Skip to main content

Interaction of the serotonergic and the immune systems: 5HT-Moduline

  • Conference paper
Psychiatry, Psychoimmunology, and Viruses

Part of the book series: Key Topics in Brain Research ((KEYTOPICS))

Abstract

The serotonergic system is known as a neuromodulatory system present in the brain and participating to the homeostasis of the brain. Its major morphological and anatomical features are favoring this role. Accordingly it is involved in many physiological functions and a number of psychiatric dysfunctions. Amongst the numerous receptors involved in its functions, 5HT1B receptors constitute a particular subtype located on neuron terminals and regulating the release of the corresponding neurotransmitter. These receptors are specifically the target of an endogenous tetrapeptide (5HT-Moduline) characterized in mammalian brain and regulating the functional activity of the receptor as an allosteric modulator.

Immunocompetent cells were shown to also contain 5HT1B receptors using molecular biology, immunocytochemistry and pharmacology. These receptors participate to the control of transcriptional activity of immediate early genes, and stimulate the proliferation of cells. 5HT-Moduline also interacts with the function of 5HT1B receptor at this level, playing an antagonistic role. The observed results indicate that the serotonergic system not only exerts a neuromodulatory role in central nervous tissue but presumably also controls the activity of immunocompetent cells. The serotonergic system may be involved in the reciprocal neuroimmune relationships via mechanisms which implicate 5HT1B receptors and their allosteric modulator 5HT-Moduline.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Audet M, Descarries L, Doucet G (1989) Quantified regional and laminar distribution of the serotonin innervation in the anterior half of the adult cerebral cortex. J Chem Neuroanat 2: 29–44

    PubMed  CAS  Google Scholar 

  • Baumgarten H, Grozdanovic Z (1994) Neuroanatomy and neuro-physiology of central serotonergic systems. J Serotonin Res 3: 171–179

    Google Scholar 

  • Baumgarten HG, Grozdanovic Z (1997) Anatomy of central serotoninergic projection system. Handb Exp Pharmacol 129: 42–89

    Google Scholar 

  • Blalock JE (1989) A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 69: 1–32

    PubMed  CAS  Google Scholar 

  • Bolaños-Jiménez F, Manhaes de Castro R, Seguin L, Cloëz-Tayarani I, Monneret V,. Drieu K, Fillion G (1995) Effects of stress on the functional properties of pre-and postsynaptic 5-HT1B receptors in the rat brain. Eur J Pharmacol 294: 531–540

    Article  PubMed  Google Scholar 

  • Bonnin A, Grimaldi B, Fillion MP, Fillion G (1999) Acute stress induces a differential increase of 5HT-Moduline tissue content in various rat brain areas. Brain Res (in press)

    Google Scholar 

  • Briley M, Chopin P, Moret C (1990) Effect of serotonergic lesion on “anxious” behaviour measured in the elevated plus-maze test in the rat. Psychopharmacoloy 101: 187–189

    Article  CAS  Google Scholar 

  • Choualoff F (1993) Physiopharmacological interactions between stress hormones and central serotoninergic system. Brain Res Rev 18: 1–32

    Article  Google Scholar 

  • Dantzer R, Mormede P (1995) Psychoneuroimmunology of stress. In: Leonard BE, Miller K (eds) Stress, the immune system and psychiatry. Wiley, Chichester, pp 47–67

    Google Scholar 

  • Descarries L, Audet MA, Doucet G, et al. (1990) Morphology of central serotonin neurons. In: Whitaker-Azmitia PM, Peroutka SJ (eds) The neuropharmacology of serotonin, vol 600. Academic Press, New York, pp 81–92

    Google Scholar 

  • Engel G, Göthert M, Hoyer D, Schlicker E, Hillenbrand K (1986) Identity of inhibitory presynaptic 5-hydroxytryptamine (5-HT) autoreceptors in the rat brain cortex with 5-HT1B binding sites. Naunyn Schmiedebergs Arch Pharmacol 332: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Fillion G, Fillion M (1981) Modulation of affinity of postsynaptic serotonin receptors by antidepressant drugs. Nature 292: 349–351

    Article  PubMed  CAS  Google Scholar 

  • Fink K, Zenter J, Göthert M (1995) Subclassification of presynaptic 5-HT autoreceptors in the human cerebral cortex as 5-HT1Dβ receptors. Naunyn Schmiedebergs Arch Pharmacol 352: 451–454

    PubMed  CAS  Google Scholar 

  • Fuxe K, Von Euler G, Agnati LF, Ögren S-O (1989) Galanin selectively modulates 5-hydroxytryptamine 1A receptors in the rat ventral limbic cortex. Neurosci Lett 85: 163–167

    Article  Google Scholar 

  • Garza Jr HH, Carr DJJ (1997) Neuroendocrine peptide receptors on cells of the immune system. In: Blalock JE (ed) Neuroimmunoendocrinology, vol 69. Birmingham, Ala, pp 132–154

    Chapter  Google Scholar 

  • Grimaldi B, Cloez I, Fillion MP, Mazié JC, Hen R, Fillion G (1995) Production and characterization of an antibody directed against the mouse 5-HT1B receptor. Neurosci Res 24: 97–101

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi B, Fillion MP, Bonnin A, Rousselle O, Massot O, Fillion G (1997) Immunocytochemical localization of neurons expressing 5-HT moduline in the mouse brain. Neuropharmacology 36: 1079–1087

    Article  PubMed  CAS  Google Scholar 

  • Grimaldi B, Sibella-Arguelles C, Bonnin A, Fillion MP, Massot O, Rousselle JC, Prudhomme N, Fillion G (1998) Control of the serotonergic activity and gene expression by 5-HT-moduline. 11th ECNP Congress, Paris

    Google Scholar 

  • Hartig PR (1997) Molecular biology and tranductional characteristics of 5HT receptors. Handb Exp Pharmacol 129: 176–212

    Google Scholar 

  • Hjorth S, Suchowski S, Galloway MP (1995) Evidence for 5-HT autoreceptor-mediated, nerve impulse-independent, control of 5-HT synthesis in the rat brain. Synapse 19: 170–176

    Article  PubMed  CAS  Google Scholar 

  • Hoyer D, Clarke DE, Fozard JR, Hartig PR, Martin GR, Mylecharane EJ, Saxena PR, Humphrey PPA (1994) VIL International union of pharmacology. Classification of receptors for 5-hydroxytryptamine (serotonin). Pharmacol Rev 46: 157–203

    PubMed  CAS  Google Scholar 

  • Ischia R, Lovisetti-Scamihorn P, Hogue-Angeletti R, Wolkersdorfer M, Winkler H, Fisher-Colbrie R (1997) Molecular cloning and characterisation of NESPP55, a novel chromogranin-like precursor of a peptide with 5-HT1B receptor antagonist activity. J Biol Chem 17: 11657–11662

    Google Scholar 

  • Jacobs B, Azmitia E (1992) Structure and function of the brain serotonin system. Pharmacol Rev 72: 165–229

    CAS  Google Scholar 

  • Kawahara H, Yoshida M, Yokoo H, Nishi M, Tanaka M (1993) Psychological stress increases serotonin release in the rat amygdala and prefrontal cortex assesses by in vivo microdialysis. Neurosci Lett 162: 81–84

    Article  PubMed  CAS  Google Scholar 

  • Kosovfsky BE, Molliver ME (1987) The serotonin innervation of cerebral cortex: different classes of axon terminals arise from dorsal and median raphe nuclei. Synapse 1: 153–168

    Article  Google Scholar 

  • Massot O, Rousselle JC, Fillion MP, Grimaldi B, Cloëz-Tayarani I, Fugelli A, Prudhomme N, Seguin L, Rousseau B, Plantefol M, Hen R, Fillion G (1996) 5-hydroxytryptamine-moduline, a new endogenous cerebral peptide, controls the serotoninergic activity via its specific interaction with 5-hydrox-ytryptamine IB/ID receptors. Mol Pharmacol 50: 752–762

    PubMed  CAS  Google Scholar 

  • McEwen BS, Biron CA, Brunson KW, Bulloch K, Chambers WH, Dhabhar FS, Goldfarb RH, Kitson RP, Miller AH, Spencer RL, Weiss JM (1996) The role of adrenocorticoids as modulators of immune function in health and disease: neural, endocrine and immune interactions. Brain Res Rev 23: 79–133

    Article  Google Scholar 

  • Middlemiss DN (1984) Stereoselective blockade at [3H]5-HT binding sites and at the 5-HT autoreceptor by propanolol. Eur J Pharmacol 101: 289–293

    Article  PubMed  CAS  Google Scholar 

  • Pineyro G, Blier P (1996) Regulation of 5-hydroxytryptamine release from rat midbrain raphe nuclei by 5-hydroxytryptamine ID receptors: effect of tetrodoxin, G protein inactivation and long-term antidepressant administration. J Pharmacol Exp Ther 276: 697–707

    PubMed  CAS  Google Scholar 

  • Pineyro G, Castanon N, Hen R, Blier P (1995) Regulation of [3H]5-HT release in raphe, frontal cortex and. hippocampus of 5-HT1B knock-out mice. Neuro Report 7: 353–359

    CAS  Google Scholar 

  • Rabin BS, Cohen S, Ganguli R, Lysle DT, Cunnick JE (1989) Bidirectional interaction between the central nervous system and the immune system. Crit Rev Immunol 9: 279

    PubMed  CAS  Google Scholar 

  • Rosh PJ (1995) Future directions in psychoneuroimmunology: psychoelec-troneuroimmunology? In: Leonard BE, Miller K (eds) Stress, the immune system and psychiatry. Wiley, Chichester, pp 207–231

    Google Scholar 

  • Rousselle JC, Massot O, Delepierre M, Zifa E, Fillion G (1996) Isolation and characterization of an endogenous peptide from rat brain interacting specifically with the serotoninergic IB receptor subtypes. J Biol Chem 271: 726–735

    Article  PubMed  CAS  Google Scholar 

  • Seguin L, Seznec JC, Fillion G (1997) The endogenous cerebral tetrapeptide 5-HT-moduline reduces in vivo the functional activity of central 5-HT1B receptors in the rat. Neurosci Res 27: 277–280

    Article  PubMed  CAS  Google Scholar 

  • Shimizu N, Take S, Hori T, Oomura Y (1992) In vivo measurement of hypothalamic serotonin release by intracerebral microdialysis: significant enhancement by immobilisation stress in rats. Brain Res Bull 28: 727–734

    Article  PubMed  CAS  Google Scholar 

  • Stevens-Felten SY, Bellinger DL (1997) Noradrenergic and peptidergic innervation of lymphoid organs. In: Blalock JE (ed) Neuroimmunoendocrinology, vol 69. Birmingham, Ala, pp 99–131

    Chapter  Google Scholar 

  • Takeuchi Y (1988) Distribution of serotonin neurons in the mammalian brain. In: Osborne NN, Hamon M (eds) Neuronal serotonin. John Wiley & Sons, London, pp 25–56

    Google Scholar 

  • Walter MR (1997) Structural biology of cytokines, their receptors, and signaling complexes: implications for the immune and neuroendocrine circuit. In: Blalock JE (eds) Neuroimmunoendocrinology, vol 69. Birmingham, Ala, pp 76–98

    Chapter  Google Scholar 

  • Weigent DA, Blalock JE (1997) Production of peptide hormones and neuro-transmitters by the immune system. In: Blalock JE (ed) Neuroimmunoendocrinology, vol 69. Birmingham, Ala, pp 1–30

    Chapter  Google Scholar 

  • Wiklund L, Leger L, Persson M (1981) Monoamine cell distribution in the cat brain. A fluorescence histochemical study with quantification of indolamin-ergic and locus coeruleus cell groups. J Comp Neurol 203: 613–647

    Article  PubMed  CAS  Google Scholar 

  • Zangen A, Overstreet DH, Yadid G (1997) High serotonin and 5-hydroxyindoleacetic acid levels in limbic brain regions in a rat model of depression: normalization by chronic antidepressant treatment. J Neurochem 69(6): 2477–2483

    Article  PubMed  CAS  Google Scholar 

  • Zifa E, Fillion G (1992) 5-hydroxytryptamine receptors. Pharmacol Rev 44: 401–458

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Grimaldi, B. et al. (1999). Interaction of the serotonergic and the immune systems: 5HT-Moduline. In: Müller, N. (eds) Psychiatry, Psychoimmunology, and Viruses. Key Topics in Brain Research. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6404-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6404-4_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83249-3

  • Online ISBN: 978-3-7091-6404-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics