Skip to main content

The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis

  • Chapter
100 Years of Virology

Part of the book series: Archives of Virology. Supplementa ((ARCHIVES SUPPL,volume 15))

Summary

Filoviruses cause systemic infections that can lead to severe hemor- rhagic fever in human and non-human primates. The primary target of the virus appears to be the mononuclear phagocytic system. As the virus spreads through the organism, the spectrum of target cells increases to include endothelial cells, fibroblasts, hepatocytes, and many other cells. There is evidence that the filovirus glycoprotein plays an important role in cell tropism, spread of infection, and pathogenicity. Biosynthesis of the glycoprotein forming the spikes on the virion surface involves cleavage by the host cell protease furin into two disulfide linked subunits GP1 and GP2. GP1 is also shed in soluble form from infected cells. Different strains of Ebola virus show variations in the cleavability of the glycoprotein, that may account for differences in pathogenicity, as has been observed with influenza viruses and paramyxoviruses. Expression of the spike glycoprotein of Ebola virus, but not of Marburg virus, requires transcriptional editing. Unedited GP mRNA yields the nonstructural glycoprotein sGP, which is secreted extensively from infected cells. Whether the soluble glycoproteins GP1 and sGP interfere with the humoral immune response and other defense mechanisms remains to be determined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson ED, Thomas L, Hayflick JS, Thomas G (1993) Inhibition of HIV-1 gp 160-dependent membrane fusion by a furin-directed alpha 1-antitrypsin variant. J Biol Chem 268: 24 887–24891

    CAS  Google Scholar 

  2. Barr PJ (1991) Mammalian subtilisins: the long-sought dibasic processing endopro-teases. Cell 66: 1–3

    Article  PubMed  CAS  Google Scholar 

  3. Becker S, Spiess M, Klenk H-D (1995) The asialoglycoprotein receptor is a potenital liver-specific receptor for Marburg virus. J Gen Virol 76: 393–399

    Article  PubMed  CAS  Google Scholar 

  4. Becker S, Klenk H-D, Mühlberger E (1996) Intracellular transport and processing of the Marburg virus surface protein in vertebrate and insect cells. Virology 225: 145–155

    Article  PubMed  CAS  Google Scholar 

  5. Bullough PA, Hughson FM, Skehel JJ, Wiley DC (1994) Structure of influenza haemag-glutinin at the pH of membrane fusion. Nature 371: 37–43

    Article  PubMed  CAS  Google Scholar 

  6. Chambers P, Pringle CR, Easton AJ (1990) Heptad repeat sequences are located adjacent to hydrophobic regions in several types of virus fusion glycoproteins. Gen Virol 71: 3 075–3 080

    Article  CAS  Google Scholar 

  7. Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89: 263–273

    Article  PubMed  CAS  Google Scholar 

  8. Carr CM, Kim PS (1993) A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 21: 823–832

    Article  Google Scholar 

  9. Ellis DS, Bowen ETW, Simpson DIH (1978) Ebola virus: a comparison, at ultrastructural level, of the behaviour of the Sudan and Zaire strains in monkeys. Br J Exp Pathol 59: 584–593

    PubMed  CAS  Google Scholar 

  10. Feldmann H, Klenk H-D (1996) Marburg and Ebola viruses. Adv Virus Res 47: 1–52

    Article  PubMed  CAS  Google Scholar 

  11. Feldmann H, Will C, Schikore M, Slenczka W, Klenk H-D (1991) Glycosylation and oligomerization of the spike protein of Marburg virus. Virology 182: 353–356

    Article  PubMed  CAS  Google Scholar 

  12. Feldmann H, Bugany H, Mahner F, Klenk H-D, Drenckhahn D, Schnittler H-J (1996) Filovirus-induced endothelial leakage triggered by infected monocytes/macrophages. J Virol 70: 2208–2214

    PubMed  CAS  Google Scholar 

  13. Feldmann H, Mühlberger E, Randolf A, Will C, Kiley MP, Sanchez A, Klenk H-D (1992) Marburg virus, a filovirus: messenger RNAs, gene order, and regulatory elements of the replication cycle. Virus Res 24: 1–19

    Article  PubMed  CAS  Google Scholar 

  14. Feldmann H, Volchkov VE, Klenk H-D (1997) Filovirus Marburg et Ebola. Ann Inst Pasteur 8: 207–222

    Google Scholar 

  15. Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272: 872–877

    Article  PubMed  CAS  Google Scholar 

  16. Fisher-Hoch SP, Brammer TL, Trappier SG, Hutwagner LC, Farrar BB, Ruo SL, Brown BG, Hermann LM, Perez-Oronoz GI, Goldsmith CS, Hanes MA, McCormick JB (1992) Pathogenic potential of Filoviruses: role of geographic origin of primate host and virus strain. J Infect Dis 166: 753–763

    Article  PubMed  CAS  Google Scholar 

  17. Fisher-Hoch SP, Platt GS, Neild GH, Southee T, Baskerville A, Raymond RT, Lloyd G, Simpson DIH (1985) Pathophysiology of shock and hemorrhage in a fulminating viral infection (Ebola). J Infect Dis 152: 887–894

    Article  PubMed  CAS  Google Scholar 

  18. Gallaher WR (1996) Similar structural models of the transmembrane proteins of Ebola and avian sarcoma viruses. Cell 85: 477–478

    Article  PubMed  CAS  Google Scholar 

  19. Geisbert TW, Jahrling PB, Hanes MA, Zack PM (1992) Association of Ebola-related Reston virus particles and antigen with tissue lesions of monkeys imported to the United States. J Comp Path 106: 137–152

    Article  PubMed  CAS  Google Scholar 

  20. Geyer H, Will C, Feldmann H, Klenk H-D, Geyer R (1992) Carbohydrate structure of Marburg virus glycoprotein. Glycobiology 2: 299–312

    Article  PubMed  CAS  Google Scholar 

  21. Hallenberger S, Moulard M, Sordel M, Klenk H-D, Garten W (1997) The role of eukary-otic subtilisin-like endoproteases for the activation of human immunodeficiency virus glycoproteins in natural host cells. J Virol 71: 1 036–1 045

    CAS  Google Scholar 

  22. Horimoto T, Nakayama K, Smeekens SP, Kawaoka Y (1994) Proprotein-processing endoproteases PC6 and furin both activate hemagglutinin of virulent avian influenza viruses. J Virol 68: 6 074–6 078

    CAS  Google Scholar 

  23. Klenk H-D, Garten W (1994a) Activation cleavage of viral spike proteins by host proteases. In: Wimmer E (ed) Cellular receptors for animal viruses, Cold Spring Harbor Laboratory Press, New York, pp 241–280

    Google Scholar 

  24. Klenk H-D, Garten W (1994b) Host cell proteases controlling virus pathogenicity. Trends Microbiol 2: 39–43

    Article  PubMed  CAS  Google Scholar 

  25. Klenk H-D, Rott R (1988) The molecular biology of influenza virus pathogenicity. Adv Virus Res 34: 247–281

    Article  PubMed  CAS  Google Scholar 

  26. Klenk H-D, Volchkov VE, Feldmann H (1998) Two strings to the bow of Ebola virus. Nature Med 4: 388–389

    Article  PubMed  CAS  Google Scholar 

  27. Molloy SS, Thomas L, van Slyke JK, Stenberg PE, Thomas G (1994) Intracellular trafficking and activation of the furin proprotein convertase: localization to the TGN and recycling from the cell surface. EMBO J 13: 18–33

    PubMed  CAS  Google Scholar 

  28. Murphy FA, Simpson DIH, Whitfield SG, Zlotnik I, Carter GB (1971) Marburg virus infection in monkeys. Lab Invest 24: 279–291

    PubMed  CAS  Google Scholar 

  29. Ryabchikova EI, Kolesnikova LV, Tkachev VK, Pereboeva LA, Baranova SG, Rassadkin JN (1994) Ebola infection in four monkey species. Ninth International Conference on negative strand RNA viruses, Estoril, Portugal, p 164

    Google Scholar 

  30. Sanchez A, Kiley MP (1987) Identification and analysis of Ebola virus messenger RNA. Virology 157: 414–420

    Article  PubMed  CAS  Google Scholar 

  31. Sanchez A, Kiley MP, Holloway BP, Auperin DD (1993) Sequence analysis of the Ebola virus genome: organization, genetic elements, and comparison with the genome of Marburg virus. Virus Res 29: 215–240

    Article  PubMed  CAS  Google Scholar 

  32. Sanchez A, Yang ZY, Xu L, Nabel GJ, Crews T, Peters CJ (1998) Biochemical analysis of the secreted and virion glycoproteins of Ebola virus. J Virol 72: 6 442–6 447

    CAS  Google Scholar 

  33. Sanchez A, Trappier SG, Mahy BW, Peters CJ, Nichol ST (1996) The virion glyco-protein of Ebola viruses are encoded in two reading frames and are expressed through transcriptional editing. Proc Natl Acad Sci USA 93: 3 602–3 607

    CAS  Google Scholar 

  34. Schäfer W, Stroh A, Berghöfer S, Seiler J, Vey M, Kruse ML, Kern HF, Klenk H-D, Garten W (1995) Two independent targeting signals in the cytoplasmic domain determine trans-Golgi network localization and endosomal trafficking of the proprotein convertase furin. EMBOJ 14: 2424–2435

    Google Scholar 

  35. Schnittler HJ, Mahner F, Drenckhahn D, Klenk H-D, Feldmann H (1993) Replication of Marburg virus in human endothelial cells. A possible mechanism for the development of viral hemorrhagic disease. J Clin Invest 91: 1 301–1 309

    Article  CAS  Google Scholar 

  36. Schnittler H-J, Feldmann H (1999) Molecular pathogenesis of filovirus infections: role of macrophages and endothelial cells. Curr Topics Microbiol Immunol 235: 175–204

    Article  Google Scholar 

  37. Seidah NG, Hamelin J, Mamarbachi M, Dong W, Tadro H, Mbikay M, Chretien M, Day R (1996) cDNA structure, tissue distribution, and chromosomal localization of rat PC7, a novel mammalian proprotein convertase closest to yeast kexin-like proteinases. Proc Natl Acad Sci USA 93: 3 388–3 393

    Article  CAS  Google Scholar 

  38. Simpson DIH, Zlotnik I, Rutter DA (1968) Vervet monkey disease. Experimental infection of guinea pigs and monkeys with the causative agent. Br J Exp Pathol 49: 458–464

    PubMed  CAS  Google Scholar 

  39. Skehel JJ, Bayley PM, Brown EB, Martin SR, Waterfield MD, White JM, Wilson IA, Wiley DC (1982) Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proc Natl Acad Sci USA 79: 968–972

    Article  PubMed  CAS  Google Scholar 

  40. Takada A, Robison C, Goto H, Sanchez A, Murti KG, Whittl MA, Kawaoka Y (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci USA 94: 14764–14769

    Article  PubMed  CAS  Google Scholar 

  41. Vey M, Schäfer W, Reis B, Ohuchi R, Britt W, Garten W, Klenk H-D, Radsak K (1995) Proteolytic processing of human cytomegalovirus glycoprotein B (gp UL55) is mediated by the human endoprotease furin. Virology 206: 746–749

    Article  PubMed  CAS  Google Scholar 

  42. Volchkov VE, Becker S, Volchkova VA, Ternovoj VA, Kotov AN, Netesov SV, Klenk H-D (1995) GP mRNA of Ebola virus is edited by the Ebola virus polymerase and by T7 and vaccinia virus polymerases. Virology 214: 421–430

    Article  PubMed  CAS  Google Scholar 

  43. Volchkov VE, Blinov VM, Netesov SV (1992) The envelope glycoprotein of Ebola virus contains an immunosuppressive like domain similar to oncogenic retovirus. FEBS Lett 305: 181–184

    Article  PubMed  CAS  Google Scholar 

  44. Volchkov VE, Blinov VM, Kotov AN, Chepurnov AA, Netesov SV (1993) The full-length nucleotide sequence of the Ebola virus. IXth International Congress of Virology, Glasgow, Scotland, P52–2

    Google Scholar 

  45. Volchkov VE, Feldmann H, Volchkova VA, Klenk H-D (1998a) Processing of the Ebola virus glycoprotein by the proprotein convertase furin. Proc Natl Acad Sci USA 95: 5 762–5 767

    Article  CAS  Google Scholar 

  46. Volchkov VE, Volchkova VA, Slenczka W, Klenk H-D, Feldmann H (1998b) Release of viral glycoproteins during Ebola virus infection. Virology 245: 110–119

    Article  PubMed  CAS  Google Scholar 

  47. Weissenhorn W, Calder LJ, Wharton SA, Skehel JJ, Wiley D (1998) The central structural feature of the membrane fusion protein subunit from the Ebola virus glycoprotein is a long triple-stranded coiled coil. Proc Natl Acad Sci USA 95: 6 032–6 036

    Article  CAS  Google Scholar 

  48. Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387: 426–430

    Article  PubMed  CAS  Google Scholar 

  49. Will C, Mühlberger E, Under D, Slenczka W, Klenk H-D, Feldmann H (1993) Marburg virus gene four encodes the virion membrane protein, a type I transmembrane glycoprotein. J Virol 67: 1203–1210

    PubMed  CAS  Google Scholar 

  50. Wise RJ, Barr PJ, Wong PA, Kiefer M, Brake AJ, Kaufman RJ (1990) Expression of a human proprotein processing enzyme: correct cleavage of the von Willebrand factor precursor at a paired basic amino acid site. Proc Natl Acad Sci USA 87: 9 378–9 382

    Article  CAS  Google Scholar 

  51. Wool-Lewis RJ, Bates P (1998) Characterization of Ebola virus entry by using pseudo-typed viruses: identification of receptor-deficient cell lines. J Virol 72: 3 155–3 160

    CAS  Google Scholar 

  52. Yang Z, Delgado R, Xu L, Todd RF, Nabel EG, Sanchez A, Nabel GJ (1998) Distinct cellular interactions of secreted and transmembrane Ebola virus glycoproteins. Science 279: 1 034–1 036

    Article  CAS  Google Scholar 

  53. Zaki SR, Peters CJ (1997) Viral hemorrhagic fevers. In: Connor DH, Chandler FW, Schwartz DA, Manz HJ, Lack EE (eds) The pathology of infectious diseases. Appleton and Lange, Norwalk, pp 347–364

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this chapter

Cite this chapter

Feldmann, H., Volchkov, V.E., Volchkova, V.A., Klenk, HD. (1999). The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis. In: Calisher, C.H., Horzinek, M.C. (eds) 100 Years of Virology. Archives of Virology. Supplementa, vol 15. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6425-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6425-9_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83360-5

  • Online ISBN: 978-3-7091-6425-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics