Neurotrophic effects of central nicotinic receptor activation

  • N. Belluardo
  • G. Mudo
  • M. Blum
  • G. Amato
  • K. Fuxe
Conference paper


A growing number of data have shown that compounds interacting with neuronal nicotinic acetylcholine receptors (nAChRs) have, both in vivo and in vitro, the potential to be neuroprotective and that treatment with nAChR agonists elicit long-lasting improvement of cognitive performance in a variety of behavioural tests in rats, monkeys and humans. Epidemiological and clinical studies suggested also a potential neuroprotective/trophic role of (—)-nicotine in neurodegenerative disease, such as Alzheimer’s disease and Parkinson’s disease. This neuroprotective/trophic role of nAChR activation has been mainly mediated by a7 and a4ß2 nAChR subtypes, as evidenced using selective nAChR antagonists, and by potent nAChR agonists recently found displaying efficacy and/or larger selective affinities than (—)-nicotine for neuronal nAChR subtypes. A neurotrophic factor gene regulation by nAChR signalling has been taken into consideration as a possible mechanism involved in neuroprotective/trophic effects of nAChR activation and has given evidence that the fibroblast growth factor (FGF-2) gene is a target for nAChR signalling. These findings suggested that FGF-2 could be involved, in view of its neurotrophic functions, in nAChR mechanisms mediating neuronal survival, trophism and plasticity.


Basic Fibroblast Growth Factor Nicotine Treatment Neurotrophic Effect nAChR Subtype Neuronal Nicotinic Acetylcholine Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akaike A, Tamura Y, Yokota T, Shimohama S, Kimura J (1994) Nicotine-induced protection of cultured cortical neurons against N-methyl-D-aspartate receptor-mediated glutamate cytotoxicity. Brain Res 644: 181–187PubMedCrossRefGoogle Scholar
  2. Anderson KJ, Dam D, Lee S, Cotman CW (1988) Basic fibroblast growth factor prevents death of lesioned cholinergic neurons in vivo. Nature 332: 360–361PubMedCrossRefGoogle Scholar
  3. Arendash GW, Sengstock GJ, Sanberg PR, Kern WR (1995) Improved learning and memory in aged rats with chronic administration of the nicotinic receptor agonist GTS-21. Brain Res 674: 252–259PubMedCrossRefGoogle Scholar
  4. Arias HR (1997) Topology of ligand binding sites on the nicotinic acetylcholine receptor. Brain Res Brain Res Rev 25: 133–191PubMedCrossRefGoogle Scholar
  5. Arneric SP, Sullivan JP, Briggs CA, Donnelly-Roberts D, Anderson DJ, Raszkiewicz JL, Hughes ML, Cadman ED, Adams P, Garvey DS, et al (1994) (S)-3-methyl-5(1-methyl-2-pyrrolidinyl) isoxazole (ABT 418): a novel cholinergic ligand with cognition-enhancing and anxiolytic activities: I. In vitro characterization. J Pharmacol Exp Ther 270: 310–318PubMedGoogle Scholar
  6. Badio B, Daly JW (1994) Epibatidine, a potent analgetic and nicotinic agonist. Mol Pharmacol 45: 563–569PubMedGoogle Scholar
  7. Baird A (1994) Fibroblast growth factors: activities and significance of non-neurotrophin neurotrophic growth factors. Curr Opin Neurobiol 4: 78–86PubMedCrossRefGoogle Scholar
  8. Bannon AW, Decker MW, Holladay MW, Curzon P, Donnelly-Roberts D, Puttfarcken PS, Bitner RS, Diaz A, Dickenson AH, Porsolt RD, Williams M, Arneric SP (1998) Broad-spectrum, non-opioid analgesic activity by selective modulation of neuronal nicotinic acetylcholine receptors. Science 279: 77–81PubMedCrossRefGoogle Scholar
  9. Baron JA (1986) Cigarette smoking and Parkinson’s disease. Neurology 36: 1490–1496PubMedCrossRefGoogle Scholar
  10. Baumann RJ, Jameson HD, McKean HE, Haack DG, Weisberg LM (1980) Cigarette smoking and Parkinson disease: 1. Comparison of cases with matched neighbors. Neurology 30: 839–843PubMedCrossRefGoogle Scholar
  11. Belluardo N, Wu G, Mudo G, Hansson AC, Pettersson R, Fuxe K (1997) Comparative localization of fibroblast growth factor receptor-1, -2, and -3 mRNAs in the rat brain: in situ hybridization analysis. J Comp Neurol 379: 226–246PubMedCrossRefGoogle Scholar
  12. Belluardo N, Blum M, Mudo G, Andbjer B, Fuxe K (1998) Acute intermittent nicotine treatment produces regional increases of basic fibroblast growth factor messenger RNA and protein in the tel-and diencephalon of the rat. Neuroscience 83: 723–740PubMedCrossRefGoogle Scholar
  13. Belluardo N, Mudo G, Blum M, Cheng Q, Caniglia G, Dell’Albani P, Fuxe K (1999a) The nicotinic acetylcholine receptor agonist (+/—)-epibatidine increases FGF-2 mRNA and protein levels in the rat brain [In Process Citation]. Brain Res Mol Brain Res 74: 98–110PubMedCrossRefGoogle Scholar
  14. Belluardo N, Mudo G, Caniglia G, Cheng Q, Fuxe K (1999b) The nicotinic acetylcholine receptor agonist ABT-594 increases FGF-2 expression in various rat brain regions. Neuroreport 10: 3909–3913PubMedCrossRefGoogle Scholar
  15. Bencherif M, Schmitt JD, Bhatti BS, Crooks P, Caldwell WS, Lovette ME, Fowler K, Reeves L, Lippiello PM (1998) The heterocyclic substituted pyridine derivative (+/ —)-2-(-3-pyridinyl)-1-azabicyclo[2.2.2]octane (RJR-2429): a selective ligand at nicotinic acetylcholine receptors. J Pharmacol Exp Ther 284: 886–894PubMedGoogle Scholar
  16. Blum M, Wu G, Mudo G, Belluardo N, Andersson K, Agnati LF, Fuxe K (1996) Chronic continuous infusion of (—)nicotine reduces basic fibroblast growth factor messenger RNA levels in the ventral midbrain of the intact but not of the 6-hydroxydopaminelesioned rat. Neuroscience 70: 169–177PubMedCrossRefGoogle Scholar
  17. Borlongan CV, Shytle RD, Ross SD, Shimizu T, Freeman TB, Cahill DW, Sanberg PR (1995) (—)-nicotine protects against systemic kainic acid-induced excitotoxic effects. Exp Neurol 136: 261–265PubMedCrossRefGoogle Scholar
  18. Briggs CA, McKenna DG, Piattoni-Kaplan M (1995) Human alpha 7 nicotinic acetylcholine receptor responses to novel ligands. Neuropharmacology 34: 583–590PubMedCrossRefGoogle Scholar
  19. Briggs CA, Anderson DJ, Brioni JD, Buccafusco JJ, Buckley MJ, Campbell JE, Decker MW, Donnelly-Roberts D, Elliott RL, Gopalakrishnan M, Holladay MW, Hui YH, Jackson WJ, Kim DJ, Marsh KC, O’Neill A, Prendergast MA, Ryther KB, Sullivan JP, Arneric SP (1997) Functional characterization of the novel neuronal nicotinic acetylcholine receptor ligand GTS-21 in vitro and in vivo. Pharmacol Biochem Behav 57: 231–241PubMedCrossRefGoogle Scholar
  20. Chadi G, Moller A, Rosen L, Janson AM, Agnati LA, Goldstein M, Ogren SO, Pettersson RF, Fuxe K (1993) Protective actions of human recombinant basic fibroblast growth factor on MPTP-lesioned nigrostriatal dopamine neurons after intraventricular infusion. Exp Brain Res 97: 145–158PubMedCrossRefGoogle Scholar
  21. Chadi G, Cao Y, Pettersson RF, Fuxe K (1994) Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61: 891–910PubMedCrossRefGoogle Scholar
  22. Cheng B, Mattson MP (1991) NGF and bFGF protect rat hippocampal and human cortical neurons against hypoglycemic damage by stabilizing calcium homeostasis. Neuron 7: 1031–1041PubMedCrossRefGoogle Scholar
  23. Conroy WG, Berg DK (1995) Neurons can maintain multiple classes of nicotinic acetylcholine receptors distinguished by different subunit compositions. J Biol Chem 270: 4424–4431PubMedCrossRefGoogle Scholar
  24. Cucina A, Corvino V, Sapienza P, Borrelli V, Lucarelli M, Scarpa S, Strom R, Santoro DAL, Cavallaro A (1999) Nicotine regulates basic fibroblastic growth factor and transforming growth factor betal production in endothelial cells. Biochem Biophys Res Commun 257: 306–312PubMedCrossRefGoogle Scholar
  25. Date I, Yoshimoto Y, Imaoka T, Miyoshi Y, Gohda Y, Furuta T, Asari S, Ohmoto T (1993) Enhanced recovery of the nigrostriatal dopaminergic system in MPTP-treated mice following intrastriatal injection of basic fibroblast growth factor in relation to aging. Brain Res 621: 150–154PubMedCrossRefGoogle Scholar
  26. Decker MW, Majchrzak MJ, Anderson DJ (1992) Effects of nicotine on spatial memory deficits in rats with septal lesions. Brain Res 572: 281–285PubMedCrossRefGoogle Scholar
  27. Decker MW, Brioni JD, Sullivan JP, Buckley MJ, Radek RJ, Raszkiewicz JL, Kang CH, Kim DJ, Giardina WJ, Wasicak JT, et al (1994a) (S)-3-methyl-5-(1-methyl2 pyrrolidinyl)isoxazole (ABT 418): a novel cholinergic ligand with cognition-enhancing and anxiolytic activities: II. In vivo characterization. J Pharmacol Exp Ther 270: 319–328PubMedGoogle Scholar
  28. Decker MW, Curzon P, Brioni JD, Arneric SP (1994b) Effects of ABT-418, a novel cholinergic channel ligand, on place learning in septal-lesioned rats. Eur J Pharmacol 261: 217–222PubMedCrossRefGoogle Scholar
  29. Decker MW, Brioni JD, Bannon AW, Arneric SP (1995) Diversity of neuronal nicotinic acetylcholine receptors: lessons from behavior and implications for CNS therapeutics. Life Sci 56: 545–570PubMedCrossRefGoogle Scholar
  30. Dionne CA, Crumley G, Bellot F, Kaplow JM, Searfoss G, Ruta M, Burgess WH, Jaye M, Schlessinger J (1990) Cloning and expression of two distinct high-affinity receptors cross-reacting with acidic and basic fibroblast growth factors. EMBO J 9: 2685–2692PubMedGoogle Scholar
  31. Donnelly-Roberts DL, Xue IC, Arneric SP, Sullivan JP (1996) In vitro neuroprotective properties of the novel cholinergic channel activator (ChCA), ABT-418. Brain Res 719: 36–44PubMedCrossRefGoogle Scholar
  32. Dono R, Texido G, Dussel R, Ehmke H, Zeller R (1998) Impaired cerebral cortex development and blood pressure regulation in FGF-2-deficient mice. EMBO J 17: 4213–4225PubMedCrossRefGoogle Scholar
  33. Ernfors P, Lonnerberg P, Ayer-LeLievre C, Persson H (1990) Developmental and regional expression of basic fibroblast growth factor mRNA in the rat central nervous system. J Neurosci Res 27: 10–15PubMedCrossRefGoogle Scholar
