Abstract
Simulation of the static and dynamic behavior of solid structural and fluid mechanical variables, e.g., stress, strain, strain-rate, displacement, force, and velocity, is critical to the design and analysis of microsensors and microactuators in the mechanical domain. For example, in Chapt. 6, we saw how electrical transport is modified by piezoresistance. This, in addition to deflection-induced capacitance change, can be effectively utilized for conversion of signals from the mechanical to the electrical domain. Alternatively, as we will see in Chapt. 8, a micromechanical structure subject to an electrical, thermal, magnetic, or mechanical excitation signal, gives rise to micro-actuation in the mechanical domain. In this chapter, we deal with model equations and constitutive relations relevant to: simulation of mechanical (e.g., pressure) microsensors; computation of velocity profiles relevant to flow microsensors (needed in Chapt. 5) and selected microfluidic systems; computation of mechanical stresses induced by packaging or encapsulation of microtransducers or integrated circuits (needed in Chapt. 6); and simulation of mechanical microactuators, including fluidic damping effects (needed in Chapt. 8).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
McDonald, P., Continuum Mechanics, Boston: PWS Publishing Co., 1996.
Timoshenko, S. P., Goodier, J. N., Theory of Elasticity, 3rd Ed., New York: McGraw-Hill, 1970.
Schlichting, H., Boundary Layer Theory, New York: McGraw-Hill, 1968.
Nye, J. F., Physical Properties of Crystals, Oxford: Oxford University Press, 1957.
Fung, Y. C., A First Course in Continuum Mechanics, 3rd Ed., New Jersey: Prentice Hall, 1994.
Sokolnikoff, I. S., Tensor Analysis, Theory and Applications to Geometry and Mechanics of Continua, 2nd Ed., New York: Wiley, 1964.
Landau, L. D., Lifshitz, E. M., Fluid Mechanics, 2nd Ed., New York: Pergamon, 1989.
Middelhoek, S., Audet, S. A., Silicon Sensors, New York: Academic Press, 1989.
Sze, S. M., (Ed.), Semiconductor Sensors, Wiley, New York, 1994.
Bin, T. Y., Huang, R. S., CAPSS: A Thin Diaphragm Capacitive Pressure Sensor Simulator, Sensors and Actuators, 11 (1987), 1–22.
Bouwstra, S., Geijselaers, B., On the Resonance Frequencies of Microbridges, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 538-542.
Elgamel, H. E., Closed-Form Expressions for the Relationships Between Stress, Diaphragm Deflection, and Resisitance with Pressure in Silicon Piezoresistive Pressure Sensors, Sensors and Actuators A, 50 (1995) 17–22.
Steinmann, R., Friemann, H., Prescher, C., Schellin, R., Mechanical Behaviour of Micromachined Sensor Membranes Under Uniform External Pressure Affected by In-Plane Stresses Using a Ritz Method and Hermite Polynomials, Sensors and Actuators A, 48 (1995), 37–46.
Meng, Q., Mehregany, M., Theoretical Modeling of Microfabricated Beams with Elastically Restrained Supports, J. of Microelectromechanical Systems, 2 (1993), 128–137.
Gerlach, G., Schroth, A., Pertsch, P., Influence of Clamping Conditions on Micro-structure Compliance, Sensors and Materials, 8 (1996), 79–98.
Lee, K. W., Modeling and Simulation of Solid-State Pressure Sensors, Ph.D. Dissertation, University of Michigan, Ann Arbor, USA, 1982.
Korvink, J., An Implementation of the Adaptive Finite Element Method for Semiconductor Sensor Simulation, Ph.D. Dissertation, ETH Zurich, No. 10143, Switzerland, 1993.
Zhang, Y., Wise, K. D., Performance of Non-Planar Silicon Diaphragms Under Large Deflections, J. of Microelectromechanical Systems, 3 (1994), 59–68.
Mallon Jr., J. R., Pourahmadi, F., Petersen, K., Barth, P., Vermeulen, T., Bryzek, J., Low-Pressure Sensors Employing Bossed Diaphragms and Precision Etch-Stopping, Sensors and Actuators, A21-A23 (1990), 89–95.
Bergqvist, J., Finite-Element Modelling and Characterization of a Silicon Condenser Microphone with a Highly Perforated Backplate, Sensors and Actuators A, 39 (1993), 191–200.
Pourahmadi, F., Barth, P., Petersen, K., Modeling of Thermal and Mechanical Stresses in Silicon Microstructures, Sensors and Actuators, A21-A23 (1990), 850–855.
Bessho, M., Tsuru, Y., Horiike, H., Jinmon, M., Yamagami, K., Wataya, S., High Reliability Absolute Semiconductor Pressure Sensor, SAE Special Publication, 536 (1983), 55–59.
Suzuki, S., Yamada, K., Nishihara, M., Hachino, H., Minorikawa, S., Structural Analysis of a Semiconductor Pressure Sensor, Proc, The 1st Sensor Symp., Japan, 1981, pp. 131-133.
Suzuki, S., Yagi, Y., Optimum Design of Silicon Pressure Sensor by Nonlinear Finite Element Method, Proc, The 2nd Sensor Symp., Japan, 1982, pp. 163-165.
Barth, P. W., Pourahmadi, F., Mayer, R., Poydock, J., Petersen, K., A Monolithic Silicon Accelerometer with Integral Air Damping and Overrange Protection, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1988, pp. 35–38.
Puers, B., Peeters, E., Sansen, W., CAD Tools in Mechanical Sensor Design, Sensors and Actuators, 17 (1989), 423–429.
Tschan, T., de Rooij, N., Characterization and Modelling of Silicon Piezoresistive Accelerometers Fabricated by a Bipolar-Compatible Process, Sensors and Actuators A, 25-27 (1991), 605–609.
Tschan, T., de Rooij, N., Bezinge, A., Analytical and FEM Modeling of Piezoresistive Silicon Accelerometers: Predictions and Limitations Compared to Experiments, Sensors and Materials, 3 (1992), 189–203.
Kovaács, A., Stoffel, A., Mechanical Analysis of Polycrystalline and Single-Crystalline Silicon Microstructures, Sensors and Actuators A, Vol. 41-42 (1994), 672–679.
Yamada, K., Kuriyama, T., A Novel Degree of Freedom Separation Technique in a Multi-Axis Accelerometer, Sensors and Actuators A, 43 (1994), 120–127.
Lee, Y-T., Seo, H.-D., Takano, R., Matsumoto, Y., Ishida, M., Nakamura, T., Design Consideration for Silicon Rectangular Diaphragm Pressure Sensor with Single-Element Four-Terminal Strain Gauge, Sensors and Materials, 7 (1995), 53–63.
Marco, S., Samitier, J., Morante, J. R., Gotz, A., Esteve, J., Novel Structures for Miniature Pressure Transducers Obtained by Electrochemical Etch-Stop on Diffused Membranes, Sensors and Materials, 7 (1995), 331–345.
Hein, S., Schlichting, V., Obermeier, S. E., Piezoresistive Silicon for Very Low Pressures Based on the Concept of Stress Concentration, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 628-631.
Fotheringham, G., Simulation Methods for Multi-Chip Modules, Sensors and Actuators A, 30 (1992), 157–165.
Lin, Y.-C., Hesketh, P. J., Schuster, J. P., Finite-Element Analysis of Thermal Stresses in a Silicon Pressure Sensor for Various Die-Mount Materials, Sensors and Actuators A, 44 (1994), 145–149.
Pourahmadi, F., Petersen, K., Package Design of Silicon Micromachined Sensors Using Finite Element Modeling, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 774-778.
Koen, E., Pourahmadi, F., Terry, S., A Multilayer Ceramic Package for Silicon Micromachined Accelerometers, Digest of Technical Papers, Vol. 1, Transducers’ 95, Stockholm, 1995, pp. 273–276.
Washizu, K., Note on the Principle of Stationary Complimentary Energy Applied to Free Vibration of an Elastic Body, Int. J. Solids and Structures, 2 (1969), 27–35.
Baltes, H., Korvink, J. G., Paul, O., Numerical Modelling and Materials Characterization for Integrated Micro Electro Mechanical Systems, Simulation of Semiconductor Devices and Processes, Vol. 6, Ryssel, H., Pichler, P. (Eds.), Wien-New York: Springer-Verlag, 1995, pp. 1–9.
Hodge, Jr., P. G., Plastic Analysis of Structures, New York: McGraw-Hill, 1959.
Korvink, J. G., Baltes, H., Microsystem Modelling, Chapt. 6, Sensors Update, Baltes, H., Göpel, W., Hesse, J., (Eds.), Weinheim: VCH, 1996, pp. 181–209.
Washizu, K., Variational Methods in Elasticity and Plasticity, 3rd Ed., Oxford: Pergamon Press, 1982.
Chau, K., Allegretto, W., Ristic, L., Simulation of Silicon Microstructures, Sensors and Materials, 2 (1991), 253–264.
Timoshenko, S., Woinowsky-Krieger, S., Theory of Plates and Shells, New York: McGraw-Hill, 1959.
Clark, S. K., Wise, K. D., Pressure Sensitivity in Anisotropically Etched Thin-Diaphragm Pressure Sensors, IEEE Trans. Electron Devices, ED-26 (1979), 1887–1896.
Benaissa, K., Integrated Silicon Opto-Mechanical Sensors, Ph.D. Dissertation, Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada, 1996.
Benaissa, K., Nathan, A., IC Compatible Optomechanical Pressure Sensors Using Mach-Zender Interferometry, IEEE Trans. Electron Devices, 43 (1996), 1571–1582.
Gorman, D. J., Free Vibration Analysis of Rectangular Plates, New York: Elsevier, 1982.
Lee, K. W., Wise, K. D., SENSIM: A Simulation Program for Solid-State Pressure Sensors, IEEE Trans. Electron Devices, ED-29 (1982), 34–41.
Stavsky, Y., Hoff, N. J., Mechanics of Composite Structures, Composite Engineering Laminates, Dietz, A. G. H, (Ed.), Cambridge: MIT Press, 1969.
Senturia, S. D., Microfabricated Structures for the Measurement of Mechanical Properties and Adhesion of Thin Films, Digest of Technical Papers, Transducers’ 87, Tokyo, 1987, pp. 11-16.
Allen, M. G., Mehregany, M., Howe, R. T., Senturia, S. D., Microfabricated Structures for the in situ Measurement of Residual Stress, Young’s Modulus, and Ultimate Strain of Thin Films, Appl. Phys. Letts., 51 (1987), 241–243.
Maseeh, F., Schmidt, M. A., Allen, M. G., Senturia, S. D., Calibrated Measurements of Elastic Limit, Modulus, and the Residual Stress of Thin Films Using Micro-machined Suspended Structures, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1988, pp. 84–87.
Tabata, O., Kawahata, K., Sugiyama, S., Igarashi, I., Mechanical Property Measurement of Composite Rectangular Membrane, Sensors and Actuators A, 20 (1989), 135–141.
Puers, B., Vergote, S., A Subminiature Capacitive Movement Detector Using a Composite Membrane Suspension, Sensors and Actuators A, 31 (1992), 90–96.
Guckel, H., Randazzo, T., Burns, D. W., A Simple Technique for the Determination of Residual Stress in Thin Films with Application to Polysilicon, J. Appl. Phys., 57 (1985), 1671–1675.
Campbell, D. S., Handbook of Thin Films Technology, New York: McGraw Hill, 1970.
Peterson, K. E., Guarnieri, C. R., Young’s Modulus Measurements of Thin Films Using Micromechanics, J. Appl. Phys., 50 (1979), 6761–6766.
Zhang, L. M., Uttamchandani, D., Culshaw, W., Measurement of the Mechanical Properties of Silicon Microresonators, Sensors and Actuators A, 29 (1991), 79–84.
Pratt, R. I., Johnson, G. C., Howe, R. T., Chang, J. C., Micromechanical Structures for Thin Film Characterization, Digest of Technical Papers, Transducers’ 91, San Francisco, 1991, pp. 205-208.
Osterberg, P. M., Gupta, R. K., Gilbert, J. R., Senturia, S. D., Quantitative Models for the Measurement of Residual Stress, Poisson Ratio and Young’s Modulus Using Electrostatic Pull-In of Beams and Diaphragms, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1994, pp. 184–188.
Pan, J. Y., Lin, P., Maseeh, F., Senturia, S. D., Verification of FEM Analysis of Load-Deflection Methods for Measuring Mechanical Properties of Thin Films, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1990, pp. 70–73.
Seino, Y., Nagai, S., Temperature Dependence of the Young’s Modulus of Diamond Thin Film Prepared by Microwave Plasma Chemical Vapor Deposition, J. Mat. Sc. Lett., 12 (1993), 324–325.
Bourgeois, C., Hermann, J., Blanc, N., de Rooij, N. F., Rudolf, F., Determination of the Elastic Temperature Coefficients of Monocrystalline Silicon, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 92–95.
Han, M. Y., Jou, J. H., Determination of the Mechanical Properties of RF-Magnetron-Sputtered Zinc Oxide Thin Films on Substrates, Thin Solid Films, 260 (1995), 58–64.
Klein, C. A., Anisotropy of Young’s Modulus and Poisson’s Ratio in Diamond, Mat. Res. Bull, 27 (1992), 1407–1414.
Maier-Schneider, D., Köprülülü, A., Obermeier, E., Elastic Properties and Micro-structure of LPCVD Polysilicon Films, J. of Micromechanics and Microengineering, 5 (1995), 121.
Kahn, H., Stemmer, S., Nandakumar, K., Hever, A. H., Mullen, R. L., Ballarini, R., Huff, M. A., Mechanical Properties of Thick, Surface Micromachined Polysilicon Films, Proc. IEEE MEMS, San Diego, 1996, pp. 343-348.
Biebl, M., Brandi, G., Howe, R. T., Young’s Modulus of in situ Phosphorus-Doped Polysilicon, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 80–83.
Obermeier, E., High Temperature Microsensors Based on Polycrystalline Diamond Thin Films, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 178–181.
Kuschnereit, R., Fath, H., Kolomenskii, A. A., Szabadi, M., Hess, P., Mechanical and Elastic Properties of Amorphous Hydrogenated Silicon Films Studied by Broad Band Surface Acoustic Wave Spectroscopy, Appl. Phys. A, 61 (1995), 269–276.
Jean, A., El Khakani, M. A., Chaker, M., Boily, S., Gat, E., Kieffer, J. C., Pepin, H., Biaxial Young’s Modulus of Silicon Carbide Thin Films, Appl. Phys. Lett., 62 (1993), 2200–2202.
Windischmann, H., Intrinsic Stress and Mechanical Properties of Hydrogenated Silicon Carbide Produced by Plasma-Enhanced Chemical Vapor Deposition, J. Vac. Sci. Tech., A9 (1991), 2459–2463.
Watkins, T. R., Green, D. J., Ryba, E. R., Determination of Young’s Modulus in Chemically Vapor-Deposited SiC Coatings, J. Am. Ceram. Soc., 76 (1993) 1965–1968.
Walsh, D., Culshaw, B., Optically Activated Silicon Microresonator Transducers: An Assessment of Material Properties, Sensors and Actuators A, 25-27 (1991), 711–716.
Stewart, R. A., Kim, J., Kim, E. S., White, R. M., Muller, R. S., Young Modulus and Residual Stress of LPCVD Silicon-Rich Silicon Nitride Determined from Membrane Deflection, Sensors and Materials, 2 (1991), 285–298.
Tsukahara, Y., Ohira, K., Yanaka, M., Inaba, M., Satoh, A., Elastic Properties Measurement of Glass Layers Fabricated on Silicon Wafers for Microelectronics and Micromachines, IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, 42 (1995), 387–391.
Maier-Schneider, D., Ersoy, A., Maibach, J., Schneider, D., Obermeier, E., Influence of Annealing on Elastic Properties of LPCVD Silicon Nitride and LPCVD Poly-silicon, Sensors and Materials, 7 (1995), 121–129.
Wells, G. M., Chen, H. T. H., Wallace, J. P., Engelstad, R. L., Cerrina, F., Radiation Damage-Induced Changes in Silicon Nitride Membrane Mechanical Properties, J. Vac. Sci. Technol. B, 13 (1995), 3075–3077.
Jou, J., Chen, L., Relaxation and Thermal Expansion Coefficient of Polyimide Films Coated on Substrates, Appl. Phys. Lett., 59 (1991), 46–47.
Fan, L.-S., Tai, Y.-C., Muller, R. S., Integrated Movable Micromechanical Structures for Sensors and Actuators, IEEE Trans. Electron Devices, ED-35 (1988), 724–730.
Lin, Y.-C., Hesketh, P. J., Schuster, J. P., Finite-Element Analysis of Thermal Stresses in a Silicon Pressure Sensor for Various Die-Mount Materials, Sensors and Actuators A, 44 (1994), 145–149.
Reichl, H., Packaging and Interconnection of Sensors, Sensors and Actuators A, 25-27 (1991), 63–71.
Peterson, K. E., Silicon as a Mechanical Material, Proc. IEEE, 70 (1982), 420–457.
Hälg, B., On a Nonvolatile Memory Cell Based on Micro-Electro-Mechanics, Proc. IEEE MEMS, Napa Valley, 1990, pp. 172-176.
Lide, D. R., Handbook of Chemistry and Physics, 72nd Ed., Boston: Chemical Rubber Publishing Co., 1992.
Wur, D. R., Davidson, J. L., Kang, W. P., Kuiser, D. L., Polycrystalline Diamond Pressure Sensor, IEEE J. of Microelectromechanical Systems, 4 (1995), 34–41.
Mehregany, M., Tong, L., Matus, L. G., Larkin, D. J., Internal Stress and Elastic Modulus Measurements on Micromachined 3C-SiC Thin Films, IEEE Trans. Electron Devices, 44 (1997), 74–79.
Thangaraj, D., Nathan, A., Two Dimensional Analysis of Incompressible Viscous Flow in Ducts Using a Rotated Difference Scheme, Sensors and Materials, 8 (1996), 13–22.
Nagata, M., Swart, N., Stevens, M., Nathan, A., Thermal Based Micro Flow Sensor Optimization Using Coupled Electrothermal Numerical Simulations, Digest of Technical Papers, Vol. 2, Transducers’ 95, Stockholm, 1995, pp. 447–450.
Mastrangelo, C. H., Muller, R. S., A Constant-Temperature Gas Flowmeter with a Silicon Micromachines Package, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1988, pp. 43–46.
Engel, P. A., Chen, W. T., (Eds.), Advances in Electronic Packaging, Proc. ASME Int. Electro Packaging Conf., Vols. 1 and 2, 1993.
Middleman, S., Hochberg, A. K., Process Engineering Analysis in Semiconductor Device Fabrication, New York: McGraw-Hill, 1993.
American Institute of Physics Handbook, 3rd Ed., New York: McGraw-Hill, 1972.
Starr, J.B., Squeeze-Film Damping in Solid-State Accelerometers, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1990, pp. 44–47.
van Kampen, R. P., Vellekoop, M. J., Sarro, P. M., Wolffenbuttel, R. F., Application of Electrostatic Feedback to Critical Damping of an Integrated Silicon Capacitive Accelerometer, Digest of Technical Papers, Transducers’ 93, Yokohama, 1993, pp. 818-821.
Cho, Y.-H., Pisano, A. P., Howe, R. T., Viscous Damping Model for Laterally Oscillating Microstructures, J. of Microelectromechanical Systems, 3 (1994), 81–87.
Zhang. X., Tang, W. C., Viscous Air Damping in Laterally Driven Microresonators, Sensors and Materials, 27 (1995), 415–430.
Hosaka, H., Itao, K., Kuroda, S., Evaluation of Energy Dissipation Mechanisms in Vibrational Microactuators, Proc. IEEE MEMS, 1994, pp. 193-198.
Reuther, H. M., Weinmann, M., Fischer, M., von Münch, W., Aßmus, F., Modeling Electrostatically Deflectable Microstructures and Air Damping Effects, Sensors and Materials, 8 (1996), 251–269.
Tang, W. C., Lim, M. G., Howe, R. T., Electrostatic Comb Drive Levitation and Control Method, J. Micro electromechanical Systems, 1 (1992), 170–178.
Langlois, W. E., Isothermal Squeeze Films, Quart. Appl. Math., XX (1962), 131–150.
Langlois, W. E., Slow Viscous Flow, New York: Macmillan, 1964.
Yang, Y.-J., Senturia, S. D., Numerical Simulation of Compressible Squeezed-Film Damping, Technical Digest, IEEE Solid-State Sensor and Actuator Workshop, Hilton Head Is., 1996, pp. 76–79.
Sadd, M. H., Stiffler, A. K., Squeeze Film Dampers: Amplitude Effects at Low Squeeze Numbers, J. Eng. Indust., Trans. of the ASME, B97, (1975), 1366–1370.
Morgan, K., Periaux, J., Thomasset, F. (Eds.), A GAMM Workshop, Notes on Numerical Fluid Dynamics, Braunschweig: Vieweg, 1984.
Denis, S. C. R., Chang, G.-Z., Numerical Solutions for Steady Flow Past a Circular Cylinder at Reynolds Numbers up to 100, J. Fluid Mech., 42 (1970), 471–489.
Hamielec, A. E., Raal, J. D., Numerical Studies of Viscous Flow Around Circular Cylinders, Phys. of Fluids, 12 (1969), 11–17.
Acrivos, A., Leal, L. G., Snowden, D. D., Pan, F., Further Experiments on Steady Separated Flows Past Bluff Objects, J. Fluid Mech., 34 (1970), 25–48.
Roache, P. J., Computational Fluid Dynamics, Albuquerque: Hermosa, 1976.
Peyret, R. T., Taylor, T. D., Computational Methods for Fluid Flow, New York: Springer-Verlag, 1983.
Patankar, S. V., Numerical Heat Transfer and Fluid Flow, New York: Hemisphere Publishing Co., 1980.
Thangaraj, D., Wu, H., Jayaram, S., Stream Function Distribution of Petroleum Liquids in Relaxation Tanks, Proc. IEEE-IAS 27th Meeting, Denver, 1994, pp. 1676-1681.
Raithby, G. D., Skew Upstream Differencing Schemes for Problems Involving Fluid Flow, Computer Methods in Applied Mechanics and Engineering, 9 (1976), 153–164.
Rice, J. G., Schnipke, R. J., A Monotone Streamline Upwind Finite Element Method for Convection-Dominated Flows, Computer Methods in Applied Mechanics and Engineering, 48 (1985), 313–327.
Roache, P. J., A Comment on the Paper “Finite Difference Methods for the Stokes and Navier-Stokes Equations” by J. C. Strickwerda, Int. J. Num. Meth. in Fluids, 8 (1988), 1459–1463.
Gresho, P. M., Sani, R. L., Introducing Four Benchmark Solutions, Int. J. Num. Meth. in Fluids, 11 (1990), 951–952.
Sani, R. L., Gresho, P. M., Résumé and Remarks on the Open Boundary Condition Minisymposium, Int. J. Num. Meth. in Fluids, 18 (1994), 983–1008.
Small, M. K., Vlassak, J. J., Powell, S. F., Daniels, B. J., Nix, W. D., Accuracy and Reliability of Bulge Test Experiments, Proc. MRS, 308 (1993), 159–164.
Ziebart, V., Paul, O., Münch, U., Baltes, H., A Novel Method to Measure Poisson’s Ratio of Thin Films, Proc. MRS, 505 (1998), 27–32.
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag/Wien
About this chapter
Cite this chapter
Nathan, A., Baltes, H. (1999). Mechanical and Fluidic Signals. In: Microtransducer CAD. Computational Microelectronics. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6428-0_7
Download citation
DOI: https://doi.org/10.1007/978-3-7091-6428-0_7
Publisher Name: Springer, Vienna
Print ISBN: 978-3-7091-7321-3
Online ISBN: 978-3-7091-6428-0
eBook Packages: Springer Book Archive