Skip to main content

Evidence for enhanced neuro-inflammatory processes in neurodegenerative diseases and the action of nitrones as potential therapeutics

  • Conference paper
Advances in Research on Neurodegeneration

Summary

Our attempts to explain the serendipitous observations made on the neuroprotective action of a-phenyl-tert-butyl-nitrone (PBN) several years ago provided a challenge, which lead us to postulate the occurrence of neuroinflammatory processes in the stroked and the aging brain to help explain the results. Surprising observations made earlier by other investigators also forced them to conclude that enhanced neuro-inflammatory processes occur in the Alzheimer’s Disease (AD) brain. Observations we made recently, combined with the early seminal findings and the many others made since, overwhelmingly support the notion that neuro-inflammatory processes occur in the AD brain. Results obtained in our attempts to explain the mechanistic basis of the neuroprotective action of PBN provide strong support for the notion that this compound acts, not by trapping free radicals in a mass-action

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abe J-L, Kusuhara M, Ulevitch RJ, Berk BC, Lee J-D (1996) Big mitogen-activated protein kinase 1 (BMK1) is a redox-sensitive kinase. J Biol Chem 271: 16586–16590

    Article  PubMed  CAS  Google Scholar 

  • Agarwal S, Sohal RS (1994) Aging and proteolysis of oxidized proteins. Arch Biochem Biophys 309: 24–28

    Article  PubMed  CAS  Google Scholar 

  • Aisen PS (1997) Inflammation and Alzheimer’s disease: mechanisms and therapeutic strategies. Gerontology 43: 143–149

    Article  PubMed  CAS  Google Scholar 

  • Aisen PS, Davis KL (1994) Inflammatory mechanisms in Alzheimer’s disease: implications for therapy. Am J Psychiatry 151: 1105–1113

    PubMed  CAS  Google Scholar 

  • Akama KT, Albanese C, Pestell RG, Van Eldik LJ (1998) Amyloid I3-peptide stimulates nitric oxide production in astrocytes through an NFKB-dependent mechanism. Proc Natl Acad Sci USA 95: 5795–5800

    Article  PubMed  CAS  Google Scholar 

  • Bengzon J, Kokaia Z, Elmer E, Nanobashvili A, Kokaia M, Lindvall O (1997) Apoptosis and proliferation of denate gyrus neurons after single and intermittent limbic seizures. Proc Natl Acad Sci USA 94: 10432–10437

    Article  PubMed  CAS  Google Scholar 

  • Bernard C, Wheal HV (1995) Plasticity of AMPA and NMDA receptor-mediated epileptiform activity in a chronic model of temporal lobe epilepsy. Epilepsy Res 21: 95–107

    Article  PubMed  CAS  Google Scholar 

  • Bhat NR, Zhang P, Lee JC, Hogan EL (1998) Extracellular signal-regulated kinase and p38 subgroups of mitogen-activated protein kinases regulate inducible nitric oxide synthase and tumor necrosis factor a gene expression in endotoxin-stimulated primary glial cultures. J Neurosci 18: 1633–1641

    PubMed  CAS  Google Scholar 

  • Bianca VD, Dusi S, Bianchini E, Dal Pras I, Rossi F (1999) Ăź-Amyloid activates the 02 forming NADPH oxidase in microglia, monocytes, and neutrophils. J Biol Chem 274: 15493–15499

    Article  PubMed  CAS  Google Scholar 

  • Bing G, Wilson B, Hudson P, Jin L, Feng Z, Zhang W, Bing R, Jau-Shyong H (1997) A single dose of kainic acid elevates the levels of enkephalins and activator protein-1 transcription factors in the hippocampus for up to one year. Proc Natl Acad Sci USA 94: 9422–9427

    Article  PubMed  CAS  Google Scholar 

  • Bolli R, Patel BS, Jeroudi MO, Lai EK, McCay PB (1988) Demonstration of free radical generation on “stunned” myocardium of intact dogs with the use of the spin trap a-phenyl N-tert-butyl nitrone. J Clin Invest 82: 476–485

    Article  PubMed  CAS  Google Scholar 

  • Busciglio J, Yankner BA (1995) Apoptosis and increased generation of reactive oxygen species in Down’s syndrome neurons in vitro. Nature 378: 776–779

