Skip to main content

The ecology and evolution of pollen odors

  • Chapter
Pollen and Pollination

Abstract

The literature is reviewed and new evidence presented that pollen produces odors, which serve multiple functions in pollination and defense. Pollen odor, which originates from pollenkitt, comprises volatiles that belong to the same chemical classes found in flower scents, that are in species-specific mixtures, and that contrast with odors of other floral parts. Pollen can also take up volatiles from surrounding floral odors, but this adsorption is selective and varies among species. Pollen odors are more pronounced in insect- than bird- or wind-pollinated plants, suggesting that volatile emission evolved in part under selection to attract pollinators. Pollen-feeding insects can perceive pollen odor and use it to discriminate between different pollen types and host plants. Pollen odor influences bee foraging, including the location of pollen sources, discrimination of flowers with different amounts of pollen, and host-plant recognition by pollen-specialist species. In the few wind-pollinated plants studied, odors of male flowers or pollen are comparatively high in a-methyl alcohols and ketones; these volatiles may serve in pollen defense, with some known to repel insects. Pollen odor often includes chemicals with documented defense activity, which is probably aimed mainly at nonpollinator pollen-feeding insects and pathogens; an involvement in pollen allelopathy is also possible. Pollen volatiles comprise chemically diverse compounds that may play multiple roles, and their emission in pollen odor undoubtedly evolved under the principle, and often conflicting, selective pressures to both protect the male gametophyte and increase its dispersal by animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ågren J., Schemske D. W. (1991) Pollination by deceit in a neotropical monoecious herb, Begonia involucrata. Biotropica 23: 235–241.

    Google Scholar 

  • Aufsess A. von. (1960) Geruchliche Nahorientierung der Biene bei entomophilen und ornithophilen Blüten. Z. Vergl. Physiol. 43: 469–498.

    Google Scholar 

  • Barbier M. (1970) Chemistry and biochemistry of pollens. Progress Phytochem. 2: 1–34.

    Google Scholar 

  • Barker J. F., Grugel S. (1996) Oviposition by the banded sunflower moth, Cochylis hospes (Lepi-doptera: Cochylidae) in response to Helianthus annuus pollen. Great Lakes Entomol. 29: 77–80.

    Google Scholar 

  • Belcher D. W., Schneider J. C., Hedin P. A., French J. C. (1983) Impact of glands in cotton anthers on feeding behavior of Heliothis virescens (F). (Lepidoptera: Noctuidae) larvae. Environ. Entomol. 12: 1478–1481.

    Google Scholar 

  • Bergström G., Dobson H. E. M., Groth I. (1995) Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst. Evol. 195: 221–242.

    Google Scholar 

  • Bergström G., Dobson H. E. M., Groth I., Pellmyr O., Endress P. K., Thien L. B., Hübener A., Francke W. (1991) Chemical basis of a highly specific mutualism: chiral esters attract pollinating beetles in Eupomatiaceae. Phytochemistry 30: 3221–3225.

    Google Scholar 

  • Bernhardt P. (1986) Bee-pollination in Hibbertia fasciculata (Dilleniaceae). Plant Syst. Evol. 152: 231–241.

    Google Scholar 

  • Bianchi G., Murelli C., Ottaviano E. (1990) Maize pollen lipids. Phytochem. 29: 739–744.

    CAS  Google Scholar 

  • Buchmann S. L. (1983) Buzz pollination in angiosperms. In: Jones C. E., Little R. J. (eds.) Handbook of experimental pollination biology. Sci. Acad. Press, New York, pp. 73–113.

    Google Scholar 

  • Buchmann S. L., Jones C. E., Colin L. J. (1977) Vibratile pollination of Solanum douglasii and S. xanti (Solanaceae) in Southern California. Wasmann J. Biol. 35: 1–25.

    Google Scholar 

  • Cane J. H. (1983) Olfactory evaluation of Andrena host nest suitability by kleptoparasitic Nomada bees. Anim. Behav. 31: 138–144.

    Google Scholar 

  • Cane J. H. (1993) Reproductive role of sterile pollen in cryptically dioecious species of flowering plants. Current Sci. 65: 223–225.

    Google Scholar 

  • Casida J. E. (1980) Pyrethrum flowers and pyrethroid insecticides. Environ. Health Persp. 34: 189–202.

    CAS  Google Scholar 

  • Cazier M. A., Linsley E. G. (1974) Foraging behavior of some bees and wasps at Kallstroemia grandiflora flowers in southern Arizona and New Mexico. Amer. Mus. Nov. No. 2546.

    Google Scholar 

  • Char M. B. S., Bhat S. S. (1975) Antifungal activity of pollen. Naturwissenschaften 62: 536.

    PubMed  CAS  Google Scholar 

  • Charpentier R. (1985) Host plant selection by the pollen beetle Meligethes aeneus. Entomol. Exp. Appl. 38: 277–285.

    Google Scholar 

  • Cole L. K., Blum M. S., Roncadori R. W. (1975) Antifungal properties of the insect alarm pheromones citral, 2-heptanone, and 4-methyl-3-heptanonoe. Mycologia 67: 701–708.

    PubMed  CAS  Google Scholar 

  • Coleman J. R., Coleman M. A. (1982) Reproductive biology of an andromonoecious Solanum (S. palinacanthum Dunal). Biotropica 14: 69–75.

    Google Scholar 

  • Collin S., Vanhavre T., Bodart E., Bouseta A. (1995) Heat treatment of pollens: impact on their volatile flavor constituents. J. Agric. Food Chem. 43: 444–448.

    CAS  Google Scholar 

  • Crepet W. L. (1983) The role of insect pollination in the evolution of angiosperms. In: Real L. (ed.) Pollination biology. Acad. Press, Orlando, pp. 29–50.

    Google Scholar 

  • Cresswell J. E., Robertson A. W. (1994) Discrimination by pollen-collecting bumblebees among differentially rewarding flowers of an alpine wildflower, Campanula rotundifolia (Campanulaceae). Oikos 69: 304–308.

    Google Scholar 

  • D’Arcy W. G., D’Arcy N. S., Keating R. C. (1990) Scented anthers in the Solanaceae. Rhodora 92: 50–53.

    Google Scholar 

  • Delisle J., McNeil J. N., Underhill E. W., Barton D. (1989) Helianthus annuus pollen, an oviposition stimulant for the sunflower moth, Homoeosoma electellum. Entomol. Exp. Appl. 50: 53–60.

    Google Scholar 

  • Dobson H. E. M. (1987) Role of flower and pollen aromas in host-plant recognition by solitary bees. Oecologia 72: 618–623.

    Google Scholar 

  • Dobson H. E. M. (1988) Survey of pollen and pollenkitt lipids—chemical cues to flower visitors? Amer. J. Bot. 75: 170–182.

    CAS  Google Scholar 

  • Dobson H. E. M. (1989) Pollenkitt in plant reproduction. In: Bock J. H., Linhart Y. B. Linhart (eds.) The evolutionary ecology of plants. Westview Press, Boulder, pp. 227–246.

    Google Scholar 

  • Dobson H. E. M. (1991) Analysis of flower and pollen volatiles. In: Linskens H. F., Jackson J. F. (eds.) Essential oils and waxes. Modern methods of plant analysis 12: 231–251. Springer, Berlin.

    Google Scholar 

  • Dobson H. E. M. (1994) Floral volatiles in insect biology. In: Bernays E. A. (ed.) Insect-plant interactions, Vol. V. CRC Press, Boca Raton, pp. 47–81.

    Google Scholar 

  • Dobson H. E. M., Bergström G., Groth I. (1990) Differences in fragrance chemistry between flower parts of Rosa rugosa. Israel J. Bot. 39: 143–156.

    CAS  Google Scholar 

  • Dobson H. E. M., Bergström J., Bergström G., Groth I. (1987) Pollen and flower volatiles in two Rosa species. Phytochemistry 26: 3171–3173.

    CAS  Google Scholar 

  • Dobson H. E. M., Danielson E. M., van Wesep I. D. (1999) Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biol. 14: 153–166.

    Google Scholar 

  • Dobson H. E. M., Groth I., Bergström G. (1996) Pollen advertisement: chemical contrasts between flower and pollen odors. Amer. J. Bot. 83: 877–885.

    CAS  Google Scholar 

  • Doull K. M. (1974a) Effect of distance on the attraction of pollen to honeybees in the hive. J. Apic. Res. 13: 27–32.

    Google Scholar 

  • Doull K. M. (1974b) Effects of attractants and phagostimulants in pollen and pollen supplement on the feeding behaviour of honeybees in the hive. J. Apic. Res. 13: 47–54.

    Google Scholar 

  • Doull K. M., Standifer L. N. (1969) A technique for measuring feeding responses of honeybees in their hive. J. Apic. Res. 8: 153–157.

    Google Scholar 

  • Doull K. M., Standifer L. N. (1970) Feeding responses of honeybees in the hive. J. Apic. Res. 9: 129–132.

    Google Scholar 

  • Eickwort G. (1973) Biology of the European mason bee, Hoplitis anthocopoides (Megachilidae), in New York state. Cornell Univ. Agric. Expt. Sta. Search Agric. 3: 1–31.

    Google Scholar 

  • Endress P. K. (1994a) Floral structure and evolution in primitive angiosperms: recent advances. Plant Syst. Evol. 192: 79–97.

    Google Scholar 

  • Endress P. K. (1994b) Diversity and evolutionary biology of tropical flowers. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Faden R. B. (1992) Floral attraction and floral hairs in the Commelinaceae. Ann. Missouri Bot. Gard. 79: 46–52.

    Google Scholar 

  • Faegri K., van der Pijl L. (1979) The principles of pollination ecology, 3rd edn. Pergamon Press, Oxford.

    Google Scholar 

  • Farrar R. R., Kennedy G. G., Roe R. M. (1992) The protective role of dietary unsaturated fatty acids against 2-undecanone-induced pupal mortality and deformity in Helicoverpa zea. Entomol. exp. appl. 62: 191–200.

    CAS  Google Scholar 

  • Free J. B. (1970) The flower constancy of bumblebees. J. Anim. Ecol. 39: 395–402.

    Google Scholar 

  • Frisch K. von. (1923) Über die “Sprache” der Bienen. Zool. Jahrb. Abt. f. Allg. Zool. u. Physiol. 40: 1–186.

    Google Scholar 

  • Fritzsche J. (1837) Ueber den Pollen. Mem. Acad. Imp. Sci. St.-Petersbourg, St.-Petersburg.

    Google Scholar 

  • Fujimori N., Ashihara H. (1993) Biosynthesis of caffeine in flower buds of Camellia sinensis. Annals Bot. 71: 279–284.

    CAS  Google Scholar 

  • Golding Y. C., Sullivan M. S., Sutherland J. P. (1999) Visits to manipulated flowers by Episyrphus balteatus (Diptera: Syrphidae): partitioning the signals of petals and anthers. J. Insect Behav. 12: 39–45.

    Google Scholar 

  • Goodwin R. M., Steven D. (1993) Behaviour of honey bees visiting kiwifruit flowers. New Zealand J. Crop Hort. Sci. 21: 17–24.

    Google Scholar 

  • Gori D. F. (1989) Floral color change in Lupinus argenteus (Fabaceae): why should plants advertise the location of unrewarding flowers to pollinators? Evolution 43: 870–881.

    Google Scholar 

  • Harder L. D. (1990) Behavioral responses by bumble bees to variation in pollen availability. Oecologia 85: 41–47.

    Google Scholar 

  • Haynes J., Mesler M. (1984) Pollen foraging by bumblebees: foraging patterns on Lupinus polyphyllus. Oecologia 61: 249–253.

    Google Scholar 

  • Heinrich B. (1979) Resource heterogeneity and patterns of movement in foraging bumblebees. Oecologia 40: 235–245.

    Google Scholar 

  • Heslop-Harrison J., Heslop-Harrison Y., Knox R. B., Howlett B. (1973) Pollen-wall proteins:’ gametophytic’ and’ sporophytic’ fractions in the pollen walls of the Malvaceae. Ann. Bot. 37: 403–412.

    CAS  Google Scholar 

  • Hesse M. (1980) Entwicklungsgeschichte und Ultrastruktur von Pollenkitt und Exine bei nahe verwandten entomophilen und anemophilen Angiospermensippen der Alismataceae, Liliaceae, Juncaceae, Cyperaceae, Poaceae, und Araceae. Plant Syst. Evol. 134: 229–267.

    Google Scholar 

  • Hesse M. (1981) The fine structure of the exine in relation to the stickiness of angiosperm pollen. Rev. Palaebot. Palynol. 35: 81–92.

    Google Scholar 

  • Hesse M., Hess M. W. (1993) Recent trends in tapetum research: a cytological and methodological review. Plant Syst. Evol. [Suppl] 7: 127–145.

    Google Scholar 

  • Hohmann H. (1970) Über die Wirkung von Pollenextrakten und Duftstoffen auf das Sammel-und Werbeverhalten Hoseinder Bienen (Apis mellifera L.). Apidologie 1: 157–178.

    CAS  Google Scholar 

  • Hollister B., Mullin C. A. (1999) Isolation and identification of primary metabolite feeding stimulants for adult western corn rootworm, Diabrotica virgifera LeConte, from host pollens. J. Chem. Ecol. 25: 1263–1280.

    CAS  Google Scholar 

  • Hopkins C. Y., Jevans A. W., Boch R. (1969) Occurrence of octadeca-trans-2,cis-9,cis-12-trienoic acid in pollen attractive to the honey bee. Can. J. Biochem. 47: 433–436.

    PubMed  CAS  Google Scholar 

  • Houston T. F., Lamont B. B., Radford S., Errington S. G. (1993) Apparent mutualism between Verticordia nitens and V. aurea (Myrtaceae) and their oil-ingesting bee pollinators (Hymenoptera: Colletidae). Aust. J. Bot. 41: 369–380.

    Google Scholar 

  • Hügel M.-F. (1962) Étude de quelques constituents du pollen. Ann. Abeille 5: 97–133.

    Google Scholar 

  • Hurd P. D., LaBerge W. E., Linsley E. G. (1980) Principal sunflower bees of North America with emphasis on the southwestern United States. Smiths. Contr. Zool. No. 310.

    Google Scholar 

  • Hurd P. D., Linsley E. G. (1963) Pollination of the unicorn plant (Martyniaceae) by an oligolectic, corolla-cutting bee. J. Kansas Entomol. Soc. 36: 248–252.

    Google Scholar 

  • Jayanth K. P., Mohandas S., Asokan R., Visalakshy P. N. G. (1993) Parthenium pollen induced feeding by Zygogramma bicolorata (Coleoptera: Chrysomelidae) on sunflower (Helianthus annuus) (Compositae). Bull. Entomol. Res. 83: 595–598.

    Google Scholar 

  • Kennedy G. G., Farrar R. R., Kashyap R. K. (1991) 2-tridecanone—glandular trichome-mediated insect resistance in tomato. In: Hedin P. A. (ed.) Naturally occurring pest bioregulators. (ACS Symp. Ser. 449) Amer. Chem. Soc, Washington D.C., pp. 150–165.

    Google Scholar 

  • Kerner A. von Marilaun (1898) The natural history of plants, Vol. Il (transi. Oliver, F.W.). Blackie and Son Ltd., London.

    Google Scholar 

  • King M. J., Ferguson A. M. (1994) Vibratory collection of Actinidia deliciosa (kiwifruit) pollen. Annals Bot. 74: 479–482.

    Google Scholar 

  • Kirk W. D. J. (1985) Pollen-feeding and the host specificity and fecundity of flower thrips (Thysanoptera). Ecol. Entomol. 10: 281–289.

    Google Scholar 

  • Knapp S., Persson V., Blackmore S. (1998) Pollen morphology and functional dioecy in Solanum (Solanaceae). Plant Syst. Evol. 210: 113–139.

    Google Scholar 

  • Knobloch K., Pauli A., Iberl B., Weigand H., Weis N. (1989) Antibacterial and antifungal properties of essential oil components. J. Ess. Oil Res. 1: 119–128.

    CAS  Google Scholar 

  • Knoll F. (1930) Über Pollenkitt und Bestäubungsart. Zeit. Bot. 23: 609–675.

    Google Scholar 

  • Knox R. B., Heslop-Harrison J. (1970) Pollen-wall proteins: localization and enzymatic activity. J. Cell Sci. 6: 1–27.

    PubMed  CAS  Google Scholar 

  • Knudsen J. T., Tollsten L. (1991) Floral scent and intrafloral scent differentiation in Moneses and Pyrola (Pyrolaceae). Plant Syst. Evol. 177: 81–91.

    Google Scholar 

  • Knudsen J. T., Tollsten L., Bergström L. G. (1993) Floral scents—a checklist of volatile compounds isolated by head-space techniques. Phytochemistry 33: 253–280.

    CAS  Google Scholar 

  • Kölreuter D. J. G. (1761) Vorläufige Nachricht von einigen das Geschlecht der Pflanzen betreffenden Versuchen und Beobachtungen. Verlag von Wilhelm Engelmann, Leipzig.

    Google Scholar 

  • Kubo I., Muroi H., Kubo A. (1995) Structural functions of antimicrobial long-chain alcohols and phenols. Bioorg. Med. Chem. 3: 873–880.

    PubMed  CAS  Google Scholar 

  • Kugler H. (1943) Hummeln als Blütenbesucher. Ergeb. Biol. 19: 143–323.

    Google Scholar 

  • Langenheim J. H. (1994) Higher plant terpenoids: a phytocentric overview of their ecological roles. J. Chem. Ecol. 20: 1223–1280.

    CAS  Google Scholar 

  • Le Metayer M., Pham-Delegue M. H., Thiery D., Masson D. (1993) Influence of host-and nonhost plant pollen on the calling and oviposition behaviour of the European sunflower moth Homoeosoma nebulellum (Lepidoptera: Pyralidae). Acta Oecologica 14: 619–626.

    Google Scholar 

  • Lepage M., Boch R. (1968) Pollen lipids attractive to honeybees. Lipids 3: 530–534.

    PubMed  CAS  Google Scholar 

  • Levin M. D., Bohart G. E. (1955) Selection of pollens by honey bees. Amer. Bee J. 95: 392–393, 402.

    Google Scholar 

  • Levine D. A., Anderson G. J. (1986) Evolution of dioecy in an American Solanum. In: D’Arcy W. G. (ed.) Solanaceae: biology and systematics. Columbia Univ. Press, New York, pp. 264–273.

    Google Scholar 

  • Lin S., Mullin C. A. (1999) Lipid, polyamide, and flavonol phagostimulants for adult western corn rootworm from sunflower (Helianthus annuus L.) pollen. J. Agric. Food Chem. 47: 1223–1229.

    PubMed  CAS  Google Scholar 

  • Linsley E. G., MacSwain J. W., Raven P. H. (1963) Comparative behavior of bees and Onagraceae I. Oenothera bees of the Colorado Desert. Univ. Calif. Publ. Entomol. 33: 1–24.

    Google Scholar 

  • Louveaux J. (1959) Recherches sur la récolte du pollen par les abeilles (Apis mellifica L.). Ann. Abeille 2: 13–111.

    Google Scholar 

  • Lunau K. (1992) Innate recognition of flowers by bumble bees: orientation of antennae to visual stamen signals. Can. J. Zool. 70: 2139–2144.

    Google Scholar 

  • Maluf W. R., Barbosa L. V., Costa Santa-Cecilia L. V. (1997) 2-tridecanone-mediated mechanisms of resistance to the South American tomato pinworm Scrobipalpuloides absoluta (Meyrick, 1917) (Lepidoptera-Gelechiidae) in Lycopersicon spp. Euphytica 93: 189–194.

    CAS  Google Scholar 

  • Marr K. L., Tang C. S. (1992) Volatile insecticial compounds and chemical variability of Hawaiian Zanthoxylum (Rutaceae) species. Biochem. Syst. Ecol. 21: 209–217.

    Google Scholar 

  • McNaughton I. H., Harper J. L. (1960) The xcomparative biology of closely related species living in the same area: I. External breeding-barriers between Papaver species. New Phytol. 59: 15–26.

    Google Scholar 

  • McNeil J. N., Delisle J. (1989) Host plant pollen influences calling behavior and ovarian development of the sunflower moth, Homoeosoma electellum. Oecologia. 80: 201–205.

    Google Scholar 

  • Menzel R. (1985) Learning in honey bees in an ecological and behavioral context. In: Hölldobler B., Lindauer M. (eds.) Experimental behavioral ecology and sociobiology. Gustav Fischer, Stuttgart, pp. 55–74.

    Google Scholar 

  • Meurer B., Wiermann R., Strack D. (1988) Phenylpropanoid patterns in Fagales pollen and their phylogenetic relevance. Phytochemistry 27: 823–828.

    CAS  Google Scholar 

  • Mohl H. von. (1852) Principles of the anatomy and physiology of the vegetable cell (translate by A. Henfrey). John van Voorst, Paternoster Row, London.

    Google Scholar 

  • Morris J. A., Khettry A., Seitz E. W. (1979) Antimicrobial activity of aroma chemicals and essential oils. J. Amer. Chem. Soc. 56: 595–603.

    CAS  Google Scholar 

  • Mullin C. A., Alfatafta A. A., Harman J. L., Everett S. L. Serino A. A. (1991) Feeding and toxic effects of floral sesquiterpene lactones, diterpenes, and phenolics from sunflower (Helianthus annuus L). on western corn rootworm. J. Agric. Food Chem. 39: 2293–2299.

    CAS  Google Scholar 

  • Murphy S. D. (1999) Pollen allelopathy. In: Inderjit, Dakshini, K. M. M., Foy C. L. (eds.) Principles and practices in plant ecology: allellochemical interactions. CRC Press, Boca Raton, pp. 129–148.

    Google Scholar 

  • Pacini E., Franchi G. G. (1993) Role of the tapetum in pollen and spore dispersal. Plant Syst. Evol. [Suppl.] 7: 1–11.

    Google Scholar 

  • Pacini E., Franchi G. G., Hesse M. (1985) The tapetum: its form, function, and possible phylogeny in Embryophyta. Plant Syst. Evol. 149: 155–185.

    Google Scholar 

  • Pandey D. K., Tripathi R. N., Tripathi R. D., Dixit S. N. (1983) Fungitoxicity in pollen grains. Grana 22: 31–33.

    Google Scholar 

  • Pankow H. (1958) Über den Pollenkitt bei Galanthus nivalis L. Flora 146: 240–253.

    Google Scholar 

  • Parker R. L. (1926) The collection and utilization of pollen by the honeybee. Agric. Exp. Sta. Cornell Univ. Mem. 98.

    Google Scholar 

  • Pellmyr O. (1988) Bumble bees (Hymenoptera: Apidae) assess pollen availability in Anemonopsis macrophylla (Ranunculaceae) through floral shape. Ann. Entomol. Soc. Amer. 81: 792–797.

    Google Scholar 

  • Pellmyr O., Thien L. B. (1986) Insect reproduction and floral fragrances: keys to the evolution of the angiosperms? Taxon 35: 76–85.

    Google Scholar 

  • Pellmyr O., Groth I., Bergström G. (1984) Comparative analysis of the floral odors of Actaea spicata and A. erythrocarpa (Ranunculaceae). Nova Acta Reg. Soc. Sci. Upsaliensis, Ser. V:C., 3: 157–160.

    Google Scholar 

  • Pellmyr O., Tang W., Groth I., Bergström G., Thien L. B. (1991) Cycad cone and angiosperm floral volatiles: inferences for the evolution of insect pollination. Biochem. Syst. Evol. 19: 623–627.

    CAS  Google Scholar 

  • Pham-Delègue M.-H., Loublier Y., Ducruet V., Douault P. Marilleau R., Etiévant P. (1994) Caractérisation des signaux chimiques impliqués dans les relations plantes-abeilles domestiques. Grana 33: 184–190.

    Google Scholar 

  • Pichersky E., Raguso R. A., Lewinsohn E., Croteau R. (1994) Floral scent production in Clarkia (Onagraceae): 1. Localization and developmental modulation of monoterpene emission and linalool synthase activity. Plant Physiol. 106: 1533–1540.

    PubMed  CAS  Google Scholar 

  • Picman A. (1986) Biological activities of sesquiterpene lactones. Biochem. Syst. Ecol. 14: 255–281.

    CAS  Google Scholar 

  • Pijl L. van der (1964) Discussion. In: Linskens H. F. (ed.) Pollen physiology and fertilization. North-Holland, Amsterdam, p. 72.

    Google Scholar 

  • Porsch O. (1954) Geschlechtgebundener Blütenduft. Österr. Botan. Z. 101: 359–372.

    Google Scholar 

  • Porsch O. (1956) Windpollen und Blumeninsekt. Österr. Botan. Z. 103: 1–18.

    Google Scholar 

  • Ribbands C. R. (1949) The foraging method of individual honey-bees. J. Anim. Ecol. 18: 47–66.

    Google Scholar 

  • Roberts I., Stead A. D., Dickinson H. G. (1979) No fundamental chantes in lipids of the pollen grain coating of Brassica oleracea following either self-or cross-pollination. Incompatibility Newsletter 11: 77–79.

    Google Scholar 

  • Robinson F. A., Nation J. L. (1968) Substances that attract caged honeybee colonies to consume pollen supplements and substitutes. J. Apic. Res. 7: 83–88.

    Google Scholar 

  • Rossiter M., Gershenzon J., Mabry T. J. (1986) Behavioral and growth responses of specialist herbivore, Homoeosoma electellum, to major terpenoid of its host, Helianthus spp. J. Chem. Ecol. 12: 1505–1521.

    CAS  Google Scholar 

  • Sazima M., Vogel S., Cocucci A., Hausner G. (1993) The perfume flowers of Cyphomandra (Solanacaeae): pollination by euglossine bees, bellows mechanism, osmophores, and volatiles. Plant Syst. Evol. 187: 51–88.

    CAS  Google Scholar 

  • Schmidt J. O. (1982) Pollen foraging preferences of honey bees. Southwestern Entomol. 7: 255–259.

    Google Scholar 

  • Schmidt J. O. (1985) Phagostimulants in pollen. J. Apic. Res. 24: 107–114.

    CAS  Google Scholar 

  • Schmidt J. O., Johnson B. E. (1984) Pollen feeding preference of Apis mellifera, a polylectic bee. Southwestern Entomol. 9: 41–47.

    Google Scholar 

  • Shelly T. E., Villalobos E. M., Buchmann S. L., Cane J. H. (1993) Temporal patterns of floral visitation for two bee species foraging on Solanum. J. Kansas Entomol. Soc. 66: 319–327.

    Google Scholar 

  • Sprengel C. K. (1793) Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen. Friedrich Vieweg, Berlin.

    Google Scholar 

  • Standifer L. N. (1966) Fatty acids in dandelion pollen gathered by honey bees, Apis mellifera. Annls Entomol. Soc. Amer. 59: 1005–1008.

    CAS  Google Scholar 

  • Stanley R. G., Linskens H. F. (1974) Pollen. Springer, New York.

    Google Scholar 

  • Steffen K. (1953) Zytologische Untersuchungen an Pollenkorn und-schlauch. Flora 140: 140–174.

    Google Scholar 

  • Sukhada K. D., Jayachandra (1980a) Pollen allelopathy —a new phenomenon. New Phytol. 84: 739–746.

    Google Scholar 

  • Sukhada K. D., Jayachandra (1980b) Allelopathic effects of Parthenium hysterophorus L., Part IV, Identification of inhibitors. Plants and Soil 55: 67–75.

    Google Scholar 

  • Taber S. (1963) Why bees collect pollen. Rep.-Abstr. 19th Intl. Beekeeping Congr., Prague 1963, p. 114.

    Google Scholar 

  • Thien L. B., Heimermann W. H., Holman R. T. (1975) Floral odors and quantitative taxonomy of Magnolia and Liriodendron. Taxon 24: 557–568.

    CAS  Google Scholar 

  • Tripathi R. N., Dubey N. K., Dixit S. N. (1985) Fungitoxicity of pollen grains with special reference to Xanthium strumarium (Compositae). Grana 24: 61–63.

    Google Scholar 

  • Troll W. (1928) Über Antherenbau, Pollen und Pollination von Galanthus L. Flora 123: 321–343.

    Google Scholar 

  • Wacht S., Lunau K., Hansen K. (1996) Optical and chemical stimuli control pollen feeding in the hoverfly Eristalis tenax. Entomol. exp. appl. 80: 50–53.

    Google Scholar 

  • Wacht S., Lunau K., Hansen K. (2000) Chemosensory control of pollen ingestion in the hoverfly Eristalis tenax by labellar taste hairs. J. Comp. Physiol. A. 186: 193–203.

    PubMed  CAS  Google Scholar 

  • Wainright C. M. (1978) The floral biology and pollination ecology of two desert lupines. Bull. Torrey Bot. Club 105: 24–38.

    Google Scholar 

  • Waller G. D., Loper G. M., Martin J. H. (1984) The use of honey bees in production of hybrid cotton seed. In: Tasei J. N. (ed.) Proc. Vth Internat. Symp. Pollination, Versailles 1983. INRA, Paris, pp. 129–133.

    Google Scholar 

  • Wells C., Bertsch W., Perich M. (1993) Insecticidal volatiles from the marigold plant (genus Tagetes): effect of species and sample manipulation. Chromatogr. 35: 209–215.

    CAS  Google Scholar 

  • Werner C., Hu W., Lorenzi-Riatsch A., Hesse M. (1995) Di-coumaroylspermidines and tri-coumaroylspermidines in anthers of different species of the genus Aphelandra. Phytochemistry 40: 461–465.

    CAS  Google Scholar 

  • Wittgenstein E., Sawicki E. (1970) Analysis of the non-polar fraction of giant ragweed pollen: carotenoids. Mikrochim. Acta 1970: 765–783.

    Google Scholar 

  • Wodehouse R. P. (1935) Pollen grains. McGraw-Hill, New York.

    Google Scholar 

  • Zaika L. L. (1988) Spices and herbs: their antimicrobial activity and its determination. J. Food Safety 9: 97–118.

    Google Scholar 

  • Zandonella P., Dumas C., Gaude T. (1981) Sécrétions et biologie florale. I. Nature, origine et rôle des sécrétions dans la pollinisation et la fécondation; revue des données récentes. Apidologie 12: 383–396.

    CAS  Google Scholar 

  • Zimmerman M. (1982) Optimal foraging: random movement by pollen collecting bumblebees. Oecologia 53: 394–398.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this chapter

Cite this chapter

Dobson, H.E.M., Bergström, G. (2000). The ecology and evolution of pollen odors. In: Dafni, A., Hesse, M., Pacini, E. (eds) Pollen and Pollination. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6306-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6306-1_4

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7248-3

  • Online ISBN: 978-3-7091-6306-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics