. J Pharmacol Exp Ther 261: 1064–1070

    PubMed  CAS  Google Scholar 

  • Faden AI, Salzman S (1992) Pharmacological strategies in CNS trauma. TiPS 13: 29–35

    PubMed  CAS  Google Scholar 

  • Farber JL (1982) Biology of disease: membrane injury and calcium homeostasis in the pathogenesis of coagulative necrosis. Lab Invest 47: 114–123

    PubMed  CAS  Google Scholar 

  • Fedoroff S, Vernadakis A (1986) Astrocytes, Vols 1–3. Academic Press, Orlando

    Google Scholar 

  • Fehlings MG, Tator CH (1988) A review of experimental models of acute spinal cord injury. In: Illis L (ed) Spinal Cord Dysfunction: Assessment. Oxford University Press, Oxford, pp 3–33

    Google Scholar 

  • Fehlings MG, Tator CH, Linden RD (1989) The relationships among the severity of spinal cord injury, motor and somatosensory evoked potentials and spinal cord blood flow. Electroenceph Clin Neurophysiol 74: 241–259

    PubMed  CAS  Google Scholar 

  • Foreman RD, Kenshalo DR Jr, Schmidt RF, Willis WD (1979) Field potentials and excitation of primate spinothalamic neurones in response to volleys in muscle afferents. J Physiol (Lond) 286: 197–213

    CAS  Google Scholar 

  • Frerichs KU, Feuerstein GZ (1990) Platelet-activating factor; key mediator in neuroinjury? Cerebrovasc Brain Metab Rev 2: 148–160

    PubMed  CAS  Google Scholar 

  • Fukuda K, Panter SS, Sharp FR, Noble LJ (1996a) atInduction of heme oxygenase-1 (HO-1) after traumatic brain injury in the rat. Neurosci Lett 199: 127–130

    Google Scholar 

  • Fukuda K, Richmon JD, Sato M, Sharp FR, Panter SS, Noble LJ (1996b) Induction of heme oxygenase-1 (HO-1) in glia after traumatic brain injury. Brain Res 736: 68–95

    PubMed  CAS  Google Scholar 

  • Gasser HS, Graham HT (1933) Potentials produced in the spinal cord by stimulation of the dorsal roots. Am J Physiol 103: 303–320

    Google Scholar 

  • Geisler FH, Dorsey FC, Coleman WP (1991) Recovery of motor function after spinal-cord injury — a randomized, placebo-controlled trial with GM-1 ganglioside. N Engl J Med 32

    Google Scholar 

  • Goodman RM, Wachs K, Keller S, Black P (1985) Spontaneous spinal cord’ injury potential’ in the rat. Neurosurgery 17: 757–759

    PubMed  CAS  Google Scholar 

  • Gorio A, Ferrari G, Fusco M, Janigro D, Zanoni R, Jonsson G (1984) Gangliosides and their effects on rearranging peripheral and central neural pathways. Cent Nerv Syst Trauma 1: 29–37

    PubMed  CAS  Google Scholar 

  • Gotch F, Horsley V (1891) On the mammalian nervous system, its functions, and their localization determined by an electrical method. Phil Trans B 182: 267–526

    Google Scholar 

  • Griffiths IR, Miller R (1974) Vascular permeability to protein and vasogenic oedema in experimental concussive injuries to the canine spinal cord. J Neurol Sci 22: 291–304

    PubMed  CAS  Google Scholar 

  • Griffiths IR, McCulloch MC (1983) Nerve fibers in spinal cord impact injuries. J Neurol Sci 58: 335–349

    PubMed  CAS  Google Scholar 

  • Grimby G, Hedberg M, Henning G-B (1994) Changes in muscle morphology, strength and enzymes in a four-five year follow-up of post-polio subjects. Scand J Rehab Med 27: 121–130

    Google Scholar 

  • Happel RD, Smith KP, Banik NL, Powers JM, Hogan EL, Balentine JD (1981) Ca2+-accumulation in experimental spinal cord trauma. Brain Res 211: 476–479

    PubMed  CAS  Google Scholar 

  • Hayashi N, Torre de la JC, Green BA (1980) Regional spinal cord blood flow and tissue oxygen content after spinal cord trauma. Surg Forum 31: 461–467

    Google Scholar 

  • Hayes KC, Potter PJ, Wolfe DL, Hsieh JTC, Delaney GA, Blight AR (1994) 4-aminopyridine sensitive neurological deficits in patients with spinal cord injury. J Neurotrauma 11: 433–436

    PubMed  CAS  Google Scholar 

  • Hedeman LS, Sil R (1974) Studies in experimental spinal cord trauma: comparison of treatment with steroids, low molecular weight dextran, and catecholamine blockade. J Neurosurg 40: 44–51

    PubMed  CAS  Google Scholar 

  • Hogan EL, Banik NL (1985) Biochemistry of the spinal cord. Handbook Neurochem 10: 285–337

    Google Scholar 

  • Homma S, Hayashi K, Nakajima Y (1984) Unidimensional latency-topography of the evoked potentials in the cat. In: Homma S, Tamaki T (eds) Fundamentals and Clinical Applications of Spinal Cord Monitoring. Saikon, Tokyo, pp 23–32

    Google Scholar 

  • Homma S, Tamaki T (1984) Fundamentals and Clinical Applications of Spinal Cord Monitoring. Saikon, Tokyo, pp 1–450

    Google Scholar 

  • Hökfelt T, Elde R, Johansson O, Ljungdahl Å, Schultzberg M, Fuxe K, Goldstein, Nilsson G, Pernow B, Terenius L, Ganten D, Jeffocote SL, Rehfeld J, Said S (1978) Distribution of peptide containing neurons. In: Lipton MA, DiMascio A, Killam KF eds) Psychopharmacology: A Generation of Progress. Raven Press, New York, pp 39–66

    Google Scholar 

  • Hökfelt T, Johansson O, Holets V, Meister B, Melander T (1987) Distribution of neuropeptides with special reference to their coexistence with classical neurotransmitters. In: Melter HY (ed) Psychopharmacology: The third Generation of Progress. Raven Press, New York, pp 401–416

    Google Scholar 

  • Hsu CY, Hogan EL, Gadsen RH, Spicer KM, Shi MP, Cox RD (1985) Vascular permeability in experimental spinal cord injury. J Neurol Sci 70: 275–282

    PubMed  CAS  Google Scholar 

  • Hughes P, Dragunow M (1995) Induction of immediate-early genes and the control of neurotransmitter-regulated gene expression within the nervous system. Pharmacol Rev 47: 133–178

    PubMed  CAS  Google Scholar 

  • Hughes J, Gasser HS (1934) Some properties of the cord potentials evoked by a single afferent volley. Am J Physiol 108: 295–306

    Google Scholar 

  • Hurlbert RJ, Koyanagi I, Tator CH (1993) Sensory evoked potentials for selective monitoring of the rat spinal cord: a cerebellar evoked potential to assess ventral cord integrity. J Nerotrauma 10: 181–194

    CAS  Google Scholar 

  • Ikata T, Iwasa K, Morimoto K, Tonai T, Taoka Y (1989) Clinical considerations and biochemical basis of prognosis of cervical spinal cord injury. Spine 14: 1096–1101

    PubMed  CAS  Google Scholar 

  • James HE, Marshall RF, Reulen H-J, Baethmann A, Marmarou A, Ito U, Hoff JT, Kuroiwa T, Czernicki Z (1997) Brain Edema X. Acta Neurochir [Suppl] (Wien) 70: 1–298

    Google Scholar 

  • Kakulas BA (1984) Pathology of spinal injuries. Cent Nerv Syst Trauma 1: 117–129

    PubMed  CAS  Google Scholar 

  • Kakulas BA, Taylor JR (1991) Pathology of injuries to the vertebral column and the spinal cord. In: Vinken PJ et al.. (eds) Handbook of Clinical Neurology no 61 (revised series 17) Spinal Cord Trauma (Frankel HL), pp 21–51

    Google Scholar 

  • Kaufmann SHE (1992) Heat shock proteins in health and disease. Int J Clin Lab Res 21: 221–226

    PubMed  CAS  Google Scholar 

  • Kiewerski J (1991) The influence of mechanism of cervical spine injury on the degree of the spinal cord lesion. Paraplegia 29: 531–536

    Google Scholar 

  • Kimura H, Steinbusch HWM (1996) The role of nitric oxide in the central nervous system. From basic to therapeutic aspect. J Chem Neuroanat 10: 179–322

    Google Scholar 

  • Klee M, Rall W (1977) Computed potentials of cortically arranged populations of neurons. J Neurophysiol 40: 647–666

    PubMed  CAS  Google Scholar 

  • Kobrine AI, Doyle TF, Martins AN (1975) Local spinal cord blood flow in experimental traumatic myelopathy. J Neurosurg 42: 144–149

    PubMed  CAS  Google Scholar 

  • Kochanek P, Schoettle R, Uhl M, Magargee MJ, Nemoto E (1991) Platelet-activating factor antagonists do not attenuate delayed posttraumatic cerebral edema in rats. J Neurotrauma 8: 19–25

    PubMed  CAS  Google Scholar 

  • Kríz N, Syková E, Ujec E, Vyklicky (1974) Changes of extracellular porassium concentration induced by neuronal activity in the spinal cord of the cat. J Physiol 238: 1–15

    PubMed  Google Scholar 

  • Landau WM, Freygang WH, Rowland LP, Sokoloff L, Kety SS (1955) The local circulation of the living brain: Values in unanesthetized and anesthetized cat. Trans Am Neurol Ass 80, p 125

    Google Scholar 

  • Levy W, McCaffrey M, York D (1986) Motor evoked potential in cats with spinal cord injury. Neurosurgery 19: 9–19

    PubMed  CAS  Google Scholar 

  • Lewin MG, Hansebout RR, Pappius MM (1974) Chemical characteristics of spinal cord edema in cats: Effects of steroids on potassium depletion. J Neurosurg 40: 65–75

    PubMed  CAS  Google Scholar 

  • Lindqvist S (1986) The heat shock response. Ann Rev Biochem 55: 1151–1191

    Google Scholar 

  • Lindsberg PJ, Hallenbeck JM, Feuerstein G (1991) Platelet-activating factor in stroke and brain injury. Ann Neurol 30: 117–129

    PubMed  CAS  Google Scholar 

  • Lipton SA (1993) Molecular mechanisms of trauma-induced neuronal degeneration. Curr Opin Neurol Neurosurg 6: 588–596

    PubMed  CAS  Google Scholar 

  • Liu D (1994) An experimental model combining microdialysis with electrophysiology, histology and neurochemistry for studying excitotoxicity in spinal cord injury. Effect of NMDA and kainate. Mol Chem Neuropathol 23: 77–92

    Google Scholar 

  • Liu D, Thangnipon W, McAdoo, DJ (1991) Excitatory amino acids rise to toxic levels upon impact injury to the rat spinal cord. Brain Res 547: 344–348

    PubMed  CAS  Google Scholar 

  • Lorente de No R (1947) A study of nerve physiology. In: Studies from the Rockefeller Institute for Medical Research. Rockefeller Institute for Medical Research, New York, pp 384–477

    Google Scholar 

  • Lundh H, Thesleff S (1977) The mode of action of 4-aminopyridine and guanidine on transmitter release from motor nerve terminals. Eur J Pharmacol 42: 411–412

    PubMed  CAS  Google Scholar 

  • Malmstadt HV, Enke CG, Crouch SR (1981) Electronics and instrumentation for scientists. Benjamin/Cummings, Reading, pp 105–128

    Google Scholar 

  • McCord JM (1987) Oxygen-derivated radicals: a link between reperfusion injury and inflammation. Federation Proc 46: 2402–2406

    CAS  Google Scholar 

  • Misra HP, Fridovich I (1972) The role of Superoxide anion in the auto-oxidation of epinephrine and a simple assay for Superoxide dismutase. J Biol Chem 247: 3170–3175

    PubMed  CAS  Google Scholar 

  • Mohanty S, Dey PK, Sharma HS, Ray AK (1985) Role of serotonin in brain edema. In: Mohanty S, Dey PK (eds) Bhargava Bhushan Press. Banarus Hindu University, Varanasi, pp 25–36

    Google Scholar 

  • Mohanty S, Dey PK, Sharma HS, Singh S, Chansouria JPN, Olsson Y (1989) Role of histamine in traumatic brain edema. An experimental study in the rat. J Neurol Sci 90: 87–97

    CAS  Google Scholar 

  • Molgo J, Lundh H, Thesleff S (1980) Potency of 3,4-diaminopyridine and 4-aminopyridine on mammalian neuromuscular transmissions and the effect of pH changes. Eur J Pharmacol 61: 25–34

    PubMed  CAS  Google Scholar 

  • Mustafa A, Sharma HS, Olsson Y, Gordh T, Thorén P, Sjöquist P-O, Roos P, Adem, Nyberg F (1995) Vascular permeability to growth hormone in the rat central nervous system after focal spinal cord injury. Influence of a new antioxidant compound H 290/51 and age. Neurosci Res 23: 185–194

    CAS  Google Scholar 

  • Nemecek S (1978) Morphological evidence of microcirculatory disturbances in experimental spinal cord trauma. Adv Neurol 20: 395–405

    PubMed  CAS  Google Scholar 

  • Nemeth W, Reger SI, Henry DT, Wang GJ, Schnell MD, Stamp WG (1978) Spinal cord evoked potentials recorded from vertebral elements. Proc 24th Annual Orthop Res Soc 3, p2

    Google Scholar 

  • Nicholson C (1973) Theoretical analysis of field potentials in anisotropic ensembles of neuronal elements. IEEE Trans Biomed Eng 20: 278–288

    PubMed  CAS  Google Scholar 

  • Nicoletti F, Cavallaro S, Bruno V, Virgili M, Catania MV, Contestabile A, Canonico PL (1989) Gangliosides attenuate NMDA receptor-mediated excitatory amino acid release in cultured cerebellar neurons. Neuropharmacology 28: 1283–1286

    PubMed  CAS  Google Scholar 

  • Nyberg F, Sharma HS, Wisenfeld-Hallin Z (1995) Neuropeptides in the Spinal Cord. Prog Brain Res. Elsevier, Amsterdam 104: 1–450

    Google Scholar 

  • Okumura R, Asato R, Shimada T, Kusaka H, Mizutani T, Miki Y, Konishi J (1992) Degeneration of the posterior columns of the spinal cord. Postmortem MRI and histopathology. J Comput Assist Tompgr 16: 865–867

    CAS  Google Scholar 

  • Olsson Y, Sharma HS, Pettersson CÅV (1990) Effects of p-chlorophenylalanine on microvascular permeability changes in spinal cord trauma. An experimental study in the rat using I-sodium and lanthanum tracers. Acta Neuropathol (Berl) 79: 595–603

    CAS  Google Scholar 

  • Olsson Y, Sharma HS, Pettersson Å, Cervós-Navarro J (1992) Endogenous release of neurochemicals may increase vascular permeability, induce edema and influence on cell changes in trauma to the spinal cord. Prog Brain Res 91: 197–203

    PubMed  CAS  Google Scholar 

  • Olsson Y, Sharma HS, Nyberg F, Westman J (1995) The opioid receptor antagonist naloxone influences the pathophysiology of spinal cord injury. Prog Brain Res 104: 381–399

    PubMed  CAS  Google Scholar 

  • Osterholm JL, Mathews GJ (1972) Altered norepinephrine metabolism following experimental spinal cord injury. Part 2: protection against traumatic spinal cord hemorrhagic necrosis by norepinephrine synthesis blockade with alpha methyl tyrosine. J Neurosurg 36: 395–401

    CAS  Google Scholar 

  • Osterholm JL, Alderman JL, Northrup BE (1987) Acute experimental spinal cord injury. In: Ghista DN, Frankel HL (eds) Spinal Cord Injury Medical Engineering. Thomas, Springfield, pp 5–46i

    Google Scholar 

  • Perot PL (1973) The clinical use of somatosensory evoked potentials in spinal cord injury. Clin Neurosurg 20: 367–369

    PubMed  Google Scholar 

  • Panter SS, Yum SW, Faden AI (1990) Alteration in extracellular amino acids after traumatic spinal cord injury. Ann Neurol 27: 96–99

    PubMed  CAS  Google Scholar 

  • Purpura DP (1959) Nature of electrocortical potentials and synaptic organization in cerebral and cerebellar cortex. Int Rev Neurobiol 1: 47–163

    PubMed  CAS  Google Scholar 

  • Rail W (1977) Core conductor theory and cable properties of neurons. In Handbook of Physiology: Section 1. The Nervous System, Vol I, Cellular Biology of Neurons. American Physiology Society, Bethesda, pp 39–97

    Google Scholar 

  • Rasmussen H (1986) The calcium messenger system (first of two parts). N Engl J Med 314: 1094–1101

    PubMed  CAS  Google Scholar 

  • Reger S, Henry DT (1979) Physiologic aspects of noise in spinal cord monitoring. In: Nash CL (ed) Proc Spinal Cord Monitoring Workshop, Data Acquisition and Analysis. St Louis Monograph 2, pp 189–203

    Google Scholar 

  • Reger SI, Wang GJ, Anderson CP, Henry DT, Stamp WG (1980) The quantitative correlation of spinal cord damage with spinal cord evoked potentials. Trans 26th Ann Orthop Res Soc 5: 194–197

    Google Scholar 

  • Reger SI, Andersson CP, Henry DT, Wang CJ, Whitehill R, Stamp WG (1987) Long-term quantitative correlation of spinal cord evoked potentials with cord injury. In: Ghista DN, Frankel HL (eds) Spinal Cord Injury Medical Engineering. Charles C Thomas, Springfield, pp 223–243

    Google Scholar 

  • Renshaw B (1940) Activity in the simplest spinal reflex pathways. J Neurophysiol 9:240–263

    Google Scholar 

  • Salzman SK (1990) Neural Monitoring. The Prevention of Intraoperative Injury. Humana Press, New Jersey

    Google Scholar 

  • Salzman SK (1991) Comparison of a serotonin antagonist, opioid antagonist, and TRH analog for the acute treatment of experimental spinal trauma. J Neurotrauma 8: 193–203

    PubMed  Google Scholar 

  • Salzman SK, Mendez AA, Sabato S, Lee WA, Ingersoll EB, Choi IH, Fonseca AS, Agresta CA, Freeman GM (1990) Anesthesia influences the outcome from experimental spinal cord injury. Brain Res 521: 33–39

    PubMed  CAS  Google Scholar 

  • Sandier AN, Tator CH (1976a) Effect of acute spinal cord compression injury on regional spinal cord blood flow in primates. J Neurosurg 45: 600–676

    Google Scholar 

  • Sandier AN, Tator CH (1976b) Review of the effect of spinal cord trauma on the vessel and blood flow in the spinal cord. J Neurosurg 45: 638–646

    Google Scholar 

  • Schmidt RF (1971) Presynaptic inhibition in the vertebrate nervous system. Ergeb Physiol 63: 20–101

    PubMed  CAS  Google Scholar 

  • Schramm J, Krause R, Shigeno T, Brock M (1984) Relevance of spinal cord evoked potentials for monitoring. In: Homma S, Tamaki T (eds) Fundamentals and Clinical Applications of Spinal Cord Monitoring. Saikon, Tokyo, pp 113–124

    Google Scholar 

  • Schramm J, Jones S (1985) Spinal Cord Monitoring. Springer, Berlin Heidelberg, pp 1–350

    Google Scholar 

  • Schwab ME, Bartholdi D (1996) Degeneration and regeneration of axons in the lesioned spinal cord. Phys Rev 76: 319–370

    CAS  Google Scholar 

  • Sharma HS (1982) Blood-Brain Barrier in Stress. Banaras Hindu University Press, Varanasi, pp 1–85

    Google Scholar 

  • Sharma HS (1987) Effect of captopril (a converting enzyme inhibitor) on blood-brain barrier permeability and cerebral blood flow in normotensive rats. Neuropharmacology 26: 85–92

    PubMed  CAS  Google Scholar 

  • Sharma HS (1988) Neurobiology of the nitric oxide in the nervous system. Basic and clinical perspectives (Editorial). Amino Acids 14: 83–85

    Google Scholar 

  • Sharma HS, Dey PK (1982) Correlation of spinal cord tissue 5-HT with edema development following surgical spinal cord trauma in rats. Indian J Physiol Pharmacol 26 [Suppl] I: 8–9

    Google Scholar 

  • Sharma HS, Dey PK (1986) Influence of long-term immobilization stress on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. J Neurol Sci 72: 61–76

    PubMed  CAS  Google Scholar 

  • Sharma HS, Dey PK (1987a) Influence of long-term acute heat exposure on regional blood-brain barrier permeability, cerebral blood flow and 5-HT level in conscious normotensive young rats. Brain Res 424: 153–162

    PubMed  CAS  Google Scholar 

  • Sharma HS, Dey PK (1987b) Increased blood-brain and blood-csf barrier permeability following long-term immobilization stress in conscious rats. Wissenschaftliche Zeitschrift Karl-Marx Universitat Leipzig (Mathematisch-Naturwissenschaftliche Reihe) 36: 104–106

    Google Scholar 

  • Sharma HS, Dey PK (1988) EEG changes following increased blood-brain barrier permeability under long-term immobilization stress in young rats. Neurosci Res 5: 224–239

    PubMed  CAS  Google Scholar 

  • Sharma HS, Dey PK, Olsson Y (1989) Brain edema, blood-brain barrier permeability and cerebral blood flow changes following intracarotid infusion of serotonin: modification with cyproheptadine and indomethacin. In: Krieglstein J (ed) Pharmacology of Cerebral Ischemia 1988. CRC Press. Boca Raton, Florida, pp 317–323

    Google Scholar 

  • Sharma HS, Cervós-Navarro J (1990) Nimodipine improves cerebral blood flow and reduces brain edema, cellular damage and blood-brain barrier permeability following heat stress in young rats. In: Krieglstein J, Oberpichler H (eds) Pharmacology of Cerebral Ischemia 1990. CRC Press. Boca Raton, Florida, pp 303–310

    Google Scholar 

  • Sharma HS, Olsson Y (1990) Edema formation and cellular alteration in spinal cord injury in the rat and their modification with p-chlorophenylalanine. Acta Neuropathol (Berl) 79: 604–610

    PubMed  CAS  Google Scholar 

  • Sharma HS, Olsson Y, Dey PK (1990a) Early accumulation of serotonin in rat spinal cord subjected to traumatic injury. Relation to edema and blood flow changes. Neuroscience 36: 725–730

    CAS  Google Scholar 

  • Sharma HS, Westman J, Olsson Y, Johansson O, Dey PK (1990b) Increased 5-HT immunoreactivity in traumatized spinal cord. An experimental study in the rat. Acta Neuropathol (Berl) 80: 12–17

    CAS  Google Scholar 

  • Sharma HS, Nyberg F, Olsson Y, Dey PK (1990c) Alteration in substance P in brain and spinal cord following spinal cord injury. An experimental study in the rat. Neuroscience 38: 205–212

    CAS  Google Scholar 

  • Sharma HS, Olsson Y, Dey PK (1990d) Blood-brain barrier permeability and cerebral blood flow following elevation of circulating serotonin level in the anaesthetized rats. Brain Res 517: 215–223

    PubMed  CAS  Google Scholar 

  • Sharma HS, Winkler T, Stålberg E, Olsson Y, Dey PK (1991) Evaluation of traumatic spinal cord edema using evoked potentials recorded from the spinal epidural space. An experimental study in the rat. J Neurol Sci 102: 150–162

    PubMed  CAS  Google Scholar 

  • Sharma HS, Ceróvs-Navarro J, Gosztonyi G, Dey PK (1992a) Role of serotonin in traumatic brain injury. An experimental study in the rat. In: Globus MY-Tand Dietrich WD (eds) The Role of Neurotransmitters in Brain Injury. Plenum Press, New York, pp 147–152

    Google Scholar 

  • Sharma HS, Nyberg F, Olsson Y (1992b) Dynorphin A content in the rat brain and spinal cord after a localized trauma to the spinal cord and its modification with p-chlorophenylalanine. An experimental study using radioimmunoassay technique. Neurosci Res 14: 195–203

    CAS  Google Scholar 

  • Sharma HS, Nyberg F, Cervós-Navarro J, Dey PK (1992c) Histamine modulates heat stress induced changes in blood-brain barrier permeability, cerebral blood flow, brain oedema and serotonin levels: An experimental study in conscious young rats. Neuroscience 50: 445–454

    PubMed  CAS  Google Scholar 

  • Sharma HS, Westman J, Olsson Y (1992d) Increased heat shock protein (HSP-70kD) immunoreactivity following acute spinal cord trauma in the rat. Clin Neuropathol 11(4), p 174

    Google Scholar 

  • Sharma HS, Olsson Y, Cervós-Navarro J (1993a) Early perifocal cell changes and edema in traumatic injury of the spinal cord are reduced by indomethacin, an inhibitor of prostaglandin synthesis. Acta Neuropathol (Berl) 85: 145–153

    CAS  Google Scholar 

  • Sharma HS, Olsson Y, Nyberg F, Dey PK (1993b) Prostaglandins modulate alterations of microvascular permeability, blood flow, edema and serotonin levels following spinal cord injury. An experimental study in the rat. Neuroscience 57: 443–449

    CAS  Google Scholar 

  • Sharma HS, Olsson Y, Cervós-Navarro J (1993c) p-Chlorophenylalanine, a serotonin synthesis inhibitor, reduces the response of glial fibrillary acidic protein induced by trauma to the spinal cord. Acta Neuropathol (Berl) 86: 422–427

    CAS  Google Scholar 

  • Sharma HS, Nyberg F, Thörnwall M, Olsson Y (1993d) Met-Enkephalin-Arg6-Phe7 in spinal cord and brain following traumatic injury of the spinal cord: Influence of p-chlorophenylalanine. An experimental study in the rat using radioimmunoassay technique. Neuropharmacology 32: 711–717

    CAS  Google Scholar 

  • Sharma HS, Olsson Y, Nyberg F (1993e) Edema and cell changes in the traumatised spinal cord are reduced by topical application of 5-HT antibodies. An experimental study in the rat. IXth Noordwijkerhout-Camerino Symposium on Trends in Drug Research, p 90

    Google Scholar 

  • Sharma HS, Olsson Y (1994a) Neurochemical mediators of increased microvascular permeability, vasogenic oedema and cell changes after trauma to the spinal cord. Experimental observations in the rat. J Physiol (Lond) 480, p 13

    Google Scholar 

  • Sharma HS, Olsson Y (1994b) Nimodipine attenuates brain edema abd cell changes in rats following spinal cord trauma, Brain Pathol 4[Suppl] 1, p 34

    Google Scholar 

  • Sharma HS, Nyberg F, Olsson Y (1994c) Topical application of dynorphin-A antibodies reduced edema and cell changes in traumatised rat spinal cord. Reg Pept [Suppl] 1: S91–S92

    Google Scholar 

  • Sharma HS, Alm P, Gordh T, Nyberg F, Olsson Y, Westman J (1994d) Involvement of nitric oxide in microvascular permeability disturbances and edema formation following injury to the rat spinal cord. Nitric oxide in the central nervous system, Satellite Symposium of IUPHAR, Montreal, Canada (abstract)

    Google Scholar 

  • Sharma HS, Olsson Y, Nyberg F (1995a) Influence of dynorphin-A antibodies on the formation of edema and cell changes in spinal cord trauma. Prog Brain Res 104: 401–416

    PubMed  CAS  Google Scholar 

  • Sharma HS, Olsson Y, Pearsson S, Nyberg F (1995b) Trauma induced opening of the blood-spinal cord barrier is reduced by indomethacin, an inhibitor of prostaglandin synthesis. Experimental observations in the rat using I-sodium, Evans blue and lanthanum as tracers. Restor Neurol Neurosci 7: 207–215

    Google Scholar 

  • Sharma HS, Olsson Y, Westman J (1995c) A serotonin synthesis inhibitor, p-chlorophenylalanine reduces the heat shock protein response following trauma to the spinal cord. An immunohistochemical and ultrastructural study in the rat. Neurosci Res 21: 241–249

    CAS  Google Scholar 

  • Sharma HS, Olsson Y, Dey PK (1995d) Serotonin as a mediator of increased microvascular permeability of the brain and spinal cord. Experimental observations in anaesthetised rats and mice. In: Greenwood J, Begley D, Segal M, Lightman S (eds) New Concepts of a Blood-Brain Barrier. Plenum Press, New York, pp 75–80

    Google Scholar 

  • Sharma HS, Fonnum F, Olsson Y, Gordh T, Westman J (1995e) p-Chlorophenylalanine, a serotonin synthesis inhibitor reduces the alterations of GABA and glutamate levels following a focal spinal cord injury. An experimental study in the rat using immunohistochemical and HPLC technique. Amino Acids 9, p 33

    Google Scholar 

  • Sharma H S, Westman J, Cervós-Navarro J, Dey PK, Nyberg F (1995f) Alterations of amino acid neurotransmitters following heat stress. Amino Acids 9: 33–34

    Google Scholar 

  • Sharma HS, Olsson Y, Thóren P, Sjöquist P-0 (1995g) H 290/51, a new inhibitor of lipid peroxidation reduces edema and microvascular permeability changes following trauma to the rat spinal cord. J Neurotrauma 12, p 453

    Google Scholar 

  • Sharma HS, Alm P, Gordh T, Nyberg F, Olsson Y, Westman J (1995h) Involvement of nitric oxide in the pathophysiology of spinal cord injury in the rat. J Neurotrauma 12, p370

    Google Scholar 

  • Sharma HS, Westman J, Olsson Y, Alm P (1996a) Involvement of nitric oxide in acute spinal cord injury: an immunohistochemical study using light and electron microscopy in the rat. Neurosci Res 24: 373–384

    PubMed  CAS  Google Scholar 

  • Sharma HS, Westman J, Olsson Y (1996b) Spinal cord injury induced c-fos expression is reduced by p-CPA, a serotonin synthesis inhibitor. Neuropathol Appl Neurobiol 22: 15–16

    Google Scholar 

  • Sharma HS, Westman J (1997) Prostaglandins modulate constitutive isoform of heat shock protein (72 kD) response following trauma to the rat spinal cord. Acta Neurochir [Suppl] (Wien) 70: 134–137

    CAS  Google Scholar 

  • Sharma HS, Nyberg F, Gordh T, Alm P, Westman J (1997a) Topical application of insulin like growth factor-1 reduces edema and upregulation of neuronal nitric oxide synthase following trauma to the rat spinal cord. Acta Neurochir [Suppl] (Wien) 70: 130–133

    CAS  Google Scholar 

  • Sharma HS, Westman J, Alm P, Sjöquist P-O, Cervós-Navarro J, Nyberg F (1997b) Involvement of nitric oxide in the pathophysiology of acute heat stress in the rat. Ann NY Acad Sci 813: 581–590

    PubMed  CAS  Google Scholar 

  • Sharma HS, Alm P, Westman J (1997c) Upregulation of hemeoxygenase-II in the rat spinal cord following heat stress. In: Johannsen Nielsen B, Nielsen R (eds) Thermal Physiology, The August Krogh Institute, pp 135–138

    Google Scholar 

  • Sharma HS, Westman J, Nyberg F (1997d) Topical application of 5-HT antibodies reduces edema and cell changes following trauma to the rat spinal cord. Acta Neurochir [Suppl] (Wien) 70: 155–158

    CAS  Google Scholar 

  • Sharma HS, Westman J, Cervós-Navarro J, Dey PK, Nyberg F (1997e) Opioid receptor antagonists attenuate heat stress-induced reduction in cerebral blood flow, increased blood-brain barrier permeability, vasogenic brain edema and cell changes in the rat. Ann NY Acad Sci 813: 559–571

    PubMed  CAS  Google Scholar 

  • Sharma HS, Alm P, Westman (1998a) Nitric oxide and carbon monoxide in the pathophysiology of brain functions in heat stress. In: Sharma HS, Westman J (eds) Brain Function in Hot Environment. Prog Brain Res 115: 297–336

    Google Scholar 

  • Sharma HS, Nyberg F, Westman J, Alm P, Gordh T, Lindholm D (1998b) Brain derived neurotrophic factor and insulin like growth factor-1 attenuate upregulation of nitric oxide synthase and cell injury following trauma to the spinal cord. An immunohistochemical study in the rat. Amino Acids 14: 121–129

    Google Scholar 

  • Sharma HS, Westman J, Nyberg F (1998c) Pathophysiology of brain edema and cell changes following hyperthermic brain injury. In: Brain Function in Hot Environment. Prog Brain Res 115: 351–412

    CAS  Google Scholar 

  • Sharma HS, Nyberg F, Gordh T, Alm P, Westman J (1998d) Neurotrophic factors attenuate nitric oxide synthase upregulation, microvascular permeability disturbances, edema formation and cell injury in the spinal cord following trauma. An experimental study using topical application of BDNF and IGF-1 in the rat. In: Spinal Cord Monitoring. Basic principles, regeneration and pathophysiological aspects. Springer, Wien New York, pp 181–210

    Google Scholar 

  • Shimoji K, Kano T, Higashi H, Morioka T, Henshel EO (1972) Evoked spinal electrograms recorded from epidural space in man. J Appl Physiol 33, p 468

    PubMed  CAS  Google Scholar 

  • Siesjö BK (1988) Historical overview: calcium, ischemia, and death of brain cells. Ann NY Acad Sci 522: 638–661

    PubMed  Google Scholar 

  • Singer JM, Russel GV, Coe JE (1970) Changes in evoked potentials after experimental cervical spinal cord injury in monkey. Exp Neurol 29: 449–461

    PubMed  CAS  Google Scholar 

  • Stokes BT, Fox P, Hollinden G (1985) Extracellular metabolites; their measurement and role in the acute phase of spinal cord injury. In: Dacey RG, Winn HR, Rimmel RW, Jane JA (eds) Trauma of the Central Nervous System. Raven, New York, pp 309–323

    Google Scholar 

  • Stålberg E (1996) SFEMG, an update. In: Kimura J, Shibasaki H (eds) Recent Advances in Clinical Neurophysiology. Elsevier, Amsterdam, pp 48–60

    Google Scholar 

  • Stålberg E, Grimby G (1995) Dynamic electromyography and biopsy changes in a 4 year follow up: study of patients with history of polio. Muscle Nerve 18: 699–707

    PubMed  Google Scholar 

  • Sypert GW (1990) Stabilization and management of cervical injuries. In: Pitt LH, Wagner FC (eds) Craniospinal Trauma. Thieme, New York, pp 363–370

    Google Scholar 

  • Tamaki T, Noguchi T, Takano H, Tsuji H, Dincer MD (1984) The effects of hypovolemic hypotension and hypoxia on the jeopardised spinal cord. In: Homma S, Tamaki T (eds) Fundamentals and Clinical Applications of Spinal Cord Monitoring. Saikon Publishing Co, Tokyo, pp 145–154

    Google Scholar 

  • Tator CH (1991) Review of experimental spinal cord injury with the emphasis on the local and systemic circulatory effects. Neurochirurgie 37: 291–302

    PubMed  CAS  Google Scholar 

  • Tator CH, Edmonds VE (1979) Acute spinal cord injury: analysis of epidemiological factors. Can JSurg 121: 1453–1464

    CAS  Google Scholar 

  • Tator CH, Fehlings MG (1991) Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg 75: 15–26

    PubMed  CAS  Google Scholar 

  • Thörnwall M, Sharma HS, Olsson Y, Thóren P, Sjöquist P-O, Nyberg (1995) Dynorphin converting enzyme in spinal cord trauma. Influence of a new anti-oxidant H 290/51. Pharmacol Toxicol 76 [Suppl] IV, p 27

    Google Scholar 

  • Thörnwall M, Sharma HS, Gordh T, Sjöquist P-O, Nyberg F (1997) Substance P endo-peptidase activity in the rat spinal cord following injury. Influence of a new anti-oxidant compound H 290/51. Acta Neurochir [Suppl] (Wien) 70: 212–215

    Google Scholar 

  • Wagner JFC, Stewart WB (1981) Effect of trauma dose on spinal cord edema. J Neurosurg 54: 802–806

    PubMed  Google Scholar 

  • Wall PD (1958) Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol 142: 1–21

    PubMed  CAS  Google Scholar 

  • Walker JG, Yates RR, Yashon D, O’Neill JJ (1977) Effect of experimental trauma on dog spinal cord energy state. J Neurosurg 29, p 929

    CAS  Google Scholar 

  • Westman J, Sharma HS (1998) Heat shock protein response in the CNS following heat stress. In: Brain Function in Hot Environment. Prog Brain Res 115: 207–240

    PubMed  CAS  Google Scholar 

  • Willis WD Jr (1980) Spinal cord potentials, In: W F Windle (ed) Spinal cord and its reaction to traumatic injury. Marcel Dekker, New York, pp 159–187

    Google Scholar 

  • Willis WD Jr (1984) Evoked spinal cord potentials in the cat and monkey: use in the analysis of spinal cord function. In: S Homma, T Tamaki (eds) Fundamentals and Clinical Applications of Spinal Cord Monitoring. Saikon, Tokyo, pp 3–20

    Google Scholar 

  • Willis WD, Weie MA, Skinner ED, Bryan RN (1980) Differential distribution of spinal cord field potentials. Exp Brain Res 17: 169–179

    Google Scholar 

  • Winkler T (1994) Evaluation of spinal cord injuries using spinal cord evoked potentials. An experimental study in the rat. Acta Univ Ups 467: 1–45

    Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Olsson Y (1992) ß-adrenergic receptor antagonist propranolol attenuates alteration in spinal cord evoked potentials and reduces edema formation following spinal cord injury in rats. 7th International Catecholamine Symposium, Amsterdam, abstracts, p 354

    Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Olsson Y (1993) Indomethacin, an inhibitor of prostaglandin synthesis attenuates alteration in spinal cord evoked potentials and edema formation after trauma to the spinal cord. An experimental study in the rat. Neuroscience 52: 1057–1067

    CAS  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Olsson Y, Nyberg F (1994a) Opioid receptors influence spinal cord electrical activity and edema formation following spinal cord injury. Experimental observations using naloxone in the rat. Neurosci Res 21: 91–101

    CAS  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Olsson Y, Nyberg F (1994b) Naloxone reduces alterations in evoked potentials and edema in trauma to the rat spinal cord. Acta Neurochir [Suppl] (Wien) 60: 511–515

    CAS  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Olsson Y, Nyberg F (1995a) Role of histamine in spinal cord evoked potentials and edema following spinal cord injury. Experimental observations in the rat. Inflamm Res 44 [Suppl] 1: S44–S45

    Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Olsson Y, Dey PK (1995b) Impairment of blood-brain barrier function by serotonin induces desynchronisation of spontaneous cerebral cortical activity. Experimental observations in the anaesthetised rat. Neuroscience 68: 1097–1104

    CAS  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Westman E (1997) Benzodiazepine receptors influence spinal cord evoked potentials and edema following trauma to the rat spinal cord. Acta Neurochir [Supp] (Wien) 70: 216–219

    CAS  Google Scholar 

  • Winkler T, Sharma HS, Stålberg E, Badgaiyan RD, Alm P, Westman J (1998) Spinal cord evoked potentials and edema in the pathophysiology of rat spinal cord injury. Involvement of nitric oxide. Amino Acids 14: 131–139

    CAS  Google Scholar 

  • Young W (1985) Blood flow, metabolic and neurophysiological mechanisms in spinal cord injury. In: Becker PB, Povlishock JT (eds) Central Nervous System Trauma Report. National Institute of Health, Bethesda, pp 463–473

    Google Scholar 

  • Young W, Hamm ES (1982) Effect of high-dose corticosteroid therapy on blood flow, evoked potentials, and extracellular calcium in experimental spinal injury. J Neurosurg 57: 667–673

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Winkler, T., Sharma, H.S., Stålberg, E., Westman, J. (1998). Spinal cord bioelectrical activity, edema and cell injury following a focal trauma to the rat spinal cord. An experimental study using pharmacological and morphological approaches. In: Stålberg, E., Sharma, H.S., Olsson, Y. (eds) Spinal Cord Monitoring. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6464-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6464-8_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7329-9

  • Online ISBN: 978-3-7091-6464-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics