Advertisement

Mammacarcinom pp 105-126 | Cite as

Bisphosphonattherapie beim Mammacarcinom

  • Ingo J. Diel
Chapter
  • 15 Downloads
Part of the Onkologie heute book series (ONKOLOGIE)

Zusammenfassung

Knochenmetastasen im Verlauf einer Brustkrebserkrankung sind sehr häufig. Legt man die Ergebnisse umfassender Autopsiestudien zugrunde, dann sind etwa 70% aller Frauen, die am metastasierten Mammacarcinom versterben, von skelettalen Absiedlungen betroffen [1]. Entsprechend der Drei-Drittel-Regel kann man sagen, daß ein Drittel der Frauen als erstes eine ossäre Metastasierung erfährt, ein Drittel im weiteren Verlauf der Erkrankung (nach visceraler Metastasierung), ein weiteres Drittel verstirbt ohne skelettale Absiedlungen. Bei einer geschätzten Mortalität von 30% erleidet jede 4. neuerkrankte Frau eine spätere ossäre Metastasierung. In den USA (Inzidenz: 180.000 Fälle p. a.) wären dies etwa 35.000–40.000 Frauen, in der Bundesrepublik Deutschland (geschätzte Inzidenz: 47.000–50.000 Fälle p. a.) etwa 9000 Frauen [2, 3]. Die durchschnittliche Überlebenszeit nach Eintritt einer Skelettmetastasierung liegt (bei sehr großer Variationsbreite) bei 2–3 Jahren. Das heißt, daß jährlich etwa 22.000 Patientinnen mit metastasiertem Mammacarcinom in Deutschland und 110.000 in den USA Kandidatinnen für eine Bisphosphonattherapie sind.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. [1]
    Galasko CSB (1986) Skeletal Metastases. Butterworth, London.Google Scholar
  2. [2]
    Parker SL, Tong T, Bolden S, Wingo PW (1997) Cancer statistics, 1997. CA-A Cancer Journal for Clinicians 47: 5–27.PubMedCrossRefGoogle Scholar
  3. [31.
    Statistisches Bundesamt (Hrsg.) (1995) Statistisches Jahrbuch der Bundesrepublik Deutschland 1995 (Gesundheitswesen). Metzler und Poeschel, Stuttgart.Google Scholar
  4. [4]
    Weiss L, Gilbert AH (1981) Bone Metastasis. Hall, Boston.Google Scholar
  5. [5]
    Batson OV (1940) The function of the vertebral veins and their role in the spread of metastases. Ann Surg 112: 138–149.PubMedCrossRefGoogle Scholar
  6. [6]
    Batson OV (1981) The vertebral vein system (Caldwell Lecture, 1956). In: Weiss L, Gilbert HA (eds.) Bone Metastasis. Hall, Boston.Google Scholar
  7. [7]
    Coman DR, de Long RP (1951) The role of the vertebral venous system in the metastasis of cancer to the spinal column: Experiments with tumor cell suspensions in rats and rabbits. Cancer 4: 610–618.PubMedCrossRefGoogle Scholar
  8. [8]
    Orr FW, Varani J, Gondek MD, Ward PA, Mundy GR (1979) Chemotactic response of tumor cells to products of resorbing bone. Science 203: 176–179.PubMedCrossRefGoogle Scholar
  9. [9]
    Mundy GR, Varani J, Orr W, Gondek MD, Ward PA (1978) Resorbing bone is chemotactic for monocytes. Nature 275: 132–136.PubMedCrossRefGoogle Scholar
  10. [10]
    Diel IJ, Kaufmann M, Costa SD, Holle R, von Minckwitz G, Solomayer EF, Kaul S, Basiert G (1996) Micrometastatic breast cancer cells in bone marrow at primary surgery: Prognostic value in comparison to nodal status. J Natl Cancer Inst 88: 1652–1664.PubMedCrossRefGoogle Scholar
  11. [11]
    Mundy GR (1991) Mechanism of osteolytic bone destruction. Bone 12: 1–6.CrossRefGoogle Scholar
  12. [12]
    Mundy GR (1995) Bone Remodeling and Its Disorders. Dunitz, London.Google Scholar
  13. [13]
    Galasko CSB (1976) Mechanism of bone destruction in the development of skeletal metastases. Nature 263: 507–508.PubMedCrossRefGoogle Scholar
  14. [14]
    Krempien B, Manegold C (1993) Prophylactic treatment of skeletal metastases, tumor-induced osteolysis, and hypercalcemia in rats with the bisphosphonate CL2MBP. Cancer 72: 91–98.PubMedCrossRefGoogle Scholar
  15. [15]
    Krempien B (1994) Morphological findings in bone metastasis, tumorosteopathy and antiosteolytic therapy. In: Diel IJ, Kaufmann M, Basiert G (eds.) Metastatic Bone Disease. Fundamental and Clinical Aspects. Springer, Berlin, Heidelberg, New York.Google Scholar
  16. [16]
    Fleisch H, Russel RGG, Francis MD (1969) Diphosphonates inhibit hydroxyapatite dissolution in vitro and bone resorption in tissue culture and in vivo. Science 165: 1262–1264.PubMedCrossRefGoogle Scholar
  17. [17]
    Fleisch H (1997) Bisphosphonates in Bone Disease. From the Laboratory to the Patient, 3rd Ed. Parthenon, New York, London.Google Scholar
  18. [18]
    Rodan GA, Fleisch H (1996) Bisphosphonates: Mechanisms of action. J Clin Invest 97: 2692–2696.PubMedCrossRefGoogle Scholar
  19. [19]
    Hughes DE, Wright KR, Uy HL, Sasaki A, Yoneda T, Roodman GD, Mundy GR, Boyce BF (1995) Bisphosphonates promote apoptosis in murine osteoclasts in vitro and in vivo. J Bone Miner Res 10: 1478–1487.PubMedCrossRefGoogle Scholar
  20. [20]
    Frith JC, Mönkkönen J, Blackburn GM, Russell RG, Rogers MJ (1997) Clodronate and liposome-encapsulated clodronate are metabolized to a toxic ATP analog, adenosine 5′-(beta, gamma-dichlormethylene) triphosphate, by mammalian cells in vitro. J Bone Miner Res 12: 1358–1367.PubMedCrossRefGoogle Scholar
  21. [21]
    Luckman SP, Hughes DE, Coxon FP, Russell RGG, Rogers MJ (1998) Nitrogen-containing bisphosphonates inhibit the mevalonat pathway and prevent posttranslational prenylation of GTP-binding proteins. J Bone Miner Res 13: 581–589.PubMedCrossRefGoogle Scholar
  22. [22]
    Rogers MJ, Chilton KM, Coxon FP, Lawry J, Smith MO, Suri S, Russell RGG (1996) Bisphosphonates induce apoptosis in mouse macrophage-like cells in vitro by a nitric oxide-independent mechanism. J Bone Miner Res 11: 1482–1491.PubMedCrossRefGoogle Scholar
  23. [23]
    Van der Pluijm G, Vloedgraven H, van Beek E, van der Wee-Pals L, Löwik C, Papapoulos S (1996) Bisphosphonates inhibit the adhesion of breast cancer cells to bone matrices in vitro. J Clin Invest 98: 698–705.PubMedCrossRefGoogle Scholar
  24. [24]
    Boissier S, Magnetto S, Frappart L, Cuzin B, Ebetino FH, Delmas PD, Clezardin P (1997) Bisphosphonates inhibit prostate and breast carcinoma cell adhesion to unmi-neralized and mineralized bone extracellular matrix. Cancer Res 57: 3890–3894.PubMedGoogle Scholar
  25. [25]
    Kanis JA (1995) Bone and cancer: Pathophysiology and treatment of metastases. Bone 17: 101S–105S.PubMedCrossRefGoogle Scholar
  26. [26]
    Averbuch SD (1993) New bisphosphonates in the treatment of bone metastases. Cancer 72: 3443–3452.PubMedCrossRefGoogle Scholar
  27. [27]
    Body JJ, Coleman RE, Piccart M (1996) Use of bisphosphonates in cancer patients. Cancer Treat Rev 22: 265–287.PubMedCrossRefGoogle Scholar
  28. [28]
    Lipton A (1997) Bisphosphonates and breast cancer. Cancer 80 (Suppl. 8): 1668–1673.PubMedCrossRefGoogle Scholar
  29. [29]
    Payne R (1997) Mechanisms and management of bone pain. Cancer 80 (Suppl. 8): 1608–1613.PubMedCrossRefGoogle Scholar
  30. [30]
    Solomayer E-F, Diel IJ, Gollan Ch, Bastert G (1999) Metastatic breast cancer: Clinical course, prognosis and efficacy of therapy related to the first site of recurrence (submitted).Google Scholar
  31. [31]
    Coleman RE, Smith P, Rubens RD (1998) Clinical course and prognostic factors following bone recurrence from breast cancer. Br J Cancer 77: 336–340.PubMedCrossRefGoogle Scholar
  32. [32]
    Coleman RE, Rubens RD (1985) Bone metastases and breast cancer. Cancer Treat Rev 12: 251–270.PubMedCrossRefGoogle Scholar
  33. [33]
    Coleman RE, Rubens RD (1987) The clinical course of bone metastases from breast cancer. Br J Cancer 55: 61–66.PubMedCrossRefGoogle Scholar
  34. [34]
    Theriault RL, Hortobagyi GN (1992) Bone metastasis in breast cancer. Anticancer Drugs 3: 455–462.PubMedCrossRefGoogle Scholar
  35. [35]
    Rubens RD, Foglman I (eds.) (1992) Bone Metastases. Diagnosis and Treatment. Springer. Berlin, Heidelberg, New York.Google Scholar
  36. [36]
    Raue F (ed.) (1994) Hypercalcemia of Malignancy. Springer, Berlin, Heidelberg, New York.Google Scholar
  37. [37]
    Bruning PF, Pit MJ, de Long-Bakker M, van den Ende A, Hart A, van Enk A (1990) Bone mineral density after adjuvant chemotherapy for premenopausal breast cancer. Br J Cancer 61: 308–310.PubMedCrossRefGoogle Scholar
  38. [38]
    Koller A, Fill H, Kurz R, Riccabona G, Haas H (1976) Osteopathy due to methotrexate. Österr Zeitschr Onkol 3: 63–69.Google Scholar
  39. [39]
    Gradishar WJ, Schilsky RL (1988) Effects of cancer treatment on the reproductive system. CRC Crit Rev Oncol/Haematol: 82153–82171.Google Scholar
  40. [40]
    Bloomfield DJ (1998) Should bisphosphonates be part of the standard therapy of patients with multiple myeloma or bone metastases from other cancers? An evidence-based review. J Clin Oncol 16: 1218–1225.PubMedGoogle Scholar
  41. [41]
    Pecherstorfer M, Herrmann Z, Body JJ, et al. (1996) Randomized phase II trial comparing different doses of the bisphosphonate ibandronate in the treatment of hypercalcemia of malignancy. J Clin Oncol 14: 268–276.PubMedGoogle Scholar
  42. [42]
    Pecherstorfer M, Ludwig H, Schlosser K, et al. (1996) Administration of the bisphosphonate ibandronate (BM 21.0955) by intravenous bolus injection. J Bone Miner Res 11:587–593.PubMedCrossRefGoogle Scholar
  43. [43]
    Purohit OP, Radstone CR, Anthony C, et al. (1995) A randomised double-blind comparison of intravenous Pamidronate and clodronate in the hypercalcaemia of malignancy. Br J Cancer 72: 1289–1293.PubMedCrossRefGoogle Scholar
  44. [44]
    Ralston SH (1992) Medical management of hypercalcaemia. Br J Clin Pharmacol 34: 11–20.PubMedCrossRefGoogle Scholar
  45. [45]
    Ralston SH, Thiébaud D, Herrmann Z, et al. (1997) Dose-response study of ibandronate in treatment of cancer-associated hypercalcaemia. Br J Cancer 75: 295–300.PubMedCrossRefGoogle Scholar
  46. [46]
    Body JJ (1992) Bone metastases and tumor-induced hypercalcemia. Current Opin Oncol 4: 624–631.CrossRefGoogle Scholar
  47. [47]
    Body JJ, Dumon JC (1994) Treatment of tumor-induced hypercalcaemia with the bisphosphonate Pamidronate: Dose-response relationship and influence of the tumour type. Ann Oncol 5: 359–363.PubMedGoogle Scholar
  48. [48]
    Siris ES, Hyman GA, Canfield RE (1983) Effects of dichloromethylene diphospho-nate in women with breast carcinoma metastatic to the skeleton. Am J Med 74: 401–406.PubMedCrossRefGoogle Scholar
  49. [49]
    Elomaa I, Blomquist C, Grohn P, Porkka L, Kairento AL, Seiander K, Lamberg-Allardt C, Holmström T (1983) Long-term controlled trial of bisphosphonate in patients with osteolytic bone metastases. Lancet I: 146–149.CrossRefGoogle Scholar
  50. [50]
    Paterson AHG, Powles TJ, Kanis JA, McCloskey E, Hansen J, Ashley S (1993) Double-blind contolled trial of oral clodronate in patients with bone metastases from breast cancer. J Clin Oncol 11: 59–65.PubMedGoogle Scholar
  51. [51]
    Van Holten-Verzantvoort ATM, Kroon HM, Bijvoet OLM, Cleton FJ, Beex LVAM, Blijham G, Hermans J, Neijt JP, Papapoulos SE, Sleeboom HP, Vermey P, Zwinder-man AH (1993) Palliative pamidronat treatment in patients with bone metastases from breast cancer. J Clin Oncol 11: 491–498.PubMedGoogle Scholar
  52. [52]
    Van Holten-Verzantvoort ATM, Bijvoet OLM, Cleton FJ, Blijham G, Hermans J, Neijt JP, Papapoulos SE, Sleeboom HP, Vermey P, Zwinderman AH (1987) Reduced morbidity from skeletal metastases in breast cancer patients during long term bisphosphonate (APD) treatment. Lancet II: 983–985.CrossRefGoogle Scholar
  53. [53]
    Conte PF, Latreille J, Maurik L, Calabresi F, Santos R, Campos D, et al. (1996) Delay in progression of bone metastases in breast cancer patients treated with intravenous Pamidronate: Results from a multinational randomized controlled trial. J Clin Oncol 14:2522–2529.Google Scholar
  54. [54]
    Hortobagyi GN, Theriault RL, Porter L, et al. (1996) Efficacy of Pamidronate in reducing skeletal complications in patients with breast cancer and bone metastases. N Engl J Med 335: 1785–1791.PubMedCrossRefGoogle Scholar
  55. [55]
    Hortobagyi GN, Theriault RL, Lipton A, Porter L, Blayney D, Sinoff C, Wheeler H, Simeone JF, Seaman JJ, Knight R, Heffernan M, Mellars K, Reitsma D (1998) Longterm prevention of skeletal complications of metastatic breast cancer with Pamidronate. J Clin Oncol 16: 2038–2044.PubMedGoogle Scholar
  56. [56]
    Lipton A, Theriault RL, Leff R, Gluck S, Stewart J, Costello S, Simeone J, Seaman J, Knight R, Hefferman M, Reitsma D (1996) Long-term reduction of skeletal complications in breast cancer patients with osteolytic bone metastases receiving hormone therapy, by monthly 90 mg Pamidronate infusions. Proc ASCO: 152 (Abstr. 531).Google Scholar
  57. [57]
    Saarto T, Blomqvist C, Välimäki M, Mäkelä P, Sarna S, Elooma I (1997) Clodronat improves bone mineral density in postmenopausal breast cancer patients treated with adjuvant antioestogens. Br J Cancer 75: 602–605.PubMedCrossRefGoogle Scholar
  58. [58]
    Saarto T, Blomqvist C, Välimäki M, Mäkelä P, Sarna S, Elooma I (1997) Chemical castration induced by adjuvant cyclophosphamide, methotrexate, and fluorouracil chemotherapy causes a rapid bone loss that is reduced by clodronate: A randomized study in premenopausal breast cancer patients. J Clin Oncol 15: 1341–1347.PubMedGoogle Scholar
  59. [59]
    Delmas PD, Balena R, Confravaux E, Hardouin C, Hardy P, Bremond A (1997) Bisphosphonate Risedronate prevents bone loss in women with artificial menopause due to chemotherapy of breast cancer: A double-blind, placebo-controlled study. J Clin Oncol 15: 955–962.PubMedGoogle Scholar
  60. [60]
    Elomaa I, Blomqvist C, Gröhn P, Porkka L, Kairento AL, Seiander K, Lambert-Allardt C, Holmström T (1983) Long-term controlled trial with diphosphonate in patients with osteolytic bone metastases. Lancet I: 146–149.CrossRefGoogle Scholar
  61. [61]
    Elomaa I, Blomqvist C, Porkka L, Lambert-Allardt C, Borgström GH (1987) Treatment of skeletal disease in breast cancer: A controlled clodronate trial. Bone 8 (Suppl.): 53–56.Google Scholar
  62. [62]
    Kanis JA, Powles TJ, Paterson AHG, McCloskey EV, Ashley S (1996) Clodronate decreases the frequency of skeletal metastases in women with breast cancer. Bone 19: 663–667.PubMedCrossRefGoogle Scholar
  63. [63]
    Van Holten-Verzantvoort ATM, Hermans J, Beex LVAM, Blijham G, Cleton FJ, van Eck-Smit BCF, Sleeboom HP, Papapoulos SE (1996) Does supportive Pamidronate treatment prevent or delay the first manifestation of bone metastases in breast cancer patients? Eur J Cancer 32: 450–454.CrossRefGoogle Scholar
  64. [64]
    Ford JM, van Oosterom, Brincker H, Kandra A, Body JJ (1998) Oral Pamidronate: Negative results from 3 double-blind, placebo-controlled trials in hypercalcemia, myeloma, and the prevention of bone metastases. Bone 22 (Suppl. 3): Abst. B52.Google Scholar
  65. [65]
    Diel IJ, Solomayer EF, Costa SD, Gollan C, Goerner R, Wallwiener D, Kaufmann M, Bastert G (1998) Reduction in new metastases in breast cancer with adjuvant clodronate treatment. N Engl J Med 339: 357–363.PubMedCrossRefGoogle Scholar
  66. [66]
    Powles TJ, Paterson AHG, Nevantaus A, Legault S, Pajunen M, Tidy VA, Rosenqvist K, Smith IE, Ottestad L, Ashley S, Walsh G, McCloskey E, Kanis JA (1998) Adjuvant Clodronate reduces the incidence of bone metastases in patients with primary operable breast cancer. Proc ASCO 17: Abstr. 468.Google Scholar
  67. [67]
    Nemoto R, Uchida K, Tsutsumi M, Koiso K, Sigenori S, Tetsuro S (1987) A model of localized osteolysis induced by the MBT-2 tumor in mice and its responsiveness to etidronate disodium. J Cancer Res Clin Oncol 113: 539–543.PubMedCrossRefGoogle Scholar
  68. [68]
    Krempien B (1996) Experimental findings on the osteoprotective potential of bis-phosphonates against bone metastases and tumor-induced osteopathy: A pleading for an early and preventive administration. In: Orr FW, Singh G (eds.). Bone Metastasis — Mechanisms and Pathophysiology. Landes, Georgetown, TX.Google Scholar
  69. [69]
    Krempien B, Wingen F, Eichmann T, Müller M, Schmähl D (1988) Protective effect of a prophylactic treatment with the bisphosphonate 3-amino-1-hydroxypropane-1,1-bisphonic acid on the development of tumor osteopathies in rat: experimental studies with the Walker Carcinosarcoma 256. Oncology 45: 41–46.PubMedCrossRefGoogle Scholar
  70. [70]
    Wingen F, Eichmann T, Manegold C, Krempien B (1986) Effects of new bisphonic acids on tumor-induced bone destraction in the rat. J Cancer Res Clin Oncol 111: 35–41.PubMedCrossRefGoogle Scholar
  71. [71]
    Kostenuik PJ, Orr FW, Suyama K, Singh G (1993) Increased growth rate and tumor burden of spontaneously metastatic Walker 256 cancer cells in the skeleton of bis-phosphonate treated rats. Cancer Res 53: 5472–5477.Google Scholar
  72. [72]
    Müller M, Green JR, Fabbro D (1996) The bisphosphonate Pamidronate inhibits the growth of a murine myeloma cell line in syngeneic mice. Proc Am Soc Haematol (Abstr.)Google Scholar
  73. [73]
    Sasaki A, Boyce BF, Wright KR, Chapman M, Boyce R, Mundy GR, Yoneda T (1995) Bisphosphonate risedronate reduces metastatic human breast cancer burden in nude mice. Cancer Res 55: 3551–3557.PubMedGoogle Scholar
  74. [74]
    Hall DG, Stoica G (1994) Effect of the bisphosphonate risedronate on bone metastases in a rat mammary adenocarcinoma model system. J Bone Mineral Res 9: 221–230.CrossRefGoogle Scholar
  75. [75]
    Diel IJ, Solomayer E-F, Meisenbacher H, Gollan Ch, Conradi R, Wallwiener D, Bastert G (1997) Elevated serum bone sialoprotein is a potent marker for bone metastases. Proc ASCO 17: Abstr. 467.Google Scholar

Copyright information

© Springer-Verlag Wien 1999

Authors and Affiliations

  • Ingo J. Diel
    • 1
  1. 1.Universitäts-Frauenklinik HeidelbergHeidelbergDeutschland

Personalised recommendations