    Article  PubMed  CAS  Google Scholar 

  • Butterfield DA, Howard BJ, Yatin S, Allen KL, Carney JM (1997) Free radical oxidation of brain proteins in accelerated senescence and its modulation by N-tert-butyl-aphenylnitrone. Proc Natl Acad Sci USA 94: 674–678

    Article  PubMed  CAS  Google Scholar 

  • Cao W, Carney JM, Duchon A, Floyd RA, Chevion M (1988) Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 88: 233–238

    Article  PubMed  CAS  Google Scholar 

  • Carney JM, Starke-Reed PE, Oliver CN, Landum RW, Cheng MS, Wu JF, Floyd RA (1991) Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound, N-tert-butyl-a-phenylnitrone. Proc Natl Acad Sci USA 88: 3633–3636

    Article  PubMed  CAS  Google Scholar 

  • Carney JM, Tatsuno T, Floyd RA (1992) The role of oxygen radicals in ischemic brain damage: Free radical production, protein oxidation and tissue dysfunction. In: Krieglstein V, Oberpichler-Schwenk H (eds) Pharmacology of cerebral ischemia. Wissenschaftliche Verlagsgesellschaft, Stuttgart, 321–331

    Google Scholar 

  • Carney JM, Kindy MS, Smith CD, Wood K, Tatsuno T, Wu JF, Landrum WR, Floyd RA (1994) Cerebral ischemia and basic mechanisms. Gene expression and functional changes after acute ischemia: Age-related differences in outcome and mechanisms. In : Yatsu F, Kuschinsky W (eds) Cerebral ischemia and basic mechanisms. Springer, Berlin Heidelberg New York Tokyo, 301–311

    Chapter  Google Scholar 

  • Chen G, Bray TM, Janzen EG, McCay PB (1990) Excretion, metabolism and tissue distribution of a spin trapping agent, a-phenyl-N-tert-butyl-nitrone (PBN) in rats. Free Radic Res Commun 9: 317–323

    Article  PubMed  CAS  Google Scholar 

  • Cheng H-Y, Liu T, Feuerstein G, Barone FC (1993) Distribution of spin-trapping corn-pounds in rat blood and brain: In vivo microdialysis determination. Free Radic Biol Med 14: 243–250

    Article  PubMed  CAS  Google Scholar 

  • Cheung NS, Carroll FY, Larm JA, Beart PM, Giardina SF (1998) Kainate-induced apoptosis correlates with c-Jun activation in cultured cerebellar granule cells. J Neurosci Res 52: 69–82

    Article  PubMed  CAS  Google Scholar 

  • Clough-Helfman C, Phillis JW (1991) The free radical trapping agent N-tert-butyl-aphenylnitrone (PBN) attenuates cerebral ischaemic injury in gerbils. Free Radic Res Commun 15: 177–186

    Article  PubMed  CAS  Google Scholar 

  • Colton CA, Gilbert DL (1987) Production of superoxide anions by a CNS macrophage, the microglia. Fed Eur Biochem Soc 223: 284–288

    Article  CAS  Google Scholar 

  • Cotman CW, Tenner AJ, Cummings BJ (1996) Ăź-Amyloid converts an acute phase injury response to chronic injury responses. Neurobiol Aging 17: 723–731

    Article  PubMed  CAS  Google Scholar 

  • Cronin J, Obenaus A, Houser CR, Dudek FE (1992) Electrophysiology of dentate granule cells after kainate-induced synaptic reorganization of the mossy fibers. Brain Res 573: 305–310

    Article  PubMed  CAS  Google Scholar 

  • Da Silva J, Pierrat B, Mary J-L, Lesslauer W (1997) Blockade of p38 mitogen-activated protein kinase pathway inhibits inducible nitric-oxide synthase expression in mouse astrocytes. J Biol Chem 272: 28373–28380

    Article  PubMed  CAS  Google Scholar 

  • Dawson VL, Dawson TM (1996) Pathologic roles of nitric oxide in the central nervous system. Free Radic Brain Physiol Disord: 83–86

    Google Scholar 

  • Dawson VL, Dawson TM, Bartley DA, Uhl GR, Snyder SH (1993) Mechanisms of nitric oxide-mediated neurotoxicity in primary brain cultures. J Neurosci 13: 2651–2661

    PubMed  CAS  Google Scholar 

  • Dubey A, Forster MJ, Sohal RS (1995) Effect of spin-trapping compound N-tert-butyl-aphenylnitrone on protein oxidation and life span. Arch Biochem Biophys 324: 249–254

    Article  PubMed  CAS  Google Scholar 

  • Dubey A, Forster MJ, Sohal RS (1996) Effect of age and caloric intake on protein oxidation in different brain regions and on behavioral functions of the mouse. Arch Biochem Biophys 333: 189–197

    Article  PubMed  CAS  Google Scholar 

  • Edamatsu R, Mori A, Packer L (1995) The spin-trap N-tert-a-phenyl-butylnitrone prolongs the life span of the senescence accelerated mouse. Biochem Biophys Res Commun 211: 847–849

    Article  PubMed  CAS  Google Scholar 

  • Eikelenboom P, Veerhuis R (1996) The role of complement and activated microglia in the pathogenesis of Alzheimer’s disease. Neurobiol Aging 17: 673–680

    Article  PubMed  CAS  Google Scholar 

  • Eikelenboom P, Rozemuller JM, van Muiswinkel FL (1998) Inflammation and Alzheimer’s disease: relationships between pathogenic mechanisms and clinical expression. Exp Neurol 154: 89–98

    Article  PubMed  CAS  Google Scholar 

  • Endoh H, Fujii S, Suzuki Y, Sato S, Kayama T, Kotake Y, Yoshimura T (1999) Spin trapping agent, phenyl N-tert-butyl nitrone reduces the nitric oxide production in the rat brain of bacterial meningitis model. unknown

    Google Scholar 

  • Finch CE, Marchalonis JJ (1996) Evolutionary perspectives on amyloid nd inflammatory features of Alzheimer’s disease. Neurobiol Aging 17: 809–815

    Article  PubMed  CAS  Google Scholar 

  • Finch CE, Morgan DG (1990) RNA and protein metabolism in the aging brain. Annu Rev Neurosci 13: 75–88

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4: 2587–2597

    PubMed  CAS  Google Scholar 

  • Floyd RA (1997) Protective action of nitrone based free radical traps against oxidative damage of the central nervous system. In: Sies H (ed) Advances in pharmacology. Academic Press, San Diego, 361–378

    Google Scholar 

  • Floyd RA (1999a) Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radic Biol Med 26: 1346–1355

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA (1999b) Antioxidants, oxidative stress, and degenerative neurological disorders. Proc Soc Exp Biol Med 222: 236–245

    Article  PubMed  CAS  Google Scholar 

  • Floyd RA, Carney JM (1996) Nitrone radical traps protect in experimental neurodegenerative diseases. In: Chapman CA, Olanow CW, Jenner P, Youssim M (eds) Neuroprotective approaches to the treatment of Parkinson’s disease and other neurodegenerative disorders. Academic Press, London, 69–90

    Google Scholar 

  • Forster MJ, Dubey A, Dawson KM, Stutts WA, Lal H, Sohal RS (1996) Age-related losses of cognitive function and motor skills in mice are associated with oxidative protein damage in the brain. Proc Natl Acad Sci USA 93: 4765–4769

    Article  PubMed  CAS  Google Scholar 

  • Gordon MN, Schreier WA, Ou X, Holcomb LA, Morgan DG (1997) Exaggerated astrocyte reactivity after nigrostriatal deafferentation in the aged rat. J Comp Neur 388: 106–119

    Article  PubMed  CAS  Google Scholar 

  • Guyton KZ, Liu Y, Gorospe M, Xu Q, Holbrook NJ (1996) Activation of mitogenactivated protein kinase by H2O2: Role in cell survival following oxidant injury. J Biol Chem 271: 4138–4142

    Article  PubMed  CAS  Google Scholar 

  • Hensley K, Carney JM, Mattson M, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA (1994) A model for Ăź-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: Relevance to Alzheimer disease. Proc Natl Acad Sci USA 91: 3270–3274

    Article  PubMed  CAS  Google Scholar 

  • Hensley K, Pye Q, Tabatabaie T, Stewart CA, Floyd RA (1996) Reactive oxygen involvement in neurodegenerative pathways: Causes, consequences, and potential management with nitrone-based free radical traps. In: Wood PL (ed) Inflammatory mechanisms and its management. Humana Press, Charlestown

    Google Scholar 

  • Hensley K, Carney JM, Stewart CA, Tabatabaie T, Pye QN, Floyd RA (1997) Nitronebased free radical traps as neuroprotective agents in cerebral ischemia and other pathologies. In: Green AR, Cross AJ (eds) Neuroprotective agents and cerebral ischemia. Academic Press, London, 299–317

    Google Scholar 

  • Hensley K, Maidt ML, Yu Z, Markesbery WR, Floyd RA (1998) Electrochemical analysis of protein nitrotyrosine and dityrosine in the Alzheimer brain indicates region-specific accumulation. J Neurosci 18: 8126–8132

    PubMed  CAS  Google Scholar 

  • Hensley K, Floyd RA, Zheng N-Y, Nael R, Robinson KA, Nguyen X, Pye QN, Stewart CA, Geddes J, Markesbery WR, Patel E, Johnson GVW, Bing G (1999) p38 Kinase is activated in the Alzheimer’s disease brain. J Neurochem 72: 2053–2058

    Article  PubMed  CAS  Google Scholar 

  • Hsu SM, Raine L, Fanger HJ (1981) Use of avidin-biotin-peroxidase complex (ABC) in immunoperoxidase techniques: A comparison between ABC and unlabelled antibody (PAP) procedures. Histochem Cytochem 29: 480–577

    Google Scholar 

  • Huang X, Atwood CS, Hartshorn MA, Multhaup G, Scarpace PJ, Scarpa RC, Cuajungco MP, Gray DN, Lim J, Moir RD, Tanzi RE, Bush AI (1999) The AĂź peptide of Alzheimer’s disease directly produces hydrogen peroxide through metal ion reduction. Biochem 38: 7609–7616

    Article  CAS  Google Scholar 

  • Huot J, Houle F, Marceau F, Landry J (1997) Oxidative stress-induced actin reorganization mediated by the p38 mitogen-activated protein kinase/heat shock protein 27 pathyway in vascular edothelial cells. Circul Res 80: 383–392

    Article  CAS  Google Scholar 

  • Iadecola C, Zhang F, Xu S, Casey R, Ross ME (1995a) Inducible nitric oxide synthase gene expression in brain following cerebral ischemia. J Cereb Blood Flow Metab 15: 378–384

    Article  PubMed  CAS  Google Scholar 

  • Iadecola C, Zhang F, Xu X (1995b) Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol 268: R286–R292

    PubMed  CAS  Google Scholar 

  • Janzen EG, Blackburn BJ (1969) Detection and identification of short-lived free radicals by electron spin resonance trapping techniques (spin trapping). Photolysis of organolead, -tin, and -mercury compounds. J Am Chem Soc 91: 4481–4490

    Article  CAS  Google Scholar 

  • Janzen EG, West MS, Poyer JL (1994) Comparison of antioxidant activity of PBN with hindered phenols in initiated rat liver microsomal lipid peroxidation. In: Asada K, Toshikawa T (eds) Frontiers of reactive oxygen species in biology and medicine. Elsevier

    Google Scholar 

  • Kawasaki H, Morooka T, Shimohama S, Kimura J, Hirano T, Gotoh Y, Nishida E (1997) Activation and involvement of p38 mitogen-activated protein kinase in glutamate-induced apoptosis in rat cerebellar granule cells. J Biol Chem 272: 18518–18521

    Article  PubMed  CAS  Google Scholar 

  • Kotake Y, Sang H, Miyajima T, Wallis GL (1998) Inhibition of NF-KB, iNOS mRNA, COX2 mRNA, and COX catalytic activity by phenyl-N-tert-butylnitrone (PBN). Biochem Biophys Acta 1448: 77–84

    Article  PubMed  CAS  Google Scholar 

  • Kummer JL, Rao PK, Heidenreich KA (1997) Apoptosis induced by withdrawal of trophic factors is mediated by p38 mitogen-activated protein kinase. J Biol Chem 272: 20490–20494

    Article  PubMed  CAS  Google Scholar 

  • Kuroda S, Tsuchidate R, Smith M-L, Maples KR, Siesjo BK (1999) Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 19: 778–787

    Article  PubMed  CAS  Google Scholar 

  • Lafon-Cazal M, Pietri S, Culcasi M, Bockaert J (1993) NMDA-dependent superoxide production and neurotoxicity. Nature 364: 535–537

    Article  PubMed  CAS  Google Scholar 

  • Lai EK, McCay PB, Noguchi T, Fong K-L (1979) In vivo spin-trapping of trichloromethyl radicals formed from CC14. Biochem Pharmacol 28: 2231–2235

    Article  PubMed  CAS  Google Scholar 

  • Lai EK, Crossley C, Sridhar R, Misra HP, Janzen EG, McCay PB (1986) In vivo spin trapping of free radicals generated in brain, spleen, and liver during gamma radiation of mice. Arch Biochem Biophys 244: 156–160

    Article  PubMed  CAS  Google Scholar 

  • Lipton SA, Choi Y-B, Pan Z-H, Lei SZ, Chen H-S V, Sucher NJ, Loscalzo J, Singel DJ, Stamler JS (1993) A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso-compounds. Nature 364: 626–632

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Itagaki S, Tago H, McGreer EG (1987) Reactive microglia in patients with senile dementia of the Alzheimer’s type are positive for the histocompatability of glycoprotein HLA-DR. Neurosci Lett 79: 195–200

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Akiyama H, Itagaki S, McGreer EG (1989a) Immune system response in Alzheimer’s disease. Can J Neurol Sci 16: 516–527

    PubMed  CAS  Google Scholar 

  • McGeer PL, Akiyama H, Itagaki S, McGreer EG (1989b) Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett 107: 341–346

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, McGreer E, Rogers J, Sibley J (1990) Anti-inflammatory drugs and Alzheimer disease. Lancet 335 8696: 1037

    Article  PubMed  CAS  Google Scholar 

  • McGeer PL, Schulzer M, McGreer EG (1996) Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47: 425–432

    Article  PubMed  CAS  Google Scholar 

  • Mason GG, Rivett AJ (1994) Proteasomes: the changing face of proteolysis. Chem Biol 4: 197–199

    Article  Google Scholar 

  • Markesbery WR (1997) Oxidative stress hypothesis in Alzheimer’s disease. Free Radic Biol Med 23: 134–147

    Article  PubMed  CAS  Google Scholar 

  • Mathis C, Ungerer A (1992) Comparative analysis of seizures induced by intracerebroventricular administration of NMDA, kainate and quisqualate in mice. Exp Brain Res 88: 277–282

    Article  PubMed  CAS  Google Scholar 

  • Mattson MP, Goodman Y, Luo H, Fu W, Furukawa K (1997) Activation of NFIcB protects hippocampal neurons against oxidative stress-induced apoptosis: Evidence for induction of manganese superoxide dismutase and suppression of peroxinitrite production and protein nitration. J Neurosci Res 49: 681–697

    Article  PubMed  CAS  Google Scholar 

  • Miyajima T, Kotake Y (1995) Spin trapping agent, phenyl N-tert-butyl nitrone, inhibits induction of nitric oxide synthase in endotoxin-induced shock in mice. Biochem Biophys Res Commun 215: 114–121

    Article  PubMed  CAS  Google Scholar 

  • Monti E, Cova D, Guido E, Morelli R, Oliva C (1996) Protective effect of the nitroxide tempol against the cardiotoxicity of adriamycin. Free Radic Biol Med 21: 463–470

    Article  Google Scholar 

  • Morgan TE, Xie Z, Goldsmith S, Yoshida T, Lanzrein A-S, Stone D, Rozovsky I, Perry G, Smith MA, Finch CE (1999) The mosaic of brain glial hyperactivity during normal ageing and its attenuation by food restriction. Neurosci 89: 687–699

    Article  CAS  Google Scholar 

  • Oliver CN, Fulks RM, Levine RL, Fucci L, Rivett, Roseman JE, Stadtman ER (1984) Oxidative inactivation of key metabolic enzymes during aging. In: Roy AK, Choitterjee B (eds) Molecular basis of aging. Academic Press, New York, 237–254

    Google Scholar 

  • Oliver CN, Starke-Reed PE, Stadtman ER, Liu GJ, Carney JM, Floyd RA (1990) Oxidative damage to brain proteins, loss of glutamine synthetase activity, and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc Natl Acad Sci USA 87: 5144–5147

    Article  PubMed  CAS  Google Scholar 

  • Pasinetti GM (1996) Inflammatory mechanisms in neurodegeneration and Alzheimer’s Disease: the role of the complement system. Neurobiol Aging 17: 707–716

    Article  PubMed  CAS  Google Scholar 

  • Phillis JW, Clough-Helfman C (1990a) Free Radicals and ischaemic brain injury: protec-tion by the spin trap agent PBN. Med Sci Res 18: 403–404

    CAS  Google Scholar 

  • Phillis JW, Clough-Helfman C (1990b) Protection from cerebral ischemic injury in gerbils with the spin trap agent N-tert-butyl-a-phenylnitrone (PBN). Neurosci Lett 116: 315–319

    Article  PubMed  CAS  Google Scholar 

  • Pisa M, Sanberg PR, Corcoran ME, Fibiger HC (1980) Spontaneously recurrent seizures after intracerebral injections of kainic acid in rat: A possible model of human temporal lobe epilepsy. Brain Res 200: 481–487

    Article  PubMed  CAS  Google Scholar 

  • Poyer JL, Floyd RA, McCay PB, Janzen EG, Davis ER (1978) Spin trapping of the trichloromethyl radical produced during enzymic NADPH oxidation in the presence of carbon tetrachloride or carbon bromotrichloromethane. Biochim Biophys Acta 539: 402–409

    Article  PubMed  CAS  Google Scholar 

  • Poyer JL, McCay PB, Lai EK, Janzen EG, Davis ER (1980) Confirmation of assignment of the trichloromethyl radical spin adduct detected by spin trapping during 13c-carbon tetrachloride metabolism in vitro and in vivo. Biochem Biophys Res Commun 94: 1154–1160

    Article  PubMed  CAS  Google Scholar 

  • Qin ZH, Wang Y, Nakai M, Chase TN (1998) Nuclear factor-kappa B contributes to excitotoxin-induced apoptosis in rat striatum. Mol Pharmacol 53: 33–42

    PubMed  CAS  Google Scholar 

  • Racine R, Okujava V, Chipashvili S (1972) Modification of seizure activity by electrical stimulation 3. Mechanisms Electroencephalogr Clin Neurophysiol 32: 295–299

    Article  CAS  Google Scholar 

  • Raingeaud J, Gupta S, Rogers JS, Martin D, Han J, Ulevitch RJ, Davis RJ (1995) Proinflammatory cytokines and environmental stress cause p38 mitogen-activated protein kinase activation by dual phosphorylation on tyrosine and threonine. J Biol Chem 270: 7420–7426

    Article  PubMed  CAS  Google Scholar 

  • Rice N, Ernst MK (1993) In vivo control of NFKB activation by IxBa. EMBO J 12: 4685–4695

    PubMed  CAS  Google Scholar 

  • Ridley SH, Sarsfield SJ, Lee JC, Bigg HF, Cawston TE, Taylor DJ, DeWitt DL, Saklatvala J (1997) Actions of IL-1 are selectively controlled by p38 mitogenactivated protein kinase. Am Assoc Immunologists 158: 3165–3173

    CAS  Google Scholar 

  • Rivett AJ (1985) Purificatoin of a liver alkaline protease which degrades oxidatively modified glutamine synthetase. Characterization as a high molecular weight cysteine proteinase. J Biol Chem 260: 12600–12606

    PubMed  CAS  Google Scholar 

  • Rivett AJ (1989) The multicatalytic proteinase of mammalian cells. Arch Biochem Biophys 268: 1–8

    Article  PubMed  CAS  Google Scholar 

  • Robinson KA, Stewart CA, Pye QN, Nguyen X, Kenney L, Salzman S, Floyd RA, Hensley K (1999a) Redox sensitive protein phosphatase activity regulates the phosphorylation state of p38 protein kinase in primary astrocyte culture. J Neurosci Res 55: 724–732

    Article  PubMed  CAS  Google Scholar 

  • Robinson KA, Stewart CA, Pye QN, Floyd RA, Hensley K (1999b) Basal protein phosphorylation is decreased and phosphatase activity increased by an antioxidant and a free radical trap in primary rat glia. Arch Biochem Biophys 365: 211–215

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, O’Barr S (1997) Chapter 11: Inflammatory mediators in Alzheimer’s disease. In: Wasco W, Tanzi RE (eds) Molecular mechanisms of dementia. Humana Press, Charlestown, 1997, pp 177–198

    Google Scholar 

  • Rogers J, Cooper NR, Webster S, Schultz J, McGreer PL, Styren SD, Civin WH, Brachova L, Bradt B, Ward P, Lieberburg I (1992) Complement activation by aamyloid in Alzheimer disease. Proc Natl Acad Sci USA 89: 10016–10020

    Article  PubMed  CAS  Google Scholar 

  • Rogers J, Webster S, Lue L-F, Brachova L, Civin WH, Emmerling M, Shivers B, Walker D, McGreer P (1996) Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 17: 681–686

    Article  PubMed  CAS  Google Scholar 

  • Rozovsky I, Finch CE, Morgan TE (1998) Age-related activation of microglia and astrocytes: in vitro studies show persistent phenotypes of aging, increased proliferation, and resistance to down-regulation. Neurobiol Aging 19: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Sack CA, Socci DJ, Crandall BM, Arendash GW (1996) Antioxidant treatment with phenyl-a-tert-butyl nitrone (PBN) improves the cognitive performance and survival of aging rats. Neurosci Lett 205: 181–184

    Article  PubMed  CAS  Google Scholar 

  • Saito K, Yoshioka H, Cutler RG (1998) A spin trap, N-tert-butyl-a-phenylnitrone extends the life span of mice. Biosci Biotechnol Biochem 62: 792–794

    Article  PubMed  CAS  Google Scholar 

  • Schulz JB, Henshaw DR, Siwek D, Jenkins BG, Ferrante RJ, Cipolloni PB, Kowall NW, Rosen BR, Beal MF (1995) Involvement of free radicals in excitotoxicity in vivo. J Neurochem 64: 2239–2247

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Osthoff K, Ferrari D, Riehemann K, Wesselborg S (1997) Regulation of NF-kappa B activation by MAP kinase cascades. Immunobiology 198: 35–49

    Article  PubMed  CAS  Google Scholar 

  • Schwenger P, Bellosta P, Vietor I, Basilico C, Skolnik EY, Vilcek J (1997) Sodium salicylate induces apoptosis via p38 mitogen-activated protein kinase but inhibits tumor necrosis factor-induced c-Jun N-terminal kinase/stress-activated protein kinase activation. Proc Natl Acad Sci USA 94: 2869–2873

    Article  PubMed  CAS  Google Scholar 

  • Schwob JE, Fuller T, Price JL, Olney JW (1980) Widespread patterns of neuronal damage following systemic or intracerebral injections of kaiinic acid: A histological study. Neuroscience 5: 991–1014

    Article  PubMed  CAS  Google Scholar 

  • Simonian NA, Getz RI, Leveque JC, Konradi C, Coyle JT (1996) Kainic acid induces apoptosis in neurons. Neuroscience 75: 1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Slater AFG, Nobel CS, Maellaro E, Bustamante J, Kimland M, Orrhenius S (1995) Nitrone spin traps and a nitroxide antioxidant inhibit a common pathway of thymocyte apoptosis. Biochem J 306: 771–779

    PubMed  CAS  Google Scholar 

  • Smith CD, Carney JM, Starke-Reed PE, Oliver CN, Stadtman ER, Floyd RA, Markesbery WR (1991) Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer’s disease. Proc Natl Acad Sci USA 88: 10540–10543

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996) Oxidative damage in Alzheimer’s. Nature 382: 120–121

    Article  PubMed  CAS  Google Scholar 

  • Smith MA, Harris PLR, Sayre LM, Beckman JS, Perry G (1997) Widespread peroxynitrite-mediated damage in Alzheimer’s disease. J Neurosci 17(8): 2653–2657

    PubMed  CAS  Google Scholar 

  • Socci DJ, Crandall BM, Arendash GW (1995) Chronic antioxidant treatment improves the cognitive performance of aged rats. Brain Res 693: 88–94

    Article  PubMed  CAS  Google Scholar 

  • Sommer W (1880) Erkrankung des Ammonshorns als aetiologisches Moment der Epilepsie Arch Psychiatr Nervenkrankh 10: 631–675

    Google Scholar 

  • Sonnenberg J, MacGregor-Leon P, Curran T, Morgan J (1989) Dynamic alterations occur in the levels and composition of transcription factor AP-1 complexes after seizure. Neuron 3: 359–365

    Article  PubMed  CAS  Google Scholar 

  • Sperk G, Lassmann H, Baran H, Seitelberger F, Hornykiewicz O (1996) Kainic acid-induced seizures: Dose-relationship of behavioral, neurochemical and histopathological changes. Brain Res 338: 289–295

    Article  Google Scholar 

  • Stadtman ER (1992) Protein oxidation and aging. Science 257: 1220–1224

    Article  PubMed  CAS  Google Scholar 

  • Stewart CA, Hyam K, Wallis G, Sang H, Robinson KA, Floyd RA, Kotake K, Hensley K (1999) Phenyl-N-tert-butylnitrone demonstrates broad-spectrum inhibition of apoptosis-associated gene expression in endotoxin-treated rats. Arch Biochem Biophys 365: 71–74

    Article  PubMed  CAS  Google Scholar 

  • Suzuki YJ, Mizuno M, Packer L (1994) Signal transduction for nuclear factor-KB activetion: Proposed location of antioxidant-inhibitable step. J Immunol 153: 5008–5015

    PubMed  CAS  Google Scholar 

  • Suzuki YJ, Forman HJ, Sevanian A (1997) Oxidants as stimulators of signal transduction. Free Radic Biol Med 22: 269–285

    Article  PubMed  CAS  Google Scholar 

  • Tabatabaie T, Stewart C, Pye Q, Kotake Y, Floyd RA (1996) In vivo trapping of nitric oxide in the brain of neonatal rats treated with the HIV-1 envelope protein gp 120: Protective effects of a-phenyl-tert-butylnitrone. Biochem Biophys Res Commun 221: 386–390

    Article  PubMed  CAS  Google Scholar 

  • Tan J, Town T, Paris D, Mori T, Suo Z, Crawford F, Mattson MP, Flavell RA, Mullan M (1999) Microglial activation resulting from CD40–CD40L interaction after [3-amyloid stimulation. Science 286: CD40–CD40

    Article  PubMed  CAS  Google Scholar 

  • Tooyama I, Kimura H, Akiyama H, McGreer PL (1990) Reactive microglia express class I and class II major histocompatibility complex antigens in Alzheimer’s disease. Brain Res 523: 273–280

    Article  PubMed  CAS  Google Scholar 

  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR, Verma IM (1996) Suppression of TNFa-induced apoptosis by NFKB. Science 274: 787–789

    Article  PubMed  CAS  Google Scholar 

  • Vanden Berghe W, Plaisance S, Boone E, De Bosscher K, Schmitz ML, Fiers W, Haegeman G (1998) p38 and extracellular signal-regulated kinase mitogen-activated protein kinase pathways are required for nuclear factor-kappa B p65 transactivation mediated by tumor necrosis factor. J Biol Chem 273: 3285–3290

    Article  PubMed  CAS  Google Scholar 

  • Walton KM, DiRocco R, Bartlett BA, Koury E, Marcy VR, Jarvis B, Schaefer EM, Bhat RV (1998) Activation of p38MAPK in microglia after ischemia. J Neurochem 70: 1764–1767

    Article  PubMed  CAS  Google Scholar 

  • Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldrin AS (1998) NF-KB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683

    Article  PubMed  CAS  Google Scholar 

  • White AR, Multhaup G, Maher F, Bellingham S, Camakaris J, Zheng H, Bush AI, Beyreuther K, Masters CL, Cappai R (1999) The Alzheimer’s disease amyloid precursor protein modulates copper-induced toxicity and oxidative stress in primary neuronal cultures. J Neurosci 19: 9170–9179

    PubMed  CAS  Google Scholar 

  • Xia Z, Dickens M, Raingeaud J, Davis RJ, Greenberg ME (1995) Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 270: 1326–1331

    Article  PubMed  CAS  Google Scholar 

  • Yang DD, Kuan CY, Whitmarsh AJ, Rincon M, Zheng TS, Davis RJ, Rakie P, Flavell RA (1997) Absence of excitotoxicity-induced apoptosis in the hippocampus of mice lacking the Jnk 3 gene. Nature 389: 865–870

    Article  PubMed  CAS  Google Scholar 

  • Zhao Q, Pahlmark K, Smith M-I, Siesjo BK (1994) Delayed treatment with the spin trap a-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol Scand 152: 349–350

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Floyd, R.A., Hensley, K., Bing, G. (2000). Evidence for enhanced neuro-inflammatory processes in neurodegenerative diseases and the action of nitrones as potential therapeutics. In: Riederer, P., et al. Advances in Research on Neurodegeneration. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6301-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6301-6_28

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83537-1

  • Online ISBN: 978-3-7091-6301-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics