Skip to main content

Impaired brain glucose metabolism in patients with Down Syndrome

  • Conference paper

Summary

A series of impaired metabolic functions in Down Syndrome (DS) including glucose handling has been described. Recent information from positron emission tomography studies in DS patients and our finding of downregulated phosphoglucose isomerase (PGI) in fetal brain with DS by gene hunting using subtractive hybridization, made us investigate PGI, a key enzyme of glucose metabolism, in brain of patients with DS, Alzheimer’s disease (AD) and controls. PGI and phosphofructokinase (PFK) activities were determined in frontal, parietal, temporal, occipital lobe and cerebellum of 9 controls, 9 patients with DS and 9 patients with AD. PGI activity in DS brain was significantly decreased in frontal, temporal lobe and cerebellum, comparable to controls in parietal lobe and elevated in occipital lobe. Brain PGI activity of patients with AD was comparable to controls in all regions tested. PFK, a rate limiting enzyme of glucose metabolism, was comparable between all brain regions of all three groups. Data of this study confirm impaired glucose metabolism in DS proposed in literature and found by positron emission tomography (PET) studies. We show that changes in glucose handling in patients with AD as evaluated by PET studies are not supported by our data, although not contradictory, as determinants other than glucose metabolizing enzymes as e.g. vascular factors and glucose transport may account for these findings. Changes of downregulated PGI found by subtractive hybridization at the transcriptional level in fetal DS brain along with our findings in DS brain regions suggest a strong specific link between glucose metabolism and DS rather than AD.

Keywords

  • Down Syndrome
  • Positron Emission Tomography Study
  • Triose Phosphate Isomerase
  • Impaired Glucose Metabolism
  • Phosphoglucose Isomerase

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-7091-6380-1_16
  • Chapter length: 10 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   169.00
Price excludes VAT (USA)
  • ISBN: 978-3-7091-6380-1
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   219.99
Price excludes VAT (USA)
Hardcover Book
USD   299.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anneren KG, Korenberg JR, Epstein CJ (1987) Phosphofructokinase activity in fibroblasts aneuploid for chromosome 2. Hum Genet 76: 63–65

    PubMed  CrossRef  CAS  Google Scholar 

  • Baikie AG, Loder PB, de Grouchy GC, Pitt DB (1965) Phosphohexokinase activity in erythrocytes in mongolism: another possible marker for chromosome 21. Lancet i: 412–414

    CrossRef  Google Scholar 

  • Bartels H, Kruse K (1968) Enzymbestimmungen in Erythrozyten bei Kindern mit Down Syndrome. Humangenetik 5: 305–309

    PubMed  CrossRef  CAS  Google Scholar 

  • Beutler E (1975) Red cell metabolism. A manual of biochemical methods, 2nd ed. Grune and Stratton, NY, pp 40–45

    Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254

    PubMed  CrossRef  CAS  Google Scholar 

  • Burger PC, Vogel FS (1973) The development of pathologic changes of Alzheimer’s disease and senile dementia in patients with Down’s syndrome. Am J Pathol 73: 457–476

    PubMed  CAS  Google Scholar 

  • Dani A, Pietrini P, Furey M, McIntosh CL, Horwitz B, Freo U, Alexander GE, Schapiro MB (1996) Brain cognition and metabolism of Down syndrome adults in association with development of dementia. Neuroreport 7: 2933–2936

    PubMed  CrossRef  CAS  Google Scholar 

  • Epstein CJ (1986) The consequences of chromosomal imbalance. Principles, mechanisms, and models. Cambridge University Press, New York

    Google Scholar 

  • Epstein CJ (1992) Down Syndrome (Trisomy 21). In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) The metabolic and molecular basis of inherited disease. McGraw Hill, New York, pp 749–794

    Google Scholar 

  • Haxby JV, Schapiro MB (1988) Longitudinal study of neuropsychological function in older adults with Down syndrome. In: Epstein C, Nadel L (eds) Down Syndrome and Alzheimer disease. Wiley-Liss, New York, pp 35–50

    Google Scholar 

  • Haxby JV, Duara R, Grady CL, Cutler NR, Rapoport SI (1985) Relations between neuropsychological and cerebral metabolic asymmetries in early Alzheimer’s disease. J Cereb Blood Flow Metab 5: 193–200

    PubMed  CrossRef  CAS  Google Scholar 

  • Hsia DY, Justice P, Smith GF, Dowben RM (1971) Down’s syndrome. A critical review of the biochemical and immunological data. Am J Dis Child 121: 153–163

    PubMed  CAS  Google Scholar 

  • Katz LA (1996) Transkingdom transfer of the phosphoglucose isomerase gene. J Mol Evol 43: 453–459

    PubMed  CrossRef  CAS  Google Scholar 

  • Labudova O, Lubec G (1998) cAMP upregulates the transposable element mys-1: a possible link between signaling and mobile DNA. Life Sci 62: 431–437

    PubMed  CrossRef  CAS  Google Scholar 

  • Lai F, Williams RS (1989) A prospective study of Alzheimer’s disease in Down syndrome. Arch Neurol 46: 849–853

    PubMed  CrossRef  CAS  Google Scholar 

  • Layzer RB, Epstein CJ (1972) Phosphofructokinase and chromosome 21. Am J Hum Genet 24: 533–543

    PubMed  CAS  Google Scholar 

  • Mirra SS, Heyman A, McKeel D, Sumi S, Crain BJ (1991) The consortium to establish a registry for Alzheimer disease (CERAD). II. Standardisation of the neuropathologi-cal assessment of Alzheimer’s disease. Neurology 41: 479–486

    PubMed  CrossRef  CAS  Google Scholar 

  • Pash J, Smithgall T, Bustin M (1991) Chromosomal protein HMG — 14 is overexpressed in Down syndrome. Exp Cell Res 193: 232–236

    PubMed  CrossRef  CAS  Google Scholar 

  • Pietrini P, Dani A, Furey ML, Alexander GE, Freo U, Grady CL, Mentis MJ, Mangot D, Simon EW, Horwitz B, Hazby JV, Schapiro MB (1997) Low glucose metabolism during brain stimulation in older Down’s Syndrome subjects at risk for Alzheimer’s disease prior to dementia. Am J Psychiatry 154: 1063–1069

    PubMed  CAS  Google Scholar 

  • Schapiro MB, Grady CL, Haxby JV (1992) Nature of mental retardation and dementia in Down’s syndrome: study with PET, CT and neuropsychology. Neurobiol Aging 13: 723–734

    PubMed  CrossRef  CAS  Google Scholar 

  • Schmidt HJ, Schaum U, Pichotka JP (1977) The influence of mode and intensity of homogenization on the absolute value and stability of oxygen consumption of guinea pig liver homogenates. Z Naturforsch 32: 908–912

    CAS  Google Scholar 

  • Seidl R, Greber S, Schuller E, Bernert G, Cairns N, Lubec G (1997) Evidence against increased oxidative DNA damage in Down Syndrome. Neurosci Lett 235: 137–140

    PubMed  CrossRef  CAS  Google Scholar 

  • Tierney MC, Fisher RH, Lewis AJ, Torzitto ML, Snow WG, Reid DW, Nieuwstraaten P, Van Rooijen LAA, Derks HJGM, Van Wijk R, Bischop A (1988) The NINCDA-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer’s disease. Neurology 38: 359–364

    PubMed  CrossRef  CAS  Google Scholar 

  • Vora S, Franke U (1981) Assignment of the human gene for liver-type 6-phosphofruc-tokinase isoenzyme (PFK-L) to chromosome 21 by using somatic cell hybrids and monoclonal anti-L-antibody. Proc Natl Acad Sci USA 78: 3738–3742

    PubMed  CrossRef  CAS  Google Scholar 

  • Wisniewski KE, Wisniewski HM, Wen GY (1985) Occurrence of neuropathological changes and dementia of Alzheimer’s disease in Down’s syndrome. Ann Neurol 17: 278–282

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1999 Springer-Verlag Wien

About this paper

Cite this paper

Labudova, O., Cairns, N., Kitzmüller, E., Lubec, G. (1999). Impaired brain glucose metabolism in patients with Down Syndrome. In: Lubec, G. (eds) The Molecular Biology of Down Syndrome. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6380-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6380-1_16

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83377-3

  • Online ISBN: 978-3-7091-6380-1

  • eBook Packages: Springer Book Archive