  34. Ferrari G, Minozzi MC, Toffano G, Leon A, Skaper SD (1989) Basic fibroblast growth factor promotes the survival and development of mesencephalic neurons in culture. Dev Biol 133: 140–147PubMedCrossRefGoogle Scholar
  35. Florkiewicz RZ, Sommer A (1989) Human basic fibroblast growth factor gene encodes four polypeptides: three initiate translation from non-AUG codons [published erra-turn appears in Proc Natl Acad Sci USA 1990 Mar;87(5):2045]. Proc Natl Acad Sci USA 86: 3978–3981PubMedCrossRefGoogle Scholar
  36. Freedman R, Wetmore C, Stromberg I, Leonard S, Olson L (1993) Alpha-bungarotoxin binding to hippocampal interneurons: immunocytochemical characterization and effects on growth factor expression. J Neurosci 13: 1965–1975PubMedGoogle Scholar
  37. Freese A, Finklestein SP, DiFiglia M (1992) Basic fibroblast growth factor protects striatal neurons in vitro from NMDA-receptor mediated excitotoxicity. Brain Res 575: 351–355PubMedCrossRefGoogle Scholar
  38. French SJ, Humby T, Homer CH, Sofroniew MV, Rattray M (1999) Hippocampal neurotrophin and trk receptor mRNA levels are altered by local administration of nicotine, carbachol and pilocarpine. Brain Res Mol Brain Res 67: 124–136PubMedCrossRefGoogle Scholar
  39. Fuxe K, Janson AM, Jansson A, Andersson K, Eneroth P, Agnati LF (1990) Chronic nicotine treatment increases dopamine levels and reduces dopamine utilization in substantia nigra and in surviving forebrain dopamine nerve terminal systems after a partial di-mesencephalic hemitransection. Naunyn Schmiedebergs Arch Pharmacol 341: 171–181PubMedCrossRefGoogle Scholar
  40. Fuxe K, Tinner B, Zoli M, Pettersson RF, Baird A, Biagini G, Chadi G, Agnati LF (1996) Computer-assisted mapping of basic fibroblast growth factor immunoreactive nerve cell populations in the rat brain. J Chem Neuroanat 11: 13–35PubMedCrossRefGoogle Scholar
  41. Gall CM, Berschauer R, Isackson PJ (1994) Seizures increase basic fibroblast growth factor mRNA in adult rat forebrain neurons and glia. Brain Res Mol Brain Res 21: 190–205PubMedCrossRefGoogle Scholar
  42. Gao ZG, Cui WY, Zhang HT, Liu CG (1998) Effects of nicotine on 1-methyl-4-phenyl1,2,5,6-tetrahydropyridine-induced depression of striatal dopamine content and spontaneous locomotor activity in C57 black mice. Pharmacol Res 38: 101–106PubMedCrossRefGoogle Scholar
  43. Gensburger C, Labourdette G, Sensenbrenner M (1987) Brain basic fibroblast growth factor stimulates the proliferation of rat neuronal precursor cells in vitro. FEBS Lett 217: 1–5PubMedCrossRefGoogle Scholar
  44. Gerzanich V, Peng X, Wang F, Wells G, Anand R, Fletcher S, Lindstrom J (1995) Comparative pharmacology of epibatidine: a potent agonist for neuronal nicotinic acetylcholine receptors. Mol Pharmacol 48: 774–782PubMedGoogle Scholar
  45. Giacobini E (1990) Cholinergic receptors in human brain: effects of aging and Alzheimer disease. J Neurosci Res 27: 548–560PubMedCrossRefGoogle Scholar
  46. Giordano S, Sherman L, Lyman W, Morrison R (1992) Multiple molecular weight forms of basic fibroblast growth factor are developmentally regulated in the central nervous system. Dev Biol 152: 293–303PubMedCrossRefGoogle Scholar
  47. Godwin-Austen RB, Lee PN, Marmot MG, Stern GM (1982) Smoking and Parkinson’s disease. J Neurol Neurosurg Psychiatry 45: 577–581PubMedCrossRefGoogle Scholar
  48. Gomez-Pinilla F, Lee JW, Cotman CW (1992) Basic FGF in adult rat brain: cellular distribution and response to entorhinal lesion and fimbria-fornix transection. J Neurosci 12: 345–355PubMedGoogle Scholar
  49. Gonzalez AM, Berry M, Maher PA, Logan A, Baird A (1995) A comprehensive analysis of the distribution of FGF-2 and FGFR1 in the rat brain. Brain Res 701: 201–226PubMedCrossRefGoogle Scholar
  50. Grothe C, Otto D, Unsicker K (1989) Basic fibroblast growth factor promotes in vitro survival and cholinergic development of rat septal neurons: comparison with the effects of nerve growth factor. Neuroscience 31: 649–661PubMedCrossRefGoogle Scholar
  51. Hellstrom-Lindahl E, Mousavi M, Zhang X, Ravid R, Nordberg A (1999) Regional distribution of nicotinic receptor subunit mRNAs in human brain: comparison between Alzheimer and normal brain. Brain Res Mol Brain Res 66: 94–103PubMedCrossRefGoogle Scholar
  52. Hill JA, Jr., Zoli M, Bourgeois JP, Changeux JP (1993) Immunocytochemical localization of a neuronal nicotinic receptor: the beta 2-subunit. J Neurosci 13: 1551–1568PubMedGoogle Scholar
  53. Humpel C, Lippoldt A, Chadi G, Ganten D, Olson L, Fuxe K (1993) Fast and widespread increase of basic fibroblast growth factor messenger RNA and protein in the forebrain after kainate-induced seizures. Neuroscience 57: 913–922PubMedCrossRefGoogle Scholar
  54. Janson AM, Moller A (1993) Chronic nicotine treatment counteracts nigral cell loss induced by a partial mesodiencephalic hemitransection: an analysis of the total number and mean volume of neurons and glia in substantia nigra of the male rat. Neuroscience 57: 931–941PubMedCrossRefGoogle Scholar
  55. Janson AM, Fuxe K, Agnati LF, Kitayama I, Harfstrand A, Andersson K, Goldstein M (1988a) Chronic nicotine treatment counteracts the disappearance of tyrosinehydroxylase-immunoreactive nerve cell bodies, dendrites and terminals in the mesostriatal dopamine system of the male rat after partial hemitransection. Brain Res 455: 332–345PubMedCrossRefGoogle Scholar
  56. Janson AM, Fuxe K, Sundstrom E, Agnati LF, Goldstein M (1988b) Chronic nicotine treatment partly protects against the 1-methyl-4-phenyl-2,3,6-tetrahydropyridineinduced degeneration of nigrostriatal dopamine neurons in the black mouse. Acta Physiol Scand 132: 589–591PubMedCrossRefGoogle Scholar
  57. Janson AM, Meana JJ, Goiny M, Herrera-Marschitz M (1991) Chronic nicotine treatment counteracts the decrease in extracellular neostriatal dopamine induced by a unilateral transection at the mesodiencephalic junction in rats: a microdialysis study. Neurosci Lett 134: 88–92PubMedCrossRefGoogle Scholar
  58. Janson AM, Hedlund PB, Fuxe K, von Euler G (1994) Chronic nicotine treatment counteracts dopamine D2 receptor upregulation induced by a partial mesodiencephalic hemitransection in the rat. Brain Res 655: 25–32PubMedCrossRefGoogle Scholar
  59. Jones GM, Sahakian BJ, Levy R, Warburton DM, Gray JA (1992) Effects of acute subcutaneous nicotine on attention, information processing and short-term memory in Alzheimer’s disease. Psychopharmacology (Berl) 108: 485–494CrossRefGoogle Scholar
  60. Jones S, Sudweeks S, Yakel JL (1999) Nicotinic