Skip to main content
  • 49 Accesses

Zusammenfassung

Die pharmakokinetischen Einflußgrößen der Neuroleptikawirkung sind in Abb. 3.1.1 dargestellt. Während stark polare oder hydrophile Substanzen einem Ein-Kompartment-Modell folgen, sind zur Beschreibung der pharmakokinetischen Verhältnisse lipophiler Substanzen wie der Neuroleptika Multi-Kompartment-Modelle notwendig. Nach Resorption eines oral gegebenen Neuroleptikums kommt es zu einer teilweisen präsystemischen Verstoffwechselung, die bei parenteraler Gabe z. B. eines Depotneuroleptikums umgangen werden kann. Aus dem Plasma wird das Pharmakon in die verschiedenen Kompartimente verteilt und dort gebunden, in der Leber metabolisiert und renal sowie biliär ausgeschieden. Nur der Anteil des Neuroleptikums, der nicht an Plasmaproteine gebunden ist, also in freier Form vorliegt, kann mit dem Hirngewebe und dem Liquorraum im Gleichgewicht stehen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Aaes-Jørgensen T (1981) Serum concentrations of cis(Z)-and trans(E)-clopenthixol after administration of cis(Z)-clopenthixol and clopen-thixol to human volunteers. Acta Psychiatr Scand [Suppl] 294: 64–69

    Google Scholar 

  • Aaes-Jørgensen T, Overo KF, Bobeso KP, Jørgen-Sen A (1977) Pharmacokinetic studies on clopenthixol decanoate: a comparison with clopenthixol in dogs and rats. Acta Pharmacol Toxicol 41: 103–120

    Google Scholar 

  • Alfredsson G, Bjerkenstedt L, Edman G, Härnryd C, Oxenstierna G, Sedvall G, Wiesel FA (1984) Relationships between drug concentrations in serum and CSF, clinical effects and mono-aminergic variables in schizophrenic patients treated with sulpiride or chlorpromazine. Acta Psychiatr Scand 69 [Suppl 311]: 49–74

    Google Scholar 

  • Alfredsson G, Harnryd C, Wiesel F-A (1985) Effects of sulpiride and chlorpromazine on autistic and positive psychotic symptoms in schizophrenic patients: relationship to drug concentrations. Psychopharmacology 85: 8–13

    PubMed  CAS  Google Scholar 

  • Altamura AC, Mauri M, Cavallaro R, Regazetti MG, Barbeggi SR (1989) Hydroxyhaloperidol and clinical outcome in schizophrenia. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York Tokyo, pp 263–268

    Google Scholar 

  • Amdisen A, Aes-Jørgensen T, Thomsen NJ, Madsen VT, Neilsen MS (1986) Serum concentrations and clinical effect of zuclopenthixol in acutely disturbed, psychotic patients treated with zuclopenthixol acetate in viscoleo. Psychopharmacology 90: 412–416

    PubMed  CAS  Google Scholar 

  • Bahr Von C, Guengerich FP, Movin G, Nordin C (1989) The use of human liver banks in phar-macogenetic research. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York Tokyo, pp 163–171

    Google Scholar 

  • Balant-Gorgia AE, Balant L (1987) Antipsychotic drugs. Clinical pharmacokinetics of potential candidates for plasma concentration monitoring. Clin Pharmacokinet 149: 65–90

    Google Scholar 

  • Baldessarini RJ, Cohen BM, Teicher MH (1988) Significance of neuroleptic dose and plasma level in the pharmacological treatment of psychoses. Arch Gen Psychiatry 45: 79–91

    PubMed  CAS  Google Scholar 

  • Bevilacqua R, Benassi CA, Largajolli R, Veronese FM (1979) Psychoactive butyrophenones: binding to human and bovine serum albumin. Pharmacol Res Commun 11 (5): 447–454

    PubMed  CAS  Google Scholar 

  • Bigelow LB, Hirsch DG, Braun T, Korpi ER, Wagner RL, Zaleman S, Wyatt RJ (1985) Absence of a relationship of serum haloperidol concentration and clinical response in chronic schizophrenia: a fixed dose study. Psycho-pharmacol Bull 21: 66–68

    CAS  Google Scholar 

  • Borgström L, Larsson H, Molander L (1982) Pharmacokinetics of parenteral and oral mel-perone in man. Eur J Clin Pharmacol 23: 173–176

    PubMed  Google Scholar 

  • Breyer-Pfaff U, Giedke H, Nill K, Schied HW (1988a) Neuere Befunde zur Pharmakokinetik von Perazin und verwandten Phenothiazinen. In: Helmchen H, Hippius H, Tölle R (Hrsg) Therapie mit Neuroleptika — Perazin. Thieme, Stuttgart New York, S 18–23

    Google Scholar 

  • Breyer-Pfaff U, Nill K, Schied HW, Gaertner HJ, Giedke H (1988b) Single-dose kinetics of the neuroleptic drug perazine in psychotic patients. Psychopharmacology 95: 374–377

    PubMed  CAS  Google Scholar 

  • Brodie BB (1967) Psychochemical and biochemical basis of pharmacology. JAMA 202: 600–609

    PubMed  CAS  Google Scholar 

  • Casper R, Garver DL, Dekirmenjian H, Chang S, Davis JM (1980) Phenothiazine levels on plasma and red blood cells. Arch Gen Psychiatry 37: 301–305

    PubMed  CAS  Google Scholar 

  • Cohen BM, Lapinski JF, Pope HG, Harris PQ, Aallesman RI (1980) Neuroleptic blood levels and therapeutic effect. Psychopharmacology (Berlin) 70: 191–193

    CAS  Google Scholar 

  • Contreras S, Alexander H, Faber R, Bowden C (1987) Neuroleptic radioreceptor activity and clinical outcome in schizophrenia. J Clin Psychopharmacol 7: 95–98

    PubMed  CAS  Google Scholar 

  • Cressman WA, Plostnieks J, Johnson PC (1973) Absorption, metabolism and excretion of dro-peridol by human subjects following intramuscular and intravenous administration. Anesthesiology 38: 363–369

    PubMed  CAS  Google Scholar 

  • Cressman WA, Bianchine JR, Slotnick VB, Johnson PC, Plostnieks J (1974) Plasma level profile of haloperidol in man following intramuscular administration. Eur J Clin Pharmacol 7: 99–103

    PubMed  CAS  Google Scholar 

  • Curry SH, Whelpton R, De Schepper PJ, Vrancks S, Schiff AA (1979) Kinetics of fluphenazine after fluphenazine dihydrochloride, enanthate and decanoate administration to man. Br J Clin Pharmacol 7: 325–331

    PubMed  CAS  Google Scholar 

  • Dahl SG (1976) Pharmacokinetics of methotri-meprazine after single and multiple doses. Clin Pharmacol Ther 19: 435–442

    PubMed  CAS  Google Scholar 

  • Dahl SG (1986) Plasma level monitoring of antipsychotic drugs. Clinical utility. Clin Pharmacokinet 11: 36–61

    PubMed  CAS  Google Scholar 

  • Dahl SG (1990) Pharmakokinetik der Neuroleptika. In: Müller-Oerlinghausen, Möller HJ, Rüther E (Hrsg) Thioxanthene in der neuroleptischen Behandlung. Springer, Berlin Heidelberg New York Tokyo, S 25–33

    Google Scholar 

  • Dahl SG, Strandjord RE (1977) Pharmacokinetics of chlorpromazine after single and chronic dosage. Clin Pharmacol Ther 21: 437–448

    PubMed  CAS  Google Scholar 

  • Dysken NW, Javaid JI, Chang SS, Shaffer C, Shahid A, Davis JM (1981) Fluphenazine pharmacokinetics and therapeutic response. Psychopharmacology (Berlin) 73: 205–210

    CAS  Google Scholar 

  • Eggert Hansen C, Rosted CHRISTENSEN T, Elley J, Bolvig Hansen L, Kragh-Sørensen P, Larsen N-E, Naestoft J, Hvidberg EF (1976) Br J Clin Pharmacol 3: 915

    PubMed  CAS  Google Scholar 

  • Eel-Assra A, Eel-Sobky A, Kaye N, Blain PG, Wiles DH, Hajioff J, Gould SE (1983) The change from oral to depot neuroleptics in chronic schizophrenia. Clinical response and plasma levels after treatment with bromperidol or fluphenazine decanoate. Janssen Res Rep

    Google Scholar 

  • Ereshefsky L, Saklad SR, Jann MW, Davis CM, Richards A, Seidel DR (1984) Future of depot neuroleptic therapy: pharmacokinetic and pharmacodynamic approaches. J Clin Psychiatry (Sec 2) 45: 50–59

    CAS  Google Scholar 

  • Ereshefsky L, Jann MW, Saklad SR, Davis CM, Richards AL et al. (1985) Effects of smoking on fluphenazine clearance in psychiatric inpatients. Biol Psychiatry 20: 329–332

    PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Nilsson L, Sedvall G (1989) The potential of positron-emission tomography for pharmacokinetic and pharmacodynamic studies of neuroleptics. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York Tokyo, pp 32–39

    Google Scholar 

  • Forsman A, Öhman R (1976) Pharmacokinetic studies on haloperidol in man. Curr Ther Res 20: 319–336

    PubMed  CAS  Google Scholar 

  • Forsman A, Öhman R (1977) Applied pharmacokinetics of haloperidol in man. Curr Ther Res 21: 396–411

    CAS  Google Scholar 

  • Furlanut M, Benetello P, Perosa A, Colombo G, Gallo F, Forgione A (1988) Pharmacokinetics of benperidol in volunteers after oral administration. Int J Clin Pharm Res 8: 13–16

    CAS  Google Scholar 

  • Gaebel W, Pietzcker A, Ulrich G, Schley J, MülleR-Oerlinghausen B (1988) Predictors of neuroleptic treatment response in acute schizophrenia: results of a treatment study with perazine. Pharmacopsychiatry 21: 384–386

    PubMed  CAS  Google Scholar 

  • Garver DL (1989) Neuroleptic drug levels in erythrocytes and in plasma: implications for therapeutic drug monitoring. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. From molecular studies to clinical reality. Springer, Berlin Heidelberg New York Tokyo, pp 244–256

    Google Scholar 

  • Georgotas A, Serra MT, Green DE, Perel JM, Gershon S, Forrest IS (1979) Chlorpromazine excretion. 3. Fecal excretion of 14C-chlorpro-mazine in chronically dosed patients. Commun Psychopharmacol 3: 197–202

    PubMed  CAS  Google Scholar 

  • Girard M, Granter F, Schmitt L, Cotonat J, Escan-De M, Blanc M (1984) Premiers résultats d’une étude pharmacocinétique de la pipothiazine dt de son ester palmitique (Piportil L4) dans une population de schizophrenes. Encephale 10: 171–176

    PubMed  CAS  Google Scholar 

  • Goldstein SA, Van-Vunakis H (1981) Determination of fluphenazine, related phenothiazine drugs and metabolites by combined high-performance liquid chromatography and radioimmunoassay. J Pharmacol Exp Ther 217: 36–43

    PubMed  CAS  Google Scholar 

  • Gram LF, Brøsen K (1989) Inhibitors of the microsomal oxidation of psychotropic drugs: selectivity and clinical significance. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. From molecular studies to clinical reality. Springer, Berlin Heidelberg New York Tokyo, pp 172–180

    Google Scholar 

  • Hansen CB, Larsen NE, Gulmann N (1982) Dose-response relationship of perphenazine in the treatment of acute psychoses. Psychopharmacology 27: 112–115

    Google Scholar 

  • Haring C, Fleischhacker WW, Schett P, Humpel C, Barnas C, Saria A (1990) Influence of patient-related variable on clozapine plasma levels. Am J Psychiatry 147: 1471–1475

    PubMed  CAS  Google Scholar 

  • Hobbs DC, Welch WM, Short MJ, Moody WA, Van Der Velde CD (1974) Pharmacokinetics of thiothixene in man. Clin Pharmacol Ther 16: 473–478

    PubMed  CAS  Google Scholar 

  • Jann MW, Ereshefsky L, Saklad SR (1985) Clinical pharmacokinetics of the depot antipsychotics. Clin Pharmacokinet 10: 315–333

    PubMed  CAS  Google Scholar 

  • Jørgensen A (1980) Pharmacokinetic studies in volunteers of intravenous and oral cis(Z)-flu-penthixol and intramuscular cis(Z)-flupenthi-xol decanoate in viscoleo. Eur J Clin Pharmacol 18: 355–360

    PubMed  Google Scholar 

  • Jørgensen A (1986) Metabolism and pharmacokinetics of antipsychotic drugs. In: Bridges JW, Chasseaud LF (eds) Progress in drug metabolism, vol 9. Taylor & Francis, London, pp 111–174

    Google Scholar 

  • Jørgensen A, Gottfries CG (1972) Pharmacokinetic studies on flupenthixol and flupenthixol decanoate in man using tritium labelled compounds. Psychopharmacology 27: 1–10

    Google Scholar 

  • Jørgensen A, Fredricson Overø (1980) Clopentixol and flupenthixol depot preparations in outpatient schizophrenics. III. Serum levels. Acta Psychiatr Scand [Suppl 279]: 41–54

    Google Scholar 

  • Jørgensen A, Aes-Jørgensen T (1988) Pharmacokinetic variations of zuclopenthixol and flupen-tixol administered orally or intramuscularly as retard or depot formulations. Nord Psychiatr Tidsskr 42: 501–502

    Google Scholar 

  • Jørgensen A, Andersen J, Bjørndal N, Dencker SJ, Lundin L, Malm U (1982) Serum concentrations of cis(Z)-flupenthixol and prolactin in chronic schizophrenic patients treated with flupenthixol and cis(Z)-flupenthixol decanoate. Psychopharmacology 77: 58–65

    PubMed  Google Scholar 

  • Johnstone EC, Crow TJ, Frith CD, Carney MWP, Price JS (1978) Mechanisms of the antipsychotic effect in the treatment of acute schizophrenia. Lancet i: 848–851

    Google Scholar 

  • Kapfhammer HP (1990) Umstellungsregime von Kurzzeit-auf Depotneuroleptika. In: Müller-Oerlinghausen, Möller HJ, Rüther E (Hrsg) Thioxanthene in der neuroleptischen Behandlung. Springer, Berlin Heidelberg New York Tokyo, S 173–196

    Google Scholar 

  • Knudsen P (1985) Chemotherapy with neuroleptics. Clinical and pharmacokinetic aspects with a particular view to depot preparations. Acta Psychiatr Scand [Suppl 322] 72: 51–75

    Google Scholar 

  • Knudsen P, Hansen LB, Larsen AE (1985) Depot neuroleptic treatment: clinical and pharmacokinetic studies of perphenazine decanoate. Acta Psychiatr Scand [Suppl 322]: 5–50

    Google Scholar 

  • Kopera H (1986) Interferenzen und Störwirkungen von Psychopharmaka und anderen Medikamenten. In: Hinterhuber H, Schubert N, Kulhanek F (Hrsg) Seiteneffekte und Störwirkungen der Psychopharmaka. Schattauer, Stuttgart New York, S 29–42

    Google Scholar 

  • Linkowski P, Hubain P, Von FRENCKELL R, Mendle-Wicz J (1984) Haloperidol plasma levels and clinical response in paranoid schizophrenics. Eur Arch Psychiatry Neurol Sci 234: 231–236

    PubMed  CAS  Google Scholar 

  • Loi CM, Vestal RE (1988) Drug metabolism in the elderly. Pharmacol Ther 36: 131–149

    PubMed  CAS  Google Scholar 

  • Louza Neto MR, Mülpler-Sahn F, Rüther E, Scherer J (1988) Haloperidol plasma level after a test dose as predictor for the clinical response to treatment in acute schizophrenic patients. Pharmacopsychiatry 21: 226–231

    PubMed  CAS  Google Scholar 

  • Marder SR, Putten Van T, Aravagiri M (1989) Plasma level monitoring for maintenance neuroleptic therapy. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York Tokyo, pp 269–279

    Google Scholar 

  • Mårtensson E, Roos BE (1973) Serum levels of thioridazine in psychiatric patients and healthy volunteers. Eur J Clin Pharmacol 6: 181–186

    PubMed  Google Scholar 

  • Mårtensson E, Nyberg G (1989) Active metabolites of neuroleptics in plasma and CSF: implications for therapeutic drug monitoring. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. From molecular studies to clinical reality. Springer, Berlin Heidelberg New York Tokyo, pp 257–262

    Google Scholar 

  • Mavroidis ML, Kanter DR, Hirschowitz J, Garver DL (1983) Clinical response and plasma hal-operidol levels in schizophrenia. Psychophar-macology (Berlin) 81: 354–356

    CAS  Google Scholar 

  • Mavroidis ML, Garver DL, Kanter DR, Hirscho-Witzj (1984a) Fluphenazine plasma levels and clinical response. J Clin Psychiatry 45: 370–373

    PubMed  CAS  Google Scholar 

  • Mavroidis ML, Kanter DR, Hirschowitz J, Garver DL (1984b) Clinical relevance of thiothixene plasma levels. J Clin Psychopharmacol 4:155–157

    PubMed  CAS  Google Scholar 

  • Mavroidis ML, Kanter DR, Hirschowitz J, Garver DL (1984c) Therapeutic blood levels of flu-phenazine: plasma or RBC determinations? Psychopharmacol Bull 20: 168–170

    PubMed  CAS  Google Scholar 

  • Midha KK, Hawes EM, Hubbard JW, Korchinski ED, Mckay G (1987) The search for correlations between neuroleptic plasma levels and clinical outcome: a critical review. In: Meltzer HY (ed) Psychopharmacology: the third generation of progress. Raven Press, New York, pp 1341–1351

    Google Scholar 

  • Midha KK, Hawes EM, Hubbard JW, Korchinski ED, Mckay G (1988) Variation in the single dose pharmacokinetics of fluphenazine in psychiatric patients. Psychopharmacology 96: 206–211

    PubMed  CAS  Google Scholar 

  • Migdalof BH, Grindel JM, Heykants JJP, Janssen PAJ (1979) Penfluridol: a neuroleptic drug designed for long duration of action. Drug Metabol Rev 9: 281–299

    CAS  Google Scholar 

  • Morselli PL, Blanchetti G, Durand G, Le Henzey MF, Zarifian E et al. (1979) Haloperidol plasma levels monitoring in pediatric patients. Ther Drug Monit 1: 35–46

    PubMed  CAS  Google Scholar 

  • Piafsky KM, Borg A O, Odar-Cederlof I, Johansson C, Sjoqvist F (1978) Increased plasma protein binding of propranolol and chlorpromazine mediated by disease-induced elevations of plasma alphasub 1 acid glycoprotein. N Engl J Med 299: 1435–1439

    PubMed  CAS  Google Scholar 

  • Potkin SG, Shen Y, Zhou D, Pardes H, Shu L, Phelps B, Poland R (1985) Does a therapeutic window for plasma haloperidol exist? Preliminary Chinese data. Psychopharmacol Bull 21: 59–61

    PubMed  CAS  Google Scholar 

  • Putten T Van, May PRA, Jenden DJ (1981) Does a plasma level of chlorpromazine help? Psychol Med 11: 729–734

    PubMed  Google Scholar 

  • Putten T Van, Marder SR, May PRA, Poland RE, O’Brien RP (1985) Plasma levels of haloperidol and clinical response. Psychopharmacol Bull 21: 69–72

    PubMed  Google Scholar 

  • Raaflaub J (1975) On the pharmacokinetics of chlorprothixene in man. Experimentia 31: 557–558

    CAS  Google Scholar 

  • Reyntijens AJM, Heykants JJP, Woestenborghs RJH, Gelders JG, Aerts TJL (1982) Pharmacokinetics of haloperidol decanoate. Int Pharmacopsychiat 17: 238–246

    Google Scholar 

  • Rivera-Calimlim L, Gift T, Nasrallah H, Wyatt RJ, Lasagna L (1978) Low plasma levels of CPZ in patients chronically treated with neuroleptics. Comm Psychopharmacol 2: 113–121

    CAS  Google Scholar 

  • Sayers AC, Amsler HA (1977) Clozapine. In: Goldberg ME (ed) Pharmacological and biochemical properties of drug substances, vol 1. Am Pharmaceut Ass, Acad Pharmaceut Sciences, pp 1–31

    Google Scholar 

  • Schwinghammer TL, Juhl RP, Dittert LW, Melethil SK, Kroboth FJ, Chungi VS (1984) Comparison of the bioavailabilitity of oral, rectal and intramuscular promethazine. Biopharm Drug Dispos 5: 185–194

    PubMed  CAS  Google Scholar 

  • Shvartsburd A, Nowkeafor V, Smith RC (1984) Red blood cell and plasma levels of thioridazine and mesoridazine in schizophrenic patients. Psychopharmacology 82: 55–61

    PubMed  CAS  Google Scholar 

  • Sitar DS (1989) Human drug metabolism in vivo. Pharmacol Ther 43: 363–375

    PubMed  CAS  Google Scholar 

  • Smith RC, Broules G, Shvartsburd A, Allen R, Lewis N, Schoolar JC, Chojnecki M, Johnson R (1982) RBC and plasma levels of haloperidol and clinical response in schizophrenia. Am J Psychiatry 139: 154–156

    Google Scholar 

  • Smith RC, Baumgartner R, Misra CH, Mauldin M, Shvartsburd A, Ho BT, Dejohn C (1984a) Haloperidol plasma levels and prolactin response as predictors of clinical improvement in schizophrenia: chemical versus radioreceptor plasma level assays. Arch Gen Psychiatry 41: 1044–1049

    PubMed  CAS  Google Scholar 

  • Smith RC, Baumgartner R, Ravajondron GK, Shvartsburd A, Schoolar JC, Allen R, Johnson R (1984b) Plasma and red cell levels of thioridazine and clinical response in schizophrenia. Psychiatry Res 12: 287–296

    PubMed  CAS  Google Scholar 

  • Smith RC, Baumgartner R, Burd A, Ravichandran GK, Mauldin M (1985a) Haloperidol and thioridazine drug levels and clinical response in schizophrenia: comparison of gas-liquid chromatography and radioreceptor drug level assays. Psychopharmacol Bull 21: 52–59

    PubMed  CAS  Google Scholar 

  • Smith RC, Baumgartner R, Shvartsburd A, Ravi-Chandran GK, Vroulis G, Mauldin M (1985b) Comparative efficacy of red cell and plasma haloperidol as predictors of clinical response in schizophrenia. Psychopharmacology 85: 449–455

    PubMed  CAS  Google Scholar 

  • Strolin-Benedetti M, Donath A, Frigerio A, Morgan KT, La Ville C, Malnoe A (1978) Absorption, elimination et metablisme du tiapride (FL0 1347), medicament neuroleptique, chez le rat, le chien et l’homme. Ann Pharm Fr 36: 279–288

    PubMed  CAS  Google Scholar 

  • Sunderland T, Cohen BM (1987) Blood to brain distribution of neuroleptics. Psychiatr Res 20: 299–305

    CAS  Google Scholar 

  • Tang SW, Glaister J, Davidson L, Toth R, Jeffries JJ, Seeman P (1984) Total and free plasma neuroleptic levels in schizophrenic patients. Psychiatr Res 13: 285–293

    CAS  Google Scholar 

  • Tischio J, Chaikin P, Abrams L, Hetyei N, Patrick J, Weintraub H, Collins D, Chasin M, Wesson D, Abuzzahab F (1982) Comparative bioavailability and pharmacokinetics of bromperidol in schizophrenic patients following oral administration. J Clin Pharmacol 22: 16a

    Google Scholar 

  • Vranckx-Haenen J, Munter De W, Heykants J (1979) Fluspirilen administered in a biweekly dose for the prevention of relapses in chronic schizophrenics. Acta Psychiatr Belg 79: 459–474

    Google Scholar 

  • Wiesel FA, Alfredsson G, Ehrnebo M, Sedvall G (1980) The pharmacokinetics of intravenous and oral sulpiride in healthy human subjects. Eur J Clin Pharmacol 17: 385–391

    PubMed  CAS  Google Scholar 

  • Wiles D (1981) Preliminary assessment of a calf caudate radioreceptor assay for the estimation of neuroleptic drugs in plasma: comparison with other techniques. In: Usdin EJ et al. (ed) Clinical pharmacology in psychiatry: neuroleptic and antidepressant research. Macmillan, London, pp 111–121

    Google Scholar 

  • Wiles DH, Gelder MG (1979) Plasma fluphenazine levels by radioimmunoassay in schizophrenic patients treated with depot injections of fluphenazine decanoate. Br J Clin Pharmacol 8: 565–570

    PubMed  CAS  Google Scholar 

  • Wiles DH, Mccreadie RG, Whitehead A (1990) Pharmacokinetics of haloperidol and fluphenazine decanoates in chronic schizophrenia. Psychopharmacology 101: 274–281

    PubMed  CAS  Google Scholar 

  • Wistedt B, Jørgensen A, Wiles DH (1982) A depot neuroleptic withdrawal and relapse frequency. Psychopharmacology 78: 301–304

    PubMed  CAS  Google Scholar 

  • Wistedt B, Johanivesz G, Omerhodzic M, Arthur H, Bertilsson L, Petters I (1984) Plasma haloperidol levels and clinical response in acute schizophrenia. Nord Psykiat Tidsskr 9: 13

    Google Scholar 

  • Wode-Helgodt B, Alfredsson G (1981) Concentrations of chlorpromazine and two of its active metabolites in plasma and cerebrospinal fluid of psychotic patients treated with fixed doses. Psychopharmacology 73: 55–62

    PubMed  CAS  Google Scholar 

  • Wode-Helgodt B, Borg S, Fryo B, Sedvall G (1978) Clinical effects and drug concentrations in plasma and cerebrospinal fluid in psychiatric patients treated with fixed doses of chlorpromazine. Acta Psychiatr Scand 58: 149–173

    PubMed  CAS  Google Scholar 

  • Yesavage JA, Holman CA, Cohn R (1981) Correlation of thiothixene serum levels and age. Psychopharmacology 27: 170–172

    Google Scholar 

Literatur

  • Anderson CB, Ereshefsky L (1992) Pharmakokinetische Grundlagen der Dosierung von Neuroleptika unter besonderer Berücksichtigung der Depot-Neuroleptika. In: Rifkin A, Osterheidfr M (Hrsg) Schizophrenie — aktuelle Trends und Behandlungsstrategien. Springer, Berlin Heidelberg New York, S 3–28

    Google Scholar 

  • Angrist B, Gershon S (1970) The phenomenology of experimentally induced amphetamine psychosis. Biol Psychiatry 2: 95–107

    PubMed  CAS  Google Scholar 

  • Awad AG, Hogan TP (1994) Subjective response to neuroleptics and the quality of life: implications for treatment outcome. Acta Psychiatr Scand 89 [Suppl 380]: 27–32

    Google Scholar 

  • Barnes TRE, Wiles DH (1983) Variation in orofacial tardive dyskinesia during depot antipsychotic treatment. Psychopharmacology 81: 359–362

    PubMed  CAS  Google Scholar 

  • Bartlett EJ, Wolkin A, Brodie JD et al. (1991) Importance of pharmacologic control in PET studies: effects of thiothixene and haloperidol on crebral glucose utilization in chronic schizophrenia. Psychiatty Res: Neuroimaging 40: 115–124

    CAS  Google Scholar 

  • Berger HCJ, Hoof Van JJM, Spaendonck Van KPM, Horstinkmwi, Bercken Van Den JHL, Jaspers R, Cools AR (1989) Haloperidol and cognitive shifting. Neuropsychologia 27: 629–639

    PubMed  CAS  Google Scholar 

  • Bracha HS (1987) Asymmetric rotational (circling) behavior, a dopamine-related asymmetry; preliminary findings in unmedicated and never-medicated schizophrenic patients. Biol Psychiatry 22: 995–1003

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS (1995) Charting the circuits. Nature 378: 128–129

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Wu JC, Delisi LE et al. (1987) Positron emission tomography studies of basal ganglia and somatosensory cortex drug effects: differences between normal controls and schizophrenic patients. Biol Psychiatry 22: 479–494

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Potkin SG, Siegel BV et al. (1992a) Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch Gen Psychiatry 49: 966–974

    PubMed  CAS  Google Scholar 

  • Buchsbaum MS, Potkin SG, Marshall JF et al. (1992b) Effects of clozapine and thiothixene on glucose metabolic rate in schizophrenia. Neuropsychopharmacology 6: 155–163

    PubMed  CAS  Google Scholar 

  • Bunney BS, Sesack SR, Silva NL (1987) Midbrain dopaminergic systems: neurophysiology and electrophysiological pharmacology. In: Melt-Zer HY (ed) Psychopharmacology. The third generation of progress. Raven Press, New York, pp 113–126

    Google Scholar 

  • Carpenter WT Jr, Heinrichs DW, Alphs LD (1985) Treatment of negative symptoms. Schizophr Bull 11: 440–452

    PubMed  Google Scholar 

  • Carpenter WT Jr, Conley RR, Buchanan RW, Breier A, Tamminga CA (1995) Patient response and resource management: another view of clozapine treatment of schizophrenia. Am J Psychiatry 152 (6): 827–832

    PubMed  Google Scholar 

  • Cheung H (1981) Schizophrenics fully remitted on neuroleptics for 3 to 5 years — to stop or continue drugs? Br J Psychiatry 138: 490–494

    PubMed  CAS  Google Scholar 

  • Civelli O (1995) Molecular biology of the dopamine receptor subtypes. In: Bloom FE, Kupfer DJ (eds) Psychopharmacology: the fourth generation of progress. Raven Press, New York, pp 155–162

    Google Scholar 

  • Cleghorn JM, Szechtman H, Garnett ES et al. (1991) Apomorphine effects on brain metabolism in neuroleptic-naive schizophrenic patients. Psychiatry Res: Neuroimaging 40: 135–153

    PubMed  CAS  Google Scholar 

  • Cohen BM, Lipinski JF, Pope HG, Harris PQ, Altes-Man RI (1980) Neuroleptic blood levels and therapeutic effect. Psychopharmacology 70: 191–193

    PubMed  CAS  Google Scholar 

  • Collard J (1974) The main clinical classifications of neuroleptics. Acta Psychiatr Scand 74: 447–461

    CAS  Google Scholar 

  • Coppola R, Herrmann WM (1987) Psychotropic drug profiles: comparisons by topographic maps of absolute power. Neuropsychobiology 97–104

    Google Scholar 

  • Creese I (1985) Binding interactions of neuroleptic drugs with dopamine receptors and their implications. In: Seiden LS, Balster RL (eds) Behavioral pharmacology. The current status. Liss, New York, pp 221–241

    Google Scholar 

  • Daniel DG, Weinberger DR, Jones DW et al. (1991) The effect of amphetamine on regional cerebral blood flow during cognitive activation in schizophrenia. J Neurosci 11: 1907–1917

    PubMed  CAS  Google Scholar 

  • Daniels JJ, Williams J, Mant R et al. (1994) Repeat length variation in the dopamine D4 receptor gene shoes no evidence of association with schizophrenia. Am J Med Genet 54: 256–258

    PubMed  CAS  Google Scholar 

  • Davis JM, Janowsky DS, Sekerke HJ, Manier H, Elyouseff MK (1974) The pharmacokinetics of butaperazine in serum. In: Forrest IS, Carr CJ, Usdin E (eds) Phenothiazines and structurally related drugs. Raven Press, New York, pp 433–443

    Google Scholar 

  • Davis JM, Schaffer CB, Killian G A, Kinard C, Chan C (1980) Important issues in the drug treatment of schizophrenia. Schizophr Bull 6: 70–87

    PubMed  CAS  Google Scholar 

  • Deister A, Marneros A, Conrad C, Fischer J (1992) Clozapin (LeponexR) bei therapieresistenten chronischem schizophrenen Psychosen. In: Naber D, Müller-Spahn F (Hrsg) Clozapin-Pharmakologie und Klinik eines atypischen Neuroleptikums. Schattauer, Stuttgart New York, S 37–42

    Google Scholar 

  • DeLisi LE, Holcomb HH, Cohen RM, Pickar D, Carpenter W et al. (1985) Positron emission tomography in schizophrenic patients with and without neuroleptic medication. J Cereb Blood Flow Metab 5: 201–206

    PubMed  CAS  Google Scholar 

  • Deniker P (1988) Die Geschichte der Neuroleptika. In: Linde OK (Hrsg) Pharmakopsychiatrie im Wandel der Zeit. Tilia, Nürnberg, S 119–133

    Google Scholar 

  • Dolan RJ, Fletcher P, Frith CD, Friston KJ, Frackowiak RSJ, Grasby PM (1995) Dopaminergic modulation of impaired cognitive activation in the anterior cingulate cortex in schizophrenia. Nature 378: 180–182

    PubMed  CAS  Google Scholar 

  • Elkayam U, Frishman W (1980) Cardiovascular effects of phenothiazines. Am Heart J 100: 397–401

    PubMed  CAS  Google Scholar 

  • Ellison G (1994) Stimulant-induced psychosis, the dopamine theory of schizophrenia and the habenula. Brain Res Rev 19: 223–239

    PubMed  CAS  Google Scholar 

  • Ellison GD, Nielsen EB, Lyon M (1981) Animal models of psychosis: hallucinatory behaviors in monkeys during the late stage of continuous amphetamine intoxication. J Psychiatr Res 16: 13–22

    PubMed  CAS  Google Scholar 

  • Farde L (1988) Central d2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45: 71–76

    PubMed  CAS  Google Scholar 

  • Farde L, Nordström AL (1992) PET analysis indicates atypical central dopamine receptor occupancy in clozapine-treated patients. Br J Psychiatry [Suppl] 17: 30–33

    Google Scholar 

  • Farde L, Nordström AL, Wiesel FA, Pauli S, Hall-Din C, Sedvall G (1992) Positron emission tomographic analysis of central D1 and D2 dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine. Relation to extrapyramidal side effects. Arch Gen Psychiatry 49: 538–544

    PubMed  CAS  Google Scholar 

  • Fibinger HC, Phillips AG (1985) Behavioral pharmacology of neuroleptic drugs: possible mechanism of action. In: Seiden LS, Balster RL (eds) Behavioral pharmacology. The current status. Liss, New York, pp 243–259

    Google Scholar 

  • Flügel F, Bente D (1956) Das akinetisch-abuli-sche Syndrom und seine Bedeutung für die pharmakologisch-psychiatrische Forschung. Dtsch Med Wochenschr 81: 2071–2074

    PubMed  Google Scholar 

  • Gaebel W, Awad AG (1994) Prediction of neuroleptic treatment outcome in schizophrenia. Concepts and methods. Springer, Wien New York

    Google Scholar 

  • Gaebel W, Pietzcker A, Ulrich G, Schley J, Mül-Ler-Oerlinghausen B (1988) Möglichkeiten der Voraussage des Erfolges einer Akutbehandlung mit Perazin anhand der Reaktion auf eine Perazintestdosis. In: Helmchen H, Hippius H, Tölple R (Hrsg) Therapie mit Neuroleptika-Perazin. Thieme, Stuttgart New York, S 159–172

    Google Scholar 

  • Galdi J, Rieder RO, Silber D, Bonato RR (1981) Genetic factors in the response to neuroleptics in schizophrenia: a pharmacogenetic study. Psychol Med 11: 713–728

    PubMed  CAS  Google Scholar 

  • Gardos G (1974) Are antipsychotic drugs interchangeable? J Nerv Ment Dis 5: 343–348

    Google Scholar 

  • Glenthøj B, Mogensen J, Laursen H, Holm S, Hemmingsen R (1993) Electrical sensitization of the mesolimbic dopaminergic system in rats: a pathogenetic model for schizophrenia. Brain Res 619: 39–54

    PubMed  Google Scholar 

  • Goldberg SC (1985) Negative and deficit symptoms in schizophrenia do respond to neuroleptics. Schizophr Bull 11: 453–456

    PubMed  CAS  Google Scholar 

  • Grace A (1991) Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: a hypothesis for the etiology of schizophrenia. Neuroscience 41: 1–24

    PubMed  CAS  Google Scholar 

  • Griffith J, Cavanaugh J, Held N, Oates J (1972) D-amphetamine: evaluation of psychotomimetic properties in man. Arch Gen Psychiatry 26: 97–100

    PubMed  CAS  Google Scholar 

  • Grünberger J, Linzmayer L, Cepko H, Saletu B (1986) Pupillometrie im psychopharmakologischen Experiment. Arzneimittelforschung 36: 141–146

    PubMed  Google Scholar 

  • Haase HJ (1977) Therapie mit Psychopharmaka und anderen seelisches Befinden beeinflussenden Medikamenten, 4. Aufl. Schattauer, Stuttgart New York

    Google Scholar 

  • Heinrich K (1967) Zur Bedeutung des postremis-siven Erschöpfungssyndroms für die Rehabilitation Schizophrener. Nervenarzt 38: 487–491

    PubMed  CAS  Google Scholar 

  • Hogarty GE, Goldberg SC, Schooler NR, Ulrich RF (1974) Drug and sociotherapy in the aftercare of schizophrenic patients. II. Two-year relapse rates. Arch Gen Psychiatry 31: 603–608

    PubMed  CAS  Google Scholar 

  • Horn E, Lach B, Lapierre Y et al. (1988) Hypothalamic pathology in the neuroleptic malignant syndrome. Am J Psychiatry 145 (5): 617–620

    PubMed  CAS  Google Scholar 

  • Imperato A, Angelucci L (1989) The effects of clozapine and fluperlapine on the in vivo release and metabolism of dopamine in the striatum and prefrontal cortex of freely moving rats. Psychopharmacol Bull 25: 383–389

    PubMed  CAS  Google Scholar 

  • Itil TM, Patterson CD, Keskiner A, Holden JM (1974) Comparison of phenothiazine and nonphenothiazine neuroleptics according to psychopathology, side effects and computerized EEG. In: Forrest IS, Carr CJ, Usdin E (eds) The phenothiazines and structurally related drugs. Raven Press, New York, pp 499–509

    Google Scholar 

  • Itil TM, Marasa J, Saletu B, Davis S, Mucciardi AN (1975) Computerized EEG: predictor of outcome in schizophrenia. J Nerv Ment Dis 160: 188–203

    Google Scholar 

  • Itiltm, Shapiro D, Schneider SJ, Francis IB (1981) Computerized EEG as a predictor of drug response in treatment resistant schizophrenics. J Nerv Ment Dis 169: 629–637

    Google Scholar 

  • Janke W (1980) Psychometric and psychophysiological actions of antipsychotics in men. In: Hoffmeister F, Stille G (eds) Psychotropic agents. Springer, Berlin Heidelberg New York, pp 305–336

    Google Scholar 

  • Jann MW, Ereshefsky L, Sakland SR (1985) Clinical pharmacokinetics of the depot antipsychotics. Clin Pharmacokinet 10: 315–333

    PubMed  CAS  Google Scholar 

  • Jurna I (1980) Neurophysiological properties of neuroleptic agents in animals. In: Hoffmeister F, Stille G (eds) Psychotropic agents. Springer, Berlin Heidelberg New York, pp 111–175

    Google Scholar 

  • Kampfhammer H-P, Rüther E (1988) Depot-Neu-roleptika. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Kane JM (1984) The use of depot neuroleptics: clinical experience in the United States. J Clin Psychiatry 45: 5–12

    PubMed  CAS  Google Scholar 

  • Kane J, Honigfeld G, Singer J, Meltzer H (1988) Clozapine for the treatment-resistant schizophrenic. Arch Gen Psychiatry 45: 789–796

    PubMed  CAS  Google Scholar 

  • Killian GA, Holzman PS, Davis JM, Gibbons R (1984) Effects of psychotropic medication on sclected cognitive and perceptual measures. J Abnorm Psychol 93: 58–70

    PubMed  CAS  Google Scholar 

  • Kissling W (1991) The current unsatisfactory state of relapse prevention in schizophrenic psychoses — suggestions for improvement. Clin Neuropharmacol 14 [Suppl 2]: S33–S44

    PubMed  Google Scholar 

  • Klimke A, Klieser E (1994) Catatonia. Current therapeutic recommendations. CNS Drugs 2 (4): 280–291

    Google Scholar 

  • Klimke A, Klieser E (1995) Das atypische Neuro-leptikum Clozapin (Leponex®) — aktueller Kenntnisstand und neuere klinische Aspekte. Fortschr Neurol Psychiat 63: 173–193

    PubMed  CAS  Google Scholar 

  • Klimke A, Klieser E, Lehmann E, Miele L (1993) Initial improvement as a criterion for drug choice in acute schizophrenia. Pharmacopsychiatry 26 (1): 25–29

    PubMed  CAS  Google Scholar 

  • Kornetsky C (1985) Neuroleptic drugs may attenuate pleasure in the operant chamber, but in the schizophrenic’s head they may simply reduce motivational arousal. Behav Brain Sci 8: 173–192

    Google Scholar 

  • Kreiskott H (1980) Behavioral pharmacology of antipsychotics. In: Hoffmeister F, Stille G (eds) Psychotropic agents. Springer, Berlin Heidelberg New York, pp 59–88

    Google Scholar 

  • Lauber HL (1967) Pupillometrische Versuche bei Anwendung von Psychopharmaka. Med Welt 18: 572–576

    Google Scholar 

  • Laurian S, Le PK, Baumann P, Perey M, Gaillard J-M (1981) Relationship between plasma-levels of chlorpromazine and effects on EEG and evoked potentials in healthy volunteers. Pharmacopsychiatry 14: 199–204

    CAS  Google Scholar 

  • Lehmann HE (1975) Psychopharmacological treatment of schizophrenia. Schizophr Bull 13: 27–45

    PubMed  Google Scholar 

  • Lehr E (1980) Testing antipsychotic drug effects with operant behavioral techniques. In: Hoff-Meister F, Stille G (eds) Psychotropic agents. Springer, Berlin Heidelberg New York, pp 89–95

    Google Scholar 

  • Leuschner F, Neumann W, Hempel R (1980) Toxicology of antipsychotic agents. In: Hoffmei-Ster F, Stille G (eds) Psychotropic agents. Springer, Berlin Heidelberg New York, pp 225–265

    Google Scholar 

  • Lieberman JA, Johns CA, Kane JM et al. (1989) Clozapine: guidelines for clinical management. J Clin Psychiatry 50: 329–338

    PubMed  CAS  Google Scholar 

  • Lieberman J, Jody D, Geisler S, Alvir J, Loebel A, Szymanski S, Woerner M, Borenstein M (1993) Time course and biologic correlates of treatment response in first-episode schizophrenia. Arch Gen Psychiatry 50: 369–376

    PubMed  CAS  Google Scholar 

  • Lin MT, Ho MT, Young MS (1992) Stimulation of the nigrostriatal dopamine system inhibits both heat production and heat loss mechanisms in rats. Naunyn Schmiedebergs Arch Pharmacol 346 (5): 504–510

    PubMed  CAS  Google Scholar 

  • Lingjoerde O (1973) Some pharmacological aspects of depot neuroleptics. Acta Psychiatr Scand [Suppl] 246: 9–14

    Google Scholar 

  • Loga S, Curry S, Lader M (1975) Interactions of orphenadrine and phenobarbitone with chlorpomazine: plasma concentrations and effects in man. Br J Clin Pharmacol 2: 197–208

    PubMed  CAS  Google Scholar 

  • Marder SR, Hawes EM, Putten Van T, Hubbard JW, Mekay G, Mintz J, May PRA, Midha KK (1986) Fluphenazine plasma levels in patients receiving low and conventional doses of fluphena-zine decanoate. Psychopharmacology 88: 480–483

    PubMed  CAS  Google Scholar 

  • Markstein R (1994) Bedeutung neuer Dopamin-rezeptoren für die Wirkung von Clozapin. In: Naber D, Müller-Spahn F (Hrsg) Clozapin. Pharmakologie und Klinik eines atypischen Neuroleptikums. Springer, Berlin Heidelberg New York Tokyo, S 5–16

    Google Scholar 

  • May PRA, Goldberg SC (1978) Prediction of schizophrenic patients’ response to pharmacopsychiatry. In: Lipton MA, Dimascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 1139–1153

    Google Scholar 

  • May PRA, Putten Van T, Yale C, Potepan P, Jenden DJ, Fairchild MD, Goldstein MJ, Dixon WJ (1976) Predicting individual responses to drug treatment in schizophrenia: a test dose model. J Nerv Ment Dis 162: 177–183

    PubMed  CAS  Google Scholar 

  • May PRA, Putten Van T, Jenden DJ, Yale C, Dixon WJ, Goldstein MJ (1981) Prognosis in schizophrenia: individual differences in psychological response to a test dose of antipsychotic drug and their relationship to blood and saliva levels and treatment. Compr Psychiatry 22: 147–152

    PubMed  CAS  Google Scholar 

  • Mcelvoy JP, Hogarty GE, Steingard S (1991) Optimal dose of neuroleptic in acute schizophrenia. Arch Gen Psychiatry (48): 739–745

    Google Scholar 

  • Meltzer HY (1994) An overview of the mechanism of action of clozapine. J Clin Psychiatry 55 [Suppl B]: 47–52

    PubMed  Google Scholar 

  • Meltzer HY, Busch DA, Fang VS (1983) Serum neuroleptic and prolactin levels in schizophrenic patients and clinical response. Psychiatr Res 9: 271–283

    CAS  Google Scholar 

  • Möller HJ, Kissling W, Zerssen Von D (1983) Die prognostische Bedeutung des frühen Ansprechens schizophrener Patienten auf Neurolep-tika für den weiteren stationären Behand-lungsverlauf. Pharmacopsychiatry 16: 46–49

    Google Scholar 

  • Modestin J, Toffler G, Pia M, Greub E (1983) Haloperidol in acute schizophrenic inpatients. A double-blind comparison of dosage regimens. Pharmacopsychiat 16: 121–126

    CAS  Google Scholar 

  • Murphy DL, Shiling DJ, Murray RM (1978) Psychoactive drug responder subgroups: possible contributions to psychiatric classification. In: Lipton MA, Dimascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 807–820

    Google Scholar 

  • Naber D, Hippius H (1990) The European experience with the use of clozapine. Hosp Commun Psychiatry 41: 886–889

    CAS  Google Scholar 

  • Nedopil N, Rüther E (1981) Initial improvement as predictor of outcome of neuroleptic treatment. Pharmacopsychiatry 14: 205–207

    CAS  Google Scholar 

  • Niemegeers CJE (1984) Zur Pharmakologie der Antidepressiva und Neuroleptika. Nervenheilkunde 3: 28–32

    Google Scholar 

  • Nordström AL, Farde L, Wiesel FA, Forslund K, Pauli S, Halldin C, Uppfeldt G (1993) Central D2-dopamine receptor occupancy in relation to antipsychotic drug effects: a double-blind PET study of schizophrenic patients. Biol Psychiatry 33: 227–235

    PubMed  Google Scholar 

  • Nordström AL, Farde L, Nyberg S, Karlsson P, Halldin C, Sedvall G (1995) D1, D2 and 5-HT2 Receptor occupancy in relation to clozapine serum concentration: a PET study of schizophrenic patients. Am J Psychiatry 152 (10): 1444–1449

    PubMed  Google Scholar 

  • Nyberg S, Farde L, Halldin C, Dahl MI, Bertils-Son L (1995) D2 dopamine receptor occupancy during low-dose treatment with haloperidol decanoate. Am J Psychiatry 152 (2): 173–178

    PubMed  CAS  Google Scholar 

  • Oyewumi LK (1983) Neuroleptics under high risk conditions. Can J Psychiatry 38: 398–402

    Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin, alpha-adrenergic, and histamine receptors to clinical potency. Am J Psychiatry 137: 1518–1522

    PubMed  CAS  Google Scholar 

  • Pilowsky LS, Costa DC, Ell PJ, Murray RM, Ver-Hoeff NP, Kerwin RW (1993) Antipsychotic medication, D2 dopamine receptor blockade and clinical response: a 123I Ibzm Spet (single photon emission tomography) study. Psychol Med 23: 791–797

    PubMed  CAS  Google Scholar 

  • Randrup A, Kjellberg B, Schiörring E, Schelll-Krüger J, Fog R, Munkvad I (1980) Stereotyped behavior and its relevance for testing neuroleptics. In: Hoffmeister F, Stille G (eds) Psychotropic agents. Springer, Berlin Heidelberg New York, pp 97–110

    Google Scholar 

  • Robinson TE, Noordhoorn M, Chan EM, Mocsary Z, Camp DM, Whishaw IQ (1994) Relationship between asymmetries in striatal dopamine release and the direction of amphetamine-induced rotation during the first week following a unilateral 6-OHDA lesion of the substantia nigra. Synapse 17: 16–25

    PubMed  CAS  Google Scholar 

  • Roth RH, Wolf ME, Deutsch AY (1987) Neuro-chemistry of midbrain dopamine systems. In: Meltzer HY (ed) Psychopharmacology. The third generation of progress. Raven Press, New York, pp 81–94

    Google Scholar 

  • Roubicek J (1980) Antipsychotics: neurophysiolo-gical properties (in man). In: Hoffmeister F, Stille G (eds) Psychotropic agents. Springer, Berlin Heidelberg New York, pp 178–192

    Google Scholar 

  • Sakurai Y, Takahashi R, Nakahara T, Ikenaga H (1980) Prediction of response to and actute outcome of chlorpromazine treatment in schizophrenic patients. Arch Gen Psychiatry 37: 1057–1061

    PubMed  CAS  Google Scholar 

  • Saletu B (1980) Central measures in schizophrenia. In: Praag Van HM, Lader MH, Rafaelsen OJ, Sachar EJ (eds) Handbook of biological psychiatry, part II. Brain mechanisms and abnormal behavior — psychophysiology. Dekker, New York Basel, pp 97–144

    Google Scholar 

  • Saletu B, Anderer P (1989) EEG-Mapping in der psychiatrischen Diagnose-und Therapieforschung. In: Saletu B (Hrsg) Biologische Psychiatrie. Thieme, Stuttgart New York, S 31–51

    Google Scholar 

  • Schwartz WJ, Smith CB, Davidsen L, Savaki H, Sokoloff L et al. (1979) Metabolic mapping of functioning activity in the hypothalamo-neu-rohypophyseal system of the rat. Science 205: 723–725

    PubMed  CAS  Google Scholar 

  • Sedvall G (1992) The current status of PET scanning with respect to schizophrenia. Neuropsychopharmacology 7: 41–54

    PubMed  CAS  Google Scholar 

  • Simpson GM, Yadalam K (1985) Blood levels of neuroleptics: state of the art. J Clin Psychiatry 46: 22–28

    PubMed  CAS  Google Scholar 

  • Simpson GM, Cooper TB, Bark N, Sud I, Lee JH (1980) Effect of antiparkinsonian medication on plasma levels of chlorpromazine. Arch Gen Psychiatry 37: 205–208

    PubMed  CAS  Google Scholar 

  • Sovner R, Dimascio A (1978) Extrapyramidal syndromes and other neurological side effects of psychotropic drugs. In: Lipton MA, Dimascio A, Killam KF (eds) Psychopharmacology: a generation of progress. Raven Press, New York, pp 1021–1032

    Google Scholar 

  • Stevens JR, Livermore A (1978) Kindling of the mesolimbic dopamine system: animal model psychosis. Neurology 28: 36–46

    PubMed  CAS  Google Scholar 

  • Stille G (1971) Zur Pharmakologie katatonigener Stoffe. Arzneimittelforschung 6: 800–808

    Google Scholar 

  • Stille G, Hippius H (1971) Kritische Stellungnahme zum Begriff der Neuroleptika. In: Coper H, Engelmeier MP, Heinrich K, Herz A, Hippius H, Kielholz P (Hrsg) Pharmakopsychiatrie. Neu-ro-Psychopharmakologie. Thieme, Stuttgart, S 182–191

    Google Scholar 

  • Stone CK, Garver DL, Griffith J, Hirschowitz J, Bennett J (1995) Further evidence of a dose-response threshold for haloperidol in psychosis. Am J Psychiatry 152 (8): 1210–1212

    PubMed  CAS  Google Scholar 

  • Strauss JS, Carpenter WT, Bartko JJ (1977) The diagnosis and understanding of schizophrenia, part III. Speculations on the processus that underlie schizophrenic symptoms and signs. Schizophr Bull 11: 61–69

    Google Scholar 

  • Sunahara RK, Seeman P, Van Tol HHM, Niznik HB (1993) Dopamine receptors and antipsychotic drug response. Br Psychiatry 163 [Suppl 22]: 31–38

    Google Scholar 

  • Swerdlow NR, Braff DL, Taaid N, Geyer MA (1994) Assessing the validity of an animal model of deficient sensorimotor gating in schizophrenic patients. Arch Gen Psychiatry 51: 139–154

    PubMed  CAS  Google Scholar 

  • Szechtman H, Nahmias C, Garnett ES, Firnau G, Brown GM, Kaplan RD, Cleghorn JM (1988) Effect of neuroleptics on altered cerebral glucose metabolism in schizophrenia. Arch Gen Psychiatry 45: 523–532

    PubMed  CAS  Google Scholar 

  • Thiels C, Leeds A, Resch F, Goessens L (1983) Wirkungen psychotroper Substanzen auf Embryo und Fetus. In: Langer G, Heimann H (Hrsg) Psychopharmaka. Grundlagen und Therapie. Springer, Wien New York, S 559–573

    Google Scholar 

  • Tuma AH, May PRA, Yale C, Forsthye AB (1978) Therapist characteristics and the outcome of treatment in schizophrenia. Arch Gen Psychiatry 35: 81–85

    PubMed  CAS  Google Scholar 

  • Ungerstedt U (1971) Postsynaptic supersensitivity after 6-hydroxydopamine induced degere-ration of the nigrostriatal dopamine system. Acta Physiol Scand [Suppl] 367: 69–93

    CAS  Google Scholar 

  • Van Kammen P, Kelley M (1991) Dopamine and norepinephrine activity in schizophrenia. An integrative perspective. Schizophr Res 4: 173–191

    PubMed  Google Scholar 

  • Van Putten T, May PRA, Jenden DJ (1981) Does a plasma level of chlorpromazine help? Psychol Med 11: 729–734

    PubMed  Google Scholar 

  • Van Putten T, Marder SR, Mintz J (1990) A controlled dose comparison of haloperidol in newly admitted schizophrenic patients. Arch Gen Psychiatry 47: 754–758

    PubMed  Google Scholar 

  • Venables PH (1980) Peripheral measures of schizophrenia. In: Praag Van HM, Lader MH, Rafa-Elsen OJ, Sachar EJ (eds) Handbook of biological psychiatry, part 3. Dekker, New York Basel, pp 79–95

    Google Scholar 

  • Wiesel FA (1992) Regional glucose metabolism before and during neuroleptic treatment. Prog Neuropsychopharmacol Biol Psychiatry 16: 871–881

    PubMed  CAS  Google Scholar 

  • Wik G, Wiesel FA, Sjögren I et al. (1989) Effects of sulpiride and chlorpromazine on regional cerebral glucose metabolism in schizophrenic patients as determined by positron emission tomography. Psychopharmacology 97: 309–318

    PubMed  CAS  Google Scholar 

  • Willner P (1991) Behavioral models in psychopharmacology: theoretical, industrial and clinical perspectives. Cambridge University Press, Cambridge New York

    Google Scholar 

  • Wise RA (1978) Catecholamine theories of reward: a critical review. Brain Res 152: 215–247

    PubMed  CAS  Google Scholar 

  • Wise RA (1982) Neuroleptics and operant behavior: the anhedonia hypothesis. Behav Brain Sci 5: 39–87

    Google Scholar 

  • Woggon B, Baumann U (1983) Multimethodolo-gical approach in psychiatric predictor research. Pharmacopsychiatry 16: 175–178

    CAS  Google Scholar 

  • Wolkin A, Jaeger J, Brodle JD et al. (1985) Persistence of cerebral metabolic abnormalities in chronic schizophrenia as determined by positron emission tomography. Am J Psychiatry 142: 564–571

    PubMed  CAS  Google Scholar 

  • Wolkin A, Angrist B, Wolf AP et al. (1987) Effects of amphetamine on local cerebral metabolism in normal and schizophrenic subjects as determined by positron emission tomography. Psychopharmacology 92: 241–246

    PubMed  CAS  Google Scholar 

  • Wolkin A, Sanfilipo M, Angrist B et al. (1994) Acute d-amphetamine challenge in schizophrenia: effects on cerebral glucose utilization and clinical symptomatology. Biol Psychiatry 36: 317–325

    PubMed  CAS  Google Scholar 

  • Wyatt RJ (1976) Biochemistry and schizophrenia, part IV. The neuroleptics — their mechanism of action: a review of the biochemical literature. Psychopharmacol Bull 12: 5–50

    PubMed  CAS  Google Scholar 

  • Yadalam KG, Simpson GM (1988) Changing from oral to depot fluphenazine. J Clin Psychiatry 49: 346–348

    PubMed  CAS  Google Scholar 

Literatur

  • Akiyama K, Kanzaki A, Tsuchida K, Ujike H (1994) Methamphetamine-induced behavioral sensitization and its implications for relapse of schizophrenia. Schizophr Res 12: 251–257

    PubMed  CAS  Google Scholar 

  • Amin F, Davidson M, Kahn RS, Schmeidler J, Stern R, Knott PJ, After S (1995) Assessment of the central dopaminergic index of plasma HVA in schizophrenia. Schizophr Bull 21: 53–66

    PubMed  CAS  Google Scholar 

  • Anden NE, Stock G (1973) Effect of clozapine on the turnover of dopamine in the corpus striatum and in the limbic system. J Pharm Pharmacol 25: 346–348

    PubMed  CAS  Google Scholar 

  • Angrist B, Rotrosen J, Gershon S (1980) Differential effects of amphetamine and neuroleptics on negative versus positive symptoms in schizophrenia. Psychopharmacol 72: 17–19

    CAS  Google Scholar 

  • Arana GW, Ornsteen ML, Kanter F, Friedman HL, Greenblatt DJ, Shader RI (1986) The use of benzodiazepines for psychotic disorders: a literature review and preliminary clinical findings. Psychopharmacol Bull 22: 77–87

    PubMed  CAS  Google Scholar 

  • Bannon MJ, Freeman AS, Chiodo LA, Bunney BS, Roth RH (1987) The electrophysiological and biochemical pharmacology of mesolimbic and mesocortical dopamine neurons. In: Iver-Sen LI, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology. Plenum Press, New York, pp 329–374

    Google Scholar 

  • Baron JC, Martinot JL, Cambon H, Boulenger JP, Poirier M, Gaillard V, Blin J, Huret JD (1989) Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactin levels. Psychopharmacol 99: 463–472

    CAS  Google Scholar 

  • Barone P, Morelli M, Popoli M, Cicarelli G, Camp-Anella G, Di Chiara G (1994) Behavioural sensitization in 6-hydroxydopamine lesioned rats involves the dopamine signal transduction: changes in DARP-32 phosphorylation. Neuroscience 61: 867–873

    PubMed  CAS  Google Scholar 

  • Bartholini G (1985) GABA receptor agonists: pharmacological spectrum and therapeutic actions. Med Res Rev 5: 55–75

    PubMed  CAS  Google Scholar 

  • Bebbington P, Kuipers L (1994) The predictive utility of expressed emotion in schizophrenia: an aggregate analysis. Psychol Med 24: 707–718

    PubMed  CAS  Google Scholar 

  • Bell DS (1965) Comparison of amphetamine psychosis and schizophrenia. Br J Psychiatry 111: 701–707

    PubMed  CAS  Google Scholar 

  • Berman KF, Doran AR, Pickar D, Weinberger DR (1993) Is the mechanism of prefrontal hypo-function in depression the same as in schizophrenia? Regional cerebral blood flow during cognitive activation. Br J Psychiatry 162: 183–192

    PubMed  CAS  Google Scholar 

  • Bersani G, Grispini A, Marini S, Pasini A, Valducci M, Ciani N (1990) 5-HT-2 antagonist ritanserin in neuroleptic-induced parkinsonism: a double-blind comparison with orphenadrine and placebo. Clin Neuropharmacol 13: 500–506

    PubMed  CAS  Google Scholar 

  • Bischoff S (1986) Mesohippocampal dopamine system: characteristics functional and clinical implications. In: Isaacson AH, Pribram KH (eds) The hippocampus. Plenum Press, New York, pp 1–32

    Google Scholar 

  • Blenthoj B, Mogensen J, Laursen H, Holm S, Hem-Mingsen R (1993) Electrical sensitization of the meso-limbic dopaminergic system in rats: a pathogenetic model for schizophrenia. Brain Res 619: 39–54

    Google Scholar 

  • Breakey WR, Goodell H, Lorenz PC, Mchugh PR (1974) Hallucinogenic drugs as precipitants of schizophrenia. Psychol Med 4: 255–261

    PubMed  CAS  Google Scholar 

  • Breier A (1994) Clozapine and noradrenergic function: support for a novel hypothesis for superior efficacy. J Clin Psychiatry 55: 122–125

    PubMed  Google Scholar 

  • Brenner B, Shopsin B (1980) The use of monoamine oxidase inhibitors in schizophrenia. Biol Psychiatry 15: 633–647

    PubMed  CAS  Google Scholar 

  • Brown WA, Laughren WT (1981) Tolerance to the prolactin-elevating effect of neuroleptics. Psychiatry Res 5: 317–322

    PubMed  CAS  Google Scholar 

  • Brown WA, Langhren T, Chrisholm E, Williams BW (1982) Low serum neuroleptic levels predict relapse in schizophrenic patients. Arch Gen Psychiatry 39: 998–1000

    PubMed  CAS  Google Scholar 

  • Bubser M, Schmidt WJ (1990) 6-Hydroxydopami-ne lesion of the rat prefrontal cortex increases locomotor activity, impairs acquisition of delayed alternation tasks, but does not affect uninterrupted tasks in the radial maze. Behav Brain Res 37: 157–168

    PubMed  CAS  Google Scholar 

  • Bucci L (1987) The negative symptoms of schizophrenia and the monoamine oxidase inhibitors. Psychopharmacol 91: 104–108

    CAS  Google Scholar 

  • Buchsbaum MS, Potkin SG, Siegel BV, Lohr J, Katz M, Gottschalk LA, Gulasekaram B, Marshall JF, Lottenberg S, Chuck Ying Teng, Abel L, Plon L, Bunney WE (1992) Striatal metabolic rate and clinical response to neuroleptics in schizophrenia. Arch Gen Psychiatry 49: 966–974

    PubMed  CAS  Google Scholar 

  • Bunney BS, Chiodo LA, Grace M (1991) Midbrain dopamine system electrophysiological functioning: a review and new hypothesis. Synapse 9: 79–94

    PubMed  CAS  Google Scholar 

  • Burt DR, Creese I, Snyder SH (1977) Antischizo-phrenic drugs: chronic treatment elevates dopamine receptor binding in brain. Science 196: 326–328

    PubMed  CAS  Google Scholar 

  • Cadet JL, Kahler LA (1994) Free radical mechanisms in schizophrenia and tardive dyskinesia. Neurosci Biobehav Rev 18: 457–467

    PubMed  CAS  Google Scholar 

  • Carlsson A (1978) Antipsychotic drugs, neurotransmitters, and schizophrenia. Am J Psychiatry 135: 164–173

    CAS  Google Scholar 

  • Carlsson A, Chase TN, Willner P, Schwartz JC (1995) Towards a new understanding of dopamine receptors. Clin Neuropharmacol 18: S6–S13

    Google Scholar 

  • Carlsson M, Carlsson A (1990) Interactions between glutamatergic and monoaminergic systems within the basal ganglia — implications for schizophrenia and Parkinson’s disease. Trends Neurosci 13: 272–276

    PubMed  CAS  Google Scholar 

  • Cascella NG, Macciardi F, Cavallini C, Smeraldi E (1994) d-Cycloserine adjuvant therapy to conventional neuroleptic treatment in schizophrenia: an open-label study. J Neural Transm [Gen Sect] 95: 105–111

    CAS  Google Scholar 

  • Chouinard G, Jones BD (1980) Neuroleptic-indu-ced supersensitivity psychosis: clinical and pharmacologic characteristics. Am J Psychiatry 137: 16–19

    PubMed  CAS  Google Scholar 

  • Cleghorn JM, Garnett ES, Nahmias C, Firnau G, Brown GM, Kaplan R, Szechtman H, Szecht-Man B (1989) Increased frontal and reduced parietal glucose metabolism in acute untreated schizophrenia. Psychiatry Res 28: 119–133

    PubMed  CAS  Google Scholar 

  • Cleghorn JM, Franco S, Szechtman B, Kaplan RD, Szechtman H, Brown GM, Nahmias C, Garnett ES (1992) Toward a brain map of auditory hallucinations. Am J Psychiatry 149: 1062–1069

    PubMed  CAS  Google Scholar 

  • Creese I, Burt DR, Snyder SH (1976) Dopamine receptor binding predicts clinical pharmacological potencies of antischizophrenic drugs. Science 192: 481–483

    PubMed  CAS  Google Scholar 

  • Cross AJ, Waddington JL (1981) Kainic acid lesions dissociate 3H-spiperone and 3H-flu-penthixol binding sites in rat striatum. Eur J Pharmacol 71: 327–332

    PubMed  CAS  Google Scholar 

  • Davidson M, Kahn RS, Stern RG, Hirschowitz J, Apter S, Knott P, Davis KL (1993) Treatment with clozapine and its effect on plasma homo-vanillic acid and norepinephrine concentrations in schizophrenia. Psychiatry Res 46: 151–163

    PubMed  CAS  Google Scholar 

  • Deutch AY (1992) The regulation of subcortical dopamine systems by the prefrontal cortex: interactions of central dopamine systems and the pathogenesis of schizophrenia. J Neural Transm [Suppl] 36: 61–89

    CAS  Google Scholar 

  • Deutch AY, Ongur D, Duman RS (1995) Antipsychotic drugs induce fos protein in the thalamic paraventricular nucleus: a novel locus of antipsychotic drug action. Neuroscience 66: 337–346

    PubMed  CAS  Google Scholar 

  • Dewey SL, Smith GS, Logan J, Alexoef D, Ding Y S, King P, Pappas N, Brodie JD, Ashby CR (1995) Serotonergic modulation of striatal dopamine measured with positron emission tomography (PET) and in vivo microdialysis. J Neurosci 15: 821–829

    PubMed  CAS  Google Scholar 

  • Di Chiara G (1995) The role of dopamine in drug abuse viewed from the perspective of its role in motivation. Drug Alcohol Depend 38: 95–137

    PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci USA 85: 5274–5278

    PubMed  Google Scholar 

  • Dolan RJ, Bench CJ, Liddle KJ, Friston KJ, Frich CD, Grasby PM, Frackowiak RJS (1993) Dorsolateral prefrontal cortex dysfunction in the major psychoses. Symptom or disease specificity? J Neurol Neurosurg Psychiatry 56: 1290–1294

    PubMed  CAS  Google Scholar 

  • Duinkerke SJ, Botter PA, Jansen ML, Van Dongen PAM, Van Haaften AJ, Bloom AJ, Van Laarho-Ven JHM, Busard HLSM (1993) Ritanserin-a selective 5-HT2/1C antagonist-and negative symptoms in schizophrenia. A placebo-controlled double-blind trial. Br J Psychiatry 163: 451–455

    PubMed  CAS  Google Scholar 

  • Ebmeier KP, Lawrie SM, Blackwood DHR, Johnstone EC, Goodwin GM (1995) Hypofrontality revisited: a high resolution single photon emission computed tomography study in schizophrenia. J Neurol Neurosurg Psychiatry 58: 452–456

    PubMed  CAS  Google Scholar 

  • Espelin DF, Done AK (1968) Amphetamine poisoning: affectiveness of chlorpromazine. N Engl J Med 278: 1361–1362

    PubMed  CAS  Google Scholar 

  • Ezrin Waters C, Seeman P (1977) Tolerance to haloperidol catalepsy. Eur J Pharmacol 41: 321–327

    PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45: 71–76

    PubMed  CAS  Google Scholar 

  • Farde L, Wiesel FA, Stone Elander S, Halldin C, Nordström AL, Hall H, Sedvall G (1990) D2 dopamine receptors in neurolepticnaive schizophrenic patients. A positron emission tomography study with [11C] Raclopride. Arch Gen Psychiatry 47: 213–219

    PubMed  CAS  Google Scholar 

  • Farde L, Nordström AL, Nyberg S, Halldin C, Sedvall G (1994) D-1-, D-2-, and 5-HT-2-re-ceptor occupancy in clozapine-treated patients. J Clin Psychiatry 55: 67–69

    PubMed  Google Scholar 

  • Farde L, Nyberg S, Oxenstierna G, Nakashima Y, Halldin C, Ericsson B (1995) Positron emission tomography studies on D-2 and 5-HT-2 receptor binding in risperidone-treated schizophrenic patients. J Clin Psychopharmacol 15 [Suppl 1]: 19S–23S

    PubMed  CAS  Google Scholar 

  • Ferrier IN, Johnstone EC, Crow TJ (1984) Hormonal effects of apomorphine in schizophrenia. Br J Psychiatry 144: 349–357

    PubMed  CAS  Google Scholar 

  • Fibiger HC (1994) Neuroanatomical targets of neuroleptic drugs as revealed by Fos immuno-chemistry. J Clin Psychiatry 55: 33–36

    PubMed  Google Scholar 

  • Fitzgerald LW, Deutch AY, Gasig G, Heinemann SF, Nestler EJ (1995) Regulation of cortical and subcortical glutamate receptor subunit expression by antipsychotic drugs. J Neurosci 15: 2453–2461

    PubMed  CAS  Google Scholar 

  • Franzen G, Ingvar DH (1975) Absence of activation in frontal structures during psychological testing of chronic schizophrenics. J Neurol Neurosurg Psychiatry 38: 1027–1032

    PubMed  CAS  Google Scholar 

  • Friedman E, Wang HY, Butkerait P (1990) Decreased striatal release of acetylcholine following withdrawal from long-term treatment with haloperidol: modulation by cholinergic dopamine-D1 and D2 mechanisms. Neuro-pharmacol 29: 537–544

    CAS  Google Scholar 

  • Fritze J (1992) Neurobiochemie, Wirkmechanismen. In: Riederer P, Laux G, Pöldinger W (Hrsg) Neuro-Psychopharmaka, Bd 4. Neu-roleptika. Springer, Wien New York, S 59–80

    Google Scholar 

  • Fritze J (1993) The adrenergic-cholinergic imbalance hypothesis of depression: a review and a perspective. Rev Neurosci 4: 63–93

    PubMed  CAS  Google Scholar 

  • Gerlach J, Casey DE (1988) Tardive dyskinesia. Acta Psychiatr Scand 77: 369–378

    PubMed  CAS  Google Scholar 

  • Gewirtz GR, Gorman JM, Volavka J, Macaluso J, Gribkoff G, Taylor DP, Borison R (1994) BMY 14802, a sigma receptor ligand for the treatment of schizophrenia. Neuropsychopharmacology 10: 37–40

    PubMed  CAS  Google Scholar 

  • Goldstein JM (1995) Pre-clinical pharmacology of new atypical antipsychotics in late stage development. Expert Opin Invest Drugs 4: 291–298

    CAS  Google Scholar 

  • Goldstein JM, Litwin LC, Sutton EB, Malick JB (1989) Effects of ICI 169,369, a selective sero-tonin-2 antagonist, in electrophysiological tests predictive of antipsychotic activity. J Pharmacol Exp Ther 249: 673–680

    PubMed  CAS  Google Scholar 

  • Grace M (1992) The depolarization block hypothesis of neuroleptic action: implications for the etiology and treatment of schizophrenia. J Neural Transm [Suppl] 36: 91–131

    CAS  Google Scholar 

  • Grace M (1993) Cortical regulation of subcortical dopamine systems and its possible relevance to schizophrenia. J Neural Transm [Gen Sect] 91: 111–134

    CAS  Google Scholar 

  • Graybiel AM (1990) Neurotransmitters and neuromodulators in the basal ganglia. Trends Neurosci 13: 244–254

    PubMed  CAS  Google Scholar 

  • Grebb JA, Girault JA, Ehrlich M, Greengard P (1990) Chronic treatment of rats with SCH-23390 or raclopride does not affect the concentrations of DARPP-32 or its mRNA in dopa-mine-innervated brain regions. J Neurochem 55: 204–207

    PubMed  CAS  Google Scholar 

  • Green AL, Alam MY, Sobieraj JT, Pappalardo KM, Waternaux C, Salzman C, Schatzberg AF, Schildkraut JJ (1993) Clozapine response and plasma catecholamines and their metabolites. Psychiatry Res 46: 139–149

    PubMed  CAS  Google Scholar 

  • Hagan RM, Kilpatrick GJ, Tyers MB (1993) Interaction between 5-HT3 receptors and cerebral dopamine function: implications for the treatment of schizophrenia and psychoactive substance abuse. Psychopharmacol [Suppl] 112: 68–75

    Google Scholar 

  • Halberstadt AL (1995) The phencyclidine-glut-amate model of schizophrenia. Clin Neuro-pharmacol 18: 237–249

    CAS  Google Scholar 

  • Härnryd C, Bjrkenstedt L, Gullberg B, Oxen-Stierna, Sedvall G, Wiesel FA (1984) Time course for effects of sulpiride and chlorproma-zine on monoamine metabolite and prolactin levels in cerebrospinal fluid from schizophrenic patients. Acta Psychiatr Scand [Suppl] 311: 75–92

    Google Scholar 

  • Hess EJ, Albers LJ, Le H, Creese I (1986) Effects of chronic SCH-23390 on the biochemical and behavioral properties of D1 and D2 dopamine receptors: potentiated behavioral responses to D2 dopamine agonist after selective D1 dopamine receptor upregulation. J Pharmacol Exp Ther 238: 846–852

    PubMed  CAS  Google Scholar 

  • Hitri A, Hurd YL, Wyatt RJ, Deutsch SI (1994) Molecular, functional and biochemical characteristics of the dopamine transporter: regional differences and clinical relevance. Clin Neuropharmacol 17: 1–22

    PubMed  CAS  Google Scholar 

  • Hofmann A (1970) The discovery of LSD and subsequent investigations on naturally occurring hallucinogens. In: Ayd FJJ, Blackwell B (eds) Discoveries in biological psychiatry. Lippincott, Philadelphia, pp 93–94

    Google Scholar 

  • Hommer DW, Zahn TP, Pickar D, Van Kammen DP (1984) Prazosin, a specific alpha-1-noradrenergic receptor antagonist, has no effect on symptoms but increases autonomic arousal in schizophrenic patients. Psychiatr Res 11: 193–204

    CAS  Google Scholar 

  • Hornykiewicz O (1986) A quarter century of brain dopamine research. In: Woodruff G, Poat JA, Roberts PJ (eds) Dopaminergic systems and their regulation. Verlag Chemie, Weinheim, pp 3–18

    Google Scholar 

  • Hyttel J, Arnt J, Van Den Berghe M (1989) Selective dopamine D-1 and D-2 receptor antagonists. In: Dahl SG, Gram LF (eds) Clinical pharmacology in psychiatry. Springer, Berlin Heidelberg New York Tokyo, pp 109–122

    Google Scholar 

  • Janowsky A, Berger SP (1989) Clozapine inhibits 3H-MK-801 binding to the glutamate receptor-ionchannel complex. Schizophr Res 2: 189

    Google Scholar 

  • Javitt D, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148: 1301–1308

    PubMed  CAS  Google Scholar 

  • Javitt DC, Zylberman I, Zukin SR, Heresco Levy U, Lindenmayer JP (1994) Amelioration of negative symptoms in schizophrenia by glycine. Am J Psychiatry 151: 1234–1236

    PubMed  CAS  Google Scholar 

  • Kaplan RD, Szechtman H, Franco S, Szechtman B, Nahmias C, Garnett ES, List S, Cleghorn JM (1993) Three clinical syndromes of schizophrenia in untreated subjects: relation to brain glucose activity measured by positron emission tomography (PET). Schizophr Res 11: 47–54

    PubMed  CAS  Google Scholar 

  • Kasckow J, Nemeroff CB (1991) The neurobiology of neurotensin: focus on neurotensin-dopamine interactions. Regul Pept 36: 153–164

    PubMed  CAS  Google Scholar 

  • Kebabian JW (1984) Pharmacological and biochemical characterization of two categories of dopamine receptor. In: Poste G, Crooke ST (eds) Dopamine receptor agonists. Plenum Press, New York, pp 3–22

    Google Scholar 

  • Keck PE, Cohen BM, Baldessarini RJ, Mcelroy SL (1989) Time course of antipsychotic effects of neuroleptic drugs. Am J Psychiatry 146: 1289–1292

    PubMed  Google Scholar 

  • Keegan D (1994) Risperidone: neurochemical, pharmacologic and clinical properties of a new antipsychotic drug. Can J Psychiatry 39: S46–S52

    PubMed  CAS  Google Scholar 

  • Kerr DIB, Ong J (1992) GABA agonists and antagonists. Med Res Rev 12: 593–636

    PubMed  CAS  Google Scholar 

  • Klieser E, Strauss WH (1988) Study to establish the indication for the selective S-2 antagonist ritanserin. Pharmacopsychiatry 21: 391–393

    PubMed  CAS  Google Scholar 

  • Kohler C, Ogren SO, Fuxe K (1984) Studies on the mechanism of action of substituted benzami-de drugs. Acta Psychiatr Scand [Suppl] 311: 125–137

    CAS  Google Scholar 

  • Kornetsky C (1976) Hyporesponsivity of chronic schizophrenic patients to dextro-amphetamine. Arch Gen Psychiatry 33: 1425–1428

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Weller M (1994) Current status regarding biochemical hypotheses on the pathogenesis of schizophrenia. Nervenarzt 65: 741–754

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Riederer P, Reynolds GP, Beckmann H, Jellinger K, Gabriel E (1989) 3H-spiperone binding in post-mortem brains from schizophrenic patients: relationship to neuroleptic drug treatment, abnormal movements, and positive symptoms. J Neural Transm 75: 1–10

    PubMed  CAS  Google Scholar 

  • Kornhuber J, Parsons CG, Hartmann S, Retz W, Kamolz S, Thome J, Riederer P (1995a) Orphe-nadrine is an uncompetetive N-methyl-D-as-partate (NMDA) receptor antagonist: binding and patch clamp studies. J Neural Transm 102: 237–246

    CAS  Google Scholar 

  • Kornhuber J, Quack G, Danysz W, Jellinger K, Danielczyk W, Gsell W, Riederer P (1995b) Therapeutic brain concentration of the NMDA-receptor antagonist amantadine. Neuropharmacology 7: 713–721

    Google Scholar 

  • Kotrla KJ, Weinberger DR (1995) Brain imaging in schizophrenia. Ann Rev Med 46: 113–122

    PubMed  CAS  Google Scholar 

  • Kramer MS, Vogel WH, Dijohnson C, Dewey DA, Sheves P, Cavicchia S, Litle P, Schmidt R, Kimes I (1989) Antidepressants in depressed schizophrenic inpatients: a controlled trial. Arch Gen Psychiatry 46: 922–928

    PubMed  CAS  Google Scholar 

  • Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. Neuroreport 6: 869–872

    PubMed  CAS  Google Scholar 

  • Lecrubier Y (1993) Efficacy of 5HT-3 receptor antagonists. Eur Neuropsychopharmacol 3: 250–252

    Google Scholar 

  • Lee T, Seeman P, Tourtellotte WW, Farley IJ, Hornykiewicz O (1978) Binding of 3H-neuro-leptics and 3H-apomorphine in schizophrenic brains. Nature 274: 897–900

    PubMed  CAS  Google Scholar 

  • Levy MI, Davis BM, Moils RC, Kendler KS, Mathe M, Trigos G, Horvath TB, Davis KL (1984) Apomorphine and schizophrenia. Arch Gen Psychiatry 41: 520–524

    PubMed  CAS  Google Scholar 

  • Liddle PF, Friston KJ, Frith CD, Hirsch SR, Jones T, Frackowiak RSJ (1992) Patterns of cerebral blood flow in schizophrenia. Br J Psychiatry 160: 179–186

    PubMed  CAS  Google Scholar 

  • Lidsky TI (1995) Reevaluation of the mesolimbic hypothesis of antipsychotic drug action. Schi-zophr Bull 21: 67–74

    CAS  Google Scholar 

  • Lidsky TI, Yablonsky Alter E, Zuck L, Banerjee SP (1993) Anti-glutamatergic effects of clozapine. Neurosci Lett 163: 155–158

    PubMed  CAS  Google Scholar 

  • Liskowsky DR, Potter LT (1987) Dopamine D2-receptors in the striatum and frontal cortex following chronic administration of haloper-idol. Neuropharmacol 26: 481–483

    CAS  Google Scholar 

  • Ljungberg T, Ungerstedt U (1978) Classification of neuroleptic drugs according to their ability to inhibit apomorphine-induced locomotion and gnawing: evidence for two different mechanisms of action. Psychopharmacol 56: 239–247

    CAS  Google Scholar 

  • Luby ED, Cohen BD, Rosenbaum G, Gottlieb JS, Kelley R (1959) Study of a new schizophreno-mimetic drug — sernyl. Arch Neurol Psychiat 81: 363–369

    CAS  Google Scholar 

  • Lundberg T, Lindstrom LH, Hartvig P, Eckernas S A, Ekblom B, Lundqvist H, Fasth KJ, Gullberg P, Langstrom B (1989) Striatal and frontal cortex binding of 11-C-labelled clozapine visualized by positron emission tomography (PET) in drug-free schizophrenics and healthy volunteers. Psychopharmacology 99: 8–12

    PubMed  CAS  Google Scholar 

  • Makanjuola ROA, Ashcroft GW (1982) Behavioural effects of electrolytic and 6-hydroxy-dopamine lesions of the accumbens and cau-date-putamen nuclei. Psychopharmacol 76: 333–340

    CAS  Google Scholar 

  • Manji HK (1992) G proteins: implications for psychiatry. Am J Psychiatry 149: 746–760

    PubMed  CAS  Google Scholar 

  • Martinot JL, Peron Magnan P, Huret JD, Mazoyer B, Baron JC, Boulenger JP, Log’ C, Maziere B, Caillard V, Loo H, Syrota A (1990) Striatal D-2 dopaminergic receptor assessed with positron emission tomography and [(76)Br]bro-mospiperone in untreated schizophrenic patients. Am J Psychiatry 147: 44–50

    PubMed  CAS  Google Scholar 

  • Martinot JL, Paillere Martinot ML, Loc’h C, Lecrubier Y, Dao Castellana MH, Aubin F, Allilaire JF, Mazoyer B, Maziere B, Syrota A (1994) Central D-2 receptors and negative symptoms of schizophrenia. Br J Psychiatry 164: 27–34

    PubMed  CAS  Google Scholar 

  • Mcguire PK, Shah GMS, Murray RM (1993) Increased blood flow in Broca’s area during auditory hallucinations in schizophrenia. Lancet 342: 703–706

    PubMed  CAS  Google Scholar 

  • Mcquade RD, Duffy RA, Anderson CC, Crosby G, Coffin VL, Chipkin RE, Barnett A (1991) [(3)H] SCH 39166, a new D-1-selective radioligand: in vitro and in vivo binding analyses. J Neuro-chem 57: 2001–2010

    CAS  Google Scholar 

  • Meador Woodruff JH, Caron MG, Carlsson A, Piercey MF, Bedard PJ, Van Tol HHM (1995) Neuroanatomy of dopamine receptor gene expression: potential substrates for neuropsychiatric illness. Clin Neuropharmacol 18: S14–S24

    Google Scholar 

  • Meco G, Bedini L, Bonifati V, Sonsini U (1989) Ritanserin in tardive dyskinesia: a double-blind crossover study versus placebo. Curr Ther Res Clin Exp 46: 884–894

    Google Scholar 

  • Meltzer HY (1980) Relevance of dopamine auto-receptors for clinical psychiatry: preclinical and clinical studies. Schizophr Bull 6: 456–475

    PubMed  CAS  Google Scholar 

  • Meltzer HY (1990) Clozapine: mechanism of action in relation to its clinical advantages. In: Kales A, Stefanis CN, Talbott JA (eds) Recent advances in schizophrenia. Springer, Berlin Heidelberg New York Tokyo, pp 237–256

    Google Scholar 

  • Meltzer HY (1993) New drugs for the treatment of schizophrenia. Psychiatr Clin North Am 16: 365–385

    PubMed  CAS  Google Scholar 

  • Meltzer HY (1994) An overview of the mechanism of action of clozapine. J Clin Psychiatry 55: 47–52

    PubMed  Google Scholar 

  • Miller R, Chouinard G (1993) Loss of striatal cholinergic neurons as a basis for tardive and L-dopa-induced dyskinesias, neuroleptic-in-duced supersensitivity psychosis and refractory schizophrenia. Biol Psychiatry 34: 713–738

    PubMed  CAS  Google Scholar 

  • Moghaddam B, Bunney BS (1990) Acute effects of typical and atypical antipsychotic drugs on the release of dopamine from prefrontal cortex, nucleus accumbens, and striatum of the rat: an in vivo microdialysis study. J Neurochem 54: 1755–1760

    PubMed  CAS  Google Scholar 

  • Montastruc JL, Llau ME, Rascol O, Senard JM (1994) Drug-induced parkinsonism: a review. Fundam Clin Pharmacol 8: 293–306

    PubMed  CAS  Google Scholar 

  • Nair NPV, Lal S, Bloom DM (1985) Cholecystoki-nin peptides, dopamine and schizophrenia, a review. Prog Neuropsychopharmacol Biol Psychiatry 9: 515–524

    PubMed  CAS  Google Scholar 

  • Nakajima S, Liu X, Chin Loong LAU (1993) Synergistic interaction of D1 and D2 dopamine receptors in the modulation ofthe reinforcing effect of brain stimulation. Behav Neurosci 107: 161–165

    PubMed  CAS  Google Scholar 

  • Nieuwenhuys R (1985) Chemoarchitecture of the brain. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  • Nilsson LJG, Carlsson A (1982) Dopamine receptor agonist with apparent selectivity for auto-receptors: a new principle for antipsychotic action? Trends Pharmacol Sci 3: 322–325

    CAS  Google Scholar 

  • Nomikos GG, Lurlo M, Andersson JL, Kimura K, Svensson TH (1994) Systemic administration of amperozide, a new atypical antipsychotic drug, preferentially increases dopamine release in the rat medial prefrontal cortex. Psychopharmacology 115: 147–156

    PubMed  CAS  Google Scholar 

  • Nordström AL, Farde L, Eriksson L, Halldin C (1995) No elevated D-2 dopamine receptors in neurolepticnaive schizophrenic patients revealed by positron emission tomography and [(11)C] N-methylspiperone. Psychiatry Res Neuroimaging 61: 67–83

    Google Scholar 

  • O’Boyle KM, Pugh M, Waddington JL (1984) Stereotypy induced by the D2 agonist RU-24213 is blocked by the D2 antagonist Ro-222586 and the D1 antagonist SCH-23390. Br J Pharmacol 82: 242

    Google Scholar 

  • Olney JW (1989) Excitatory amino acids and neuropsychiatric disorders. Biol Psychiatry 26: 505–525

    PubMed  CAS  Google Scholar 

  • Olney JW, Farber NB (1994) Efficacy of clozapine compared with other antipsychotics in preventing NMDA-antagonist neurotoxicity. J Clin Psychiatry 55: 43–46

    PubMed  Google Scholar 

  • Parashos SA, Barone P, Tucci I, Chase TN (1987) Attenuation of D1-antagonist-induced D1-receptor upregulation by concomitant D2-receptor blockade. Life Sci 41: 2279–2284

    PubMed  CAS  Google Scholar 

  • Pearlson GD, Wong DF, Tune LE, Ross CA, Chase GA, Links JM, Dannals RF, Wilson M, Ravert HT, Wagner HN, Depaulo JR (1995) In vivo D-2 dopamine receptor density in psychotic and nonpsychotic patients with bipolar disorder. Arch Gen Psychiatry 52: 471–477

    PubMed  CAS  Google Scholar 

  • Pehek EA, Yamamoto BK (1994) Differential effects of locally administered clozapine and haloperidol on dopamine efflux in the rat prefrontal cortex and caudate-putamen. J Neurochem 63: 2118–2124

    PubMed  CAS  Google Scholar 

  • Penington NJ, Fox AP (1994) Effects of LSD on Ca(++) currents in central 5-HT-containing neurons: 5-HT(1A) receptors may play a role in hallucinogenesis. J Pharmacol Exp Ther 269: 1160–1165

    PubMed  CAS  Google Scholar 

  • Peroutka SJ, Snyder SH (1980) Relationship of neuroleptic drug effects at brain dopamine, serotonin, adrenergic and histamine receptors to clinical potency. Am J Psychiatry 137:1518–1522

    PubMed  CAS  Google Scholar 

  • Peselow E, Angrist B, Sudilovsky A, Corwin J, Siekierski J, Trent F, Rotrosen J (1987) Double-blind controlled trials of cholecystokinin octa-peptide in neuroleptic-refractory schizophrenia. Psychopharmacol 91: 80–84

    CAS  Google Scholar 

  • Pierce PA, Peroutka SJ (1989) Hallucinogenic drug interactions with neurotransmitter receptor binding sites in human cortex. Psychopharmacol 97: 118–122

    CAS  Google Scholar 

  • Pilowsky LS, Costa LDC, Ell PJ, Murray RM, Ver-Hoeff NPLG, Kerwin RW (1993) Antipsychotic medication, D-2 dopamine receptor blockade and clinical response: a (123)I Ibzm Spet (single photon emission tomography) study. Psychol Med 23: 791–797

    PubMed  CAS  Google Scholar 

  • Pilowsky LS, Costa DC, Ell PJ, Verhoeff NPLG, Murray RM, Kerwin RW (1994) D2 Dopamine receptor binding in the basal ganglia of anti-psychotic-free schizophrenic patients An 123I-IBZM single photon emission computerised tomography study. Br J Psychiatry 164: 16–26

    PubMed  CAS  Google Scholar 

  • Potkin SG, Buchsbaum MS, Jin Y, Tang C, Telford J, Friedman G, Lottenberg S, Najafi A, Gulase-Karam B, Costa J, Richmond GH, Bunney WE (1994) Clozapine effects on glucose metabolic rate in striatum and frontal cortex. J Clin Psychiatry 55: 63–66

    PubMed  Google Scholar 

  • Reith J, Benkelfat C, Sherwin A, Yasuhara Y, Kuwabara H, Andermann F, Bachneff S, Cum-Ming P, Diksic M, Dyve SE, Etienne P, Evans AC, Lal S, Shevell M, Savard G, Wong DF, Chouinard G, Gjedde A (1994) Elevated dopa decarboxylase activity in living brain of patients with psychosis. Proc Natl Acad Sci USA 91: 11651–11654

    PubMed  CAS  Google Scholar 

  • Reynolds GP, Mason SL (1994) Are striatal dopamine D-4 receptors increased in schizophrenia? J Neurochem 63: 1576–1577

    PubMed  CAS  Google Scholar 

  • Richelson E (1984) Neuroleptic affinities for human brain receptors and their use in predicting adverse effects. J Clin Psychiatry 45: 331–336

    PubMed  CAS  Google Scholar 

  • Ridley RM, Baker HF, Owen F, Cross AJ, Crow TJ (1983) Behavioral and biochemical effects of chronic treatment with amphetamine in the Vervet monkey. Neuropharmacol 22: 551–554

    CAS  Google Scholar 

  • Robertson HA, Paul ML, Moratalla R, Graybiel AM (1991) Expression of the immediate early gene c-fos in basal ganglia: induction by dopaminergic drugs. Can J Neurol Sci 18: 380–383

    PubMed  CAS  Google Scholar 

  • Ross SB (1977) On the mode of action of central stimulatory agents. Acta Pharmacol Toxicol 41: 392–396

    CAS  Google Scholar 

  • Rosse RB, Schwartz BL, Davis RE, Deutsch SI (1991) An NMDA intervention strategy in schizophrenia with „low-dose“ milacemide. Clin Neuropharmacol 14: 268–272

    PubMed  CAS  Google Scholar 

  • Rupniak NMJ, Hall MD, Kelly E, Fleminger S, Kil-Patrick G, Jenner P, Marsden CD (1985) Mesolimbic dopamine function is not altered during continuous chronic treatment of rats with typical and atypical neuroleptic drugs. J Neural Transm 62: 249–266

    PubMed  CAS  Google Scholar 

  • Sachdev P (1992) Neuroleptic-induced movement disorders and body iron status. Prog Neuropsychopharmacol Biol Psychiatry 16: 647–653

    PubMed  CAS  Google Scholar 

  • Scheel Krüger J (1972) Behavioral and biochemical comparison of amphetamine derivatives, cocaine, benztropine, and tricyclic antidepressant drugs. Eur J Pharmacol 18: 63–73

    PubMed  Google Scholar 

  • Schmidt CJ, Fadayel GM (1995) The selective 5-HT(2A) receptor antagonist, MDL 100,907, increases dopamine efflux in the prefrontal cortex of the rat. Eur J Pharmacol 273: 273–279

    PubMed  CAS  Google Scholar 

  • Schwarcz R, Creese I, Coyle JT, Snyder SH (1978) Dopamine receptors localized on cerebral cortical afferents to rat corpus striatum. Nature 271: 766–768

    PubMed  CAS  Google Scholar 

  • Schwartz J C, Levesque D, Martres MP, Sokoloff P (1993) Dopamine D-3 receptor: basic and clinical aspects. Clin Neuropharmacol 16: 295–314

    PubMed  CAS  Google Scholar 

  • Sedvall G (1990) PET imaging of dopamine receptors in human basal ganglia: relevance to mental illness. Trends Neurosci 13: 302–308

    PubMed  CAS  Google Scholar 

  • Sedvall G (1992) The current status of PET scanning with respect to schizophrenia. Ncuropsychopharmacology 7: 41–54

    CAS  Google Scholar 

  • See RE, Chapman MA (1994) The consequences of long-term antipsychotic drug administration on basal ganglia neuronal function in laboratory animals. Crit Rev Neurobiol 8: 85–124

    PubMed  CAS  Google Scholar 

  • Seeman MV, Seeman P (1986) Molecular psychiatry, receptor density, and receptor sensitivity states. Integr Psychiatry 4: 41–43

    Google Scholar 

  • Seeman P, Van Tol HHM (1995) Dopamine D4-like receptor elevation in Schizophrenia: cloned D2 and D4 receptors cannot be discriminated by raclopride competition against [3)H] nemonapride. J Neurochem 64: 1413–1415

    PubMed  CAS  Google Scholar 

  • Seeman P, Tedesco JL, Lee T, Chau Wong M, Muller P, Bowles J, Whittaker PM, Mcmanus C, Tittler M, Weinreich P, Friend WC, Brown GM (1978) Dopamine receptors in the central nervous system. Fed Proc 37: 130–136

    CAS  Google Scholar 

  • Seeman P, Ulpian C, Bergeron C, Riederer P, Jell-Inger K, Gabriel E, Reynolds GP, Tourtellotte WW (1984) Bimodal distribution of dopamine receptor densities in brains of schizophrenics. Science 225: 728–731

    PubMed  CAS  Google Scholar 

  • Seeman P, Grigoriadis D, George SR, Watanabe M, Ulpian C (1986) Functional states of dopamine receptors. In: Woodruff GN, Poat JA, Roberts PJ (eds) Dopaminergic systems and their regulation. Verlag Chemie, Weinheim, pp 97–109

    Google Scholar 

  • Seeman P, Niznik HB, Guan H C, Booth G, Ulpian C (1989) Link between D-1 and D-2 dopamine receptors is reduced in schizophrenia and Huntington diseased brain. Proc Natl Acad Sci USA 86: 10156–10160

    PubMed  CAS  Google Scholar 

  • Seeman P, Guan H C, Van Tol HHM (1993) Dopamine D4 receptors elevated in schizophrenia. Nature 365: 441–445

    PubMed  CAS  Google Scholar 

  • Segal DS, Mandell AJ (1974) Long-term administration of d-amphetamine: progressive augmentation of motor activity and stereotypy. Pharmacol Biochem Behav 2: 249–255

    PubMed  CAS  Google Scholar 

  • Shore PA, Giachetti A, Wazer DE, Rotrosen J, Stanley M (1978) Reserpine: basic and clinical pharmacology. In: Iversen LI, Iversen SD, Snyder SH (eds) Handbook of psychopharmacology. Plenum Press, New York, pp 197–219

    Google Scholar 

  • Singh MM, Kay SR, Opler LA (1987) Anticholinergic-neuroleptic antagonism in terms of positive and negative symptoms of schizophrenia: implications for psychobiological subtyping. Psychol Med 17: 39–48

    PubMed  CAS  Google Scholar 

  • Skarsfeldt T (1988) Effect of chronic treatment with SCH-23390 and haloperidol on spontaneous activity of dopamine neurons in SNC and VTA in rats. Eur J Pharmacol 145: 239–243

    PubMed  CAS  Google Scholar 

  • Skarsfeldt T (1992) Electrophysiological profile of the new atypical neuroleptic, sertindole, on midbrain dopamine neurones in rats: acute and repeated treatment. Synapse 10: 25–33

    PubMed  CAS  Google Scholar 

  • Skarsfeldt T (1993) Comparison of the effect of substituted benzamides on midbrain dopamine neurones after treatment of rats for 21 days. Eur J Pharmacol 240: 269–275

    PubMed  CAS  Google Scholar 

  • Snyder SH, Banerjee SP, Yamamura HL, Greenberg D (1974) Drugs, neurotransmitters and schizophrenia: phenothiazines, amphetamines, and enzymes synthesizing psychotomimetic drugs aid schizophrenia research. Science 184: 1243–1253

    PubMed  CAS  Google Scholar 

  • Sokoloff P, Schwartz JC (1995) Novel dopamine receptors half a decade later. Trends Pharmacol Sci 16: 270–275

    PubMed  CAS  Google Scholar 

  • Sorensen SM, Humphreys TM, Taylor VL, Schmidt CJ (1992) 5-HT2 receptor antagonists reverse amphetamine-induced slowing of dopaminergic neurons by interfering with stimulated dopamine synthesis. J Pharmacol Exp Ther 260: 872–878

    PubMed  CAS  Google Scholar 

  • Stevens JR (1972) An anatomy of schizophrenia? Arch Gen Psychiatry 29: 177–189

    Google Scholar 

  • Stoof JC, Kebabian JW (1984) Two dopamine receptors: biochemistry, physiology, and pharmacology. Life Sci 35: 2281–2296

    PubMed  CAS  Google Scholar 

  • Su TP (1993) Delineating biochemical and functional properties of sigma receptors: emerging concepts. Crit Rev Neurobiol 7:187–203

    PubMed  CAS  Google Scholar 

  • Suzuki M, Yuasa S, Minabe Y, Murata M, Kurachi M (1993) Left superior temporal blood flow increases in schizophrenic and schizophreniform patients with auditory hallucination: a longitudinal case study using (123)I-IMP SPECT. Eur Arch Psychiatry Clin Neurosci 242: 257–261

    PubMed  CAS  Google Scholar 

  • Svensson TH, Mathe JM, Andersson JL, Nomikos GG, Hildebrand BE, Marcus M (1995) Mode of action of atypical neuroleptics in relation to the phencyclidine model of schizophrenia: role of 5-HT-2 receptor and alpha-1-adrenore-ceptor antagonism. J Clin Psychopharmacol 15: 11S–18S

    PubMed  CAS  Google Scholar 

  • Tamminga CA, Lahti RA (1995) Antipsychotische Wirkmechanismen der Neuroleptika bei Schizophrenie: Spekulative Betrachtungen. In: Gerlach J (Hrsg) Schizophrenie: Dopaminre-zeptoren und Neuroleptika. Springer, Berlin Heidelberg New York Tokyo, S 185–197

    Google Scholar 

  • Tamminga C, Schaffer MH, Smith RC, Davis JM (1977) Apomorphine improves schizophrenic Symptoms. Science 200: 567–568

    Google Scholar 

  • Tamminga CA, Crayton JW, Chase TN (1978) Muscimol: GABA agonist therapy in schizophrenia. Am J Psychiatry 135: 746–747

    PubMed  CAS  Google Scholar 

  • Tandon R, Dequardo JR, Goodson JA, Mann NA, Greden JF (1992) Effect of anticholinergics on positive and negative symptoms in schizophrenia. Psychopharmacol Bull 28: 297–302

    PubMed  CAS  Google Scholar 

  • Tiedtke PI, Bischoff C, Schmidt WJ (1990) MK-801-induced stereotypy and its antagonism by neuroleptic drugs. J Neural Transm 81: 173–182

    CAS  Google Scholar 

  • Tune LE, Wong DF, Pearlson G, Strauss M, Young T, Shaya EK, Dannals RF, Wilson M, Ravert HT, Sapp J, Cooper T, Chase GA, Wagner HN (1993) Dopamine D2 receptor density estimates in schizophrenia: a positron emission tomography study with 11C-N-Methylspiper-one. Psychiatry Res 49: 219–237

    PubMed  CAS  Google Scholar 

  • Van Ree JM (1994) Neuropeptides and psycho-pathology. J Control Release 29: 307–315

    Google Scholar 

  • Van Tol HHM, Seeman P, Corrigan, Bedard PJ (1995) The dopamine D-4 receptor: a novel site for antipsychotic action. Clin Neurophar-macol 18: S143–S153

    Google Scholar 

  • Wallace MA, Claro E (1993) Transmembrane signaling through phospholipase C in human cortical membranes. Neurochem Res 18: 139–145

    PubMed  CAS  Google Scholar 

  • Walters JR, Bergstrom DA, Carlson JH, Chase TN, Braun AR (1987) D1 dopamine receptor activation required for postsynaptic expression of D2 agonist effects. Science 236: 719–722

    PubMed  CAS  Google Scholar 

  • Waser DE, Rotrosen J, Stanley M (1982) The benzamides: evidence for action of dopamine receptors, shortcomings of current models. In: Rotrosen J, Stanley M (eds) The benzamides: pharmacology, neurobiology and clinical aspects. Raven Press, New York, pp 83–95

    Google Scholar 

  • Welch EB, Thompson DF (1994) Opiate antagonists for the treatment of schizophrenia. J Clin Pharm Ther 19: 279–283

    PubMed  CAS  Google Scholar 

  • Wetzel H, Benkert O (1993) Dopamine autore-ceptor agonists in the treatment of schizophrenic disorders. Prog Neuropsychopharmacol Biol Psychiatry 17: 525–540

    PubMed  CAS  Google Scholar 

  • Wiesel FA, Nordström AL, Farde L, Eriksson B (1994) An open clinical and biochemical study of ritanserin in acute patients with schizophrenia. Psychopharmacol 114: 31–38

    CAS  Google Scholar 

  • Wilkins JN, Marder SR, Van Putten T, Midha KK, Mintz J, Setoda D, May PRA (1987) Circulating prolactin predicts risk of exacerbation in patients on depot fluphenazine. Psychopharmacol Bull 23: 522–525

    Google Scholar 

  • Wolkin A, Barouche F, Wolf AP, Rotrosen J, Fowler JS, Shiue CY, Cooper TB, Brodie JD (1989) Dopamine blockade and clinical response: evidence for two biological subgroups of schizophrenia. Am J Psychiatry 146: 905–908

    PubMed  CAS  Google Scholar 

  • Wolkin A, Sanfilipo M, Wolf AP, Angrist B, Brodie JD, Rotrosen J (1992) Negative symptoms and hypofrontality in chronic schizophrenia. Arch Gen Psychiatry 49: 959–965

    PubMed  CAS  Google Scholar 

  • Wolkin A, Duncan E, Sanfilipo M, Wieland S, Cooper TB, Rotrosen J (1994) Persistent psychosis after reduction in pre-and postsynaptic dopaminergic function. J Neural Transm [Gen Sect ] 95: 49–61

    CAS  Google Scholar 

  • Wong DF, Wagner HN, Tune LE, Dannals RF, Pearlson GD, Links JM, Tamminga CA, Brous-Solle EP, Ravart HT, Wilson M, Toung JKT, Malat J, Williams JA, O’Tuama LA, Snyder SH, Kuhar MJ, Gjedde A (1986) Positron emission tomography reveals elevated D2 dopamine receptors in drug naive schizophrenics. Science 234: 1558–1563

    PubMed  CAS  Google Scholar 

  • Xu X, Domino EF (1994) Phencyclidine-induced behavioral sensitization. Pharmacol Biochem Behav 47: 603–608

    PubMed  CAS  Google Scholar 

  • Yamamoto BK, Pehek EA, Meltzer HY (1994) Brain region effects of clozapine on amino acid and monoamine transmission. J Clin Psychiatry 55: 8–14

    PubMed  Google Scholar 

  • Zea Ponce Y, Baldwin RM, Laruelle M, Wang S, Neumeyer JL, Innis RB (1995) Simplified multi-dose preparation of iodine-123-beta-CIT: a marker for dopamine transporters. J Nucl Med 36: 525–529

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Wien

About this chapter

Cite this chapter

Heininger, K., Gaebel, W., Klimke, A., Fritze, J. (1998). Pharmakologie. In: Riederer, P., Laux, G., Pöldinger, W. (eds) Neuro-Psychopharmaka Ein Therapie-Handbuch. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6458-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6458-7_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7327-5

  • Online ISBN: 978-3-7091-6458-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics