Skip to main content

Representation Conversions for Nef Polyhedra

  • Conference paper
  • 100 Accesses

Part of the Computing Supplement book series (COMPUTING,volume 13)

Abstract

A Nef polyhedron is any set in ℝd which can be obtained by applying a finite number of Boolean set operations cpl and ∩ to finitely many (open) linear halfspaces. After resuming some fundamentals, it is shown in which sense several kinds of well-known polyhedra are special cases of Nef polyhedra. Then a number of representations of Nef polyhedra are presented and discussed, and algorithms for converting them into each other are given.

Key words

  • Polyhedra
  • geometric modeling
  • representation schemes
  • conversion algorithms

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7091-6444-0_3
  • Chapter length: 12 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-7091-6444-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bajaj, C. L., Edelsbrunner, H., Kaufman, A. E., Naylor, B. F., Rossignac, J. R.: Representations of geometry for computer graphics. Course Notes 29, ACM SIGGRAPH 96, 1996.

    Google Scholar 

  2. Bieri, H.: Boolean and topological operations for Nef polyhedra. In: CSG 94 Set-theoretic solid modelling—techniques and applications (Woodwark, J., ed.), pp. 35–53. Information Geometers 1994.

    Google Scholar 

  3. Bieri, H.: Nef polyhedra: a brief introduction. In: Geometric modelling—Dagstuhl 1993 (Hagen, H., Farin, G., Noltemeier, H., eds.), pp. 43–60. Wien New York: Springer, 1995.

    CrossRef  Google Scholar 

  4. Bieri, H.: Two basic operations for Nef polyhedra. In: CSG 96 Set-theoretic solid modelling—techniques and applications (Woodwark, J., ed.), pp. 337–356. Information Geometers, 1996.

    Google Scholar 

  5. Bieri, H., Mayor, D.: A ternary tree representation of generalized digital images. In: Virtual worlds and multimedia (Magnenat-Thalmann, N., Thalmann, D., eds.), pp. 23–35. New York: John Wiley, 1993.

    Google Scholar 

  6. Bieri, H., Nef, W.: Elmentary set-operations with d-dimensional polyhedra. In: Computational geometry and its applications (Noltemeier, H., ed.), pp. 97–112. Berlin Heidelberg New York Tokyo: Springer, 1998 (Lecture Notes in Computer Science 333).

    Google Scholar 

  7. Brønsted, A.: An introduction to convex polytopes. Berlin Heidelberg New York: Springer, 1983.

    CrossRef  Google Scholar 

  8. Edelsbrunner, H.: Algorithms in combinatorial geometry. Berlin Heidelberg New York Tokyo: Springer, 1987.

    MATH  CrossRef  Google Scholar 

  9. Ferrucci, V.: Dimension-independent solid modeling, PhD Thesis VII-95-4, Dipartimento di Informatica e Sistemistica, Univesità “La Sapienza”, Rome, Italy, 1995.

    Google Scholar 

  10. Gomes, J., Hoffmann, C. M., Shapiro, V., Velho, L.: Modeling in computer graphics. Course Notes 40, ACM SIGGRAPH 93, 1993.

    Google Scholar 

  11. Hartwig, A.: Algebraic 3-d modeling. A. K. Peters, 1996.

    Google Scholar 

  12. Hoffmann, C. M.: Geometric and solid modeling—an introduction. Morgan Kaufmann, 1989.

    Google Scholar 

  13. Mäntylä, M.: An introduction to solid modeling. Computer Science Press, 1988.

    Google Scholar 

  14. Nef, W.: Beiträge zur Theorie der Polyeder—mit Anwendungen in der Computergraphik (Contributions to the theory of polyhedra—with applications in computer graphics). Herbert Lang, 1978.

    Google Scholar 

  15. Paoluzzi, A., Pascucci, V., Vicentino, M.: Geometric programming: a programming approach to geometric design. ACM Trans. Graph. 14, 266–306 (1995).

    CrossRef  Google Scholar 

  16. Pascucci, V., Ferrucci, V., Paoluzzi, A.: Dimension-independent convex-cell based HPC: representation scheme and implementation issues. In: Third symposium on solid modeling and applications. (Hoffmann, C. M., Rossignac, J. R., eds.), pp. 163–174. ACM Press 1995.

    Google Scholar 

  17. Requicha, A. A. G.: Representations for rigid solids: theory, methods, and systems. ACM Comp. Surv. 12, 437–464 (1980).

    CrossRef  Google Scholar 

  18. Rossignac, J. R.: Through the cracks of the solid modeling mile-stone. Eurographics’ 91 State of the Art Report on Solid Modeling. In: From object modelling to advanced visualization (Coquillart, S., Strasser, W., Stucki, P., eds.), pp. 1–75. Berlin Heidelberg New York Tokyo: Springer, 1994.

    CrossRef  Google Scholar 

  19. Shapiro, V., Vossler, D. L.: What is a parametric family of solids? In: Third Symposium on Solid Modeling and Applications (Hoffmann, C. M., Rossignac, J. R., eds.), pp. 43–54. ACM Press, 1995.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to Walter Nef on the occasion of his eightieth birthday

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer-Verlag Wien

About this paper

Cite this paper

Bieri, H. (1998). Representation Conversions for Nef Polyhedra. In: Farin, G., Bieri, H., Brunnett, G., De Rose, T. (eds) Geometric Modelling. Computing Supplement, vol 13. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6444-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6444-0_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83207-3

  • Online ISBN: 978-3-7091-6444-0

  • eBook Packages: Springer Book Archive