Skip to main content

Minimum Square-Error Modeling of the Probability Density Function

  • Conference paper
Artificial Neural Nets and Genetic Algorithms
  • 629 Accesses

Abstract

Training of normalized radial basis function neural networks can be considered as a probability density function estimation of the experimental data. A new unsuper-vised method of probability density function estimation is proposed. The method is applied to a multivariate Gaussian mixture model. Batch-mode learning equations are derived and some simple examples are given. Training method is called a minimum square-error modeling of the probability density function. It is similar to the maximum-likelihood method but is numerically less demanding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grabec I., Sachse W.: Synergetics of Measurements, Prediction and Control. Springer-Verlag, Heidelberg, 1997.

    Book  Google Scholar 

  2. Duda R.O., Hart P.E.: Pattern Classification and Scene Analysis. Academic Press, New York, 1973.

    MATH  Google Scholar 

  3. Scott D.W.: Multivariate Density Estimation. John Wiley & Sons, New York, 1992.

    Book  MATH  Google Scholar 

  4. Bishop C.M.: Neural Networks for Pattern Recognition. Oxford University Press, Oxford, 1996.

    MATH  Google Scholar 

  5. Moody J., Darken C.J.: Fast Learning in Networks of Locally-Tuned Processing Units. Neural Computation, vol. 1, 281–294, 1989.

    Article  Google Scholar 

  6. Stokbro K., Umberger D.K., Hertz J.A.: Exploiting neurons with localized receptive fields to learn chaos. Complex Systems, vol. 4, 603–622, 1990.

    MATH  Google Scholar 

  7. Grabec I.: Modeling of chaos by self-organizing neural network. Published in Kohonen T., Mäkisara K., Simula O., Kangas J. (eds.): Proceedings of International Conference on Artificial Neural Networks, Espoo, Finland, Elsevier Science Publishers, North-Holland, Amsterdam, 151–156, 1991.

    Google Scholar 

  8. Schioler H., Hartman U.: Mapping neural network derived from the Parzen window estimator. Neural Networks, vol. 5, 903–909, 1992.

    Article  Google Scholar 

  9. Ripley B.D.: Pattern Recognition and Neural Networks. Cambridge University Press, Cambridge, 1996.

    MATH  Google Scholar 

  10. Cherkassky V., Mulier F.: Learning from Data. John Wiley & Sons, New York, 1998.

    MATH  Google Scholar 

  11. Devijver P.A., Kittler J.: Pattern Recognition — A Statistical Approach. Prentice Hall International, Englewood Cliffs, New Jersey, 1982.

    MATH  Google Scholar 

  12. Press W.H., Teukolsky S.A., Veterling W.T., Flannery B.P.: Numerical Recipes in C. 2nd edition, Cambridge University Press, Cambridge, New York, 1995.

    Google Scholar 

  13. Grabec I.: Self-organization of neurons described by the maximum-entropy principle. Biological Cybernetics, vol. 63, 403–409, 1990.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Kokol, M., Grabec, I. (1999). Minimum Square-Error Modeling of the Probability Density Function. In: Artificial Neural Nets and Genetic Algorithms. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6384-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6384-9_26

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83364-3

  • Online ISBN: 978-3-7091-6384-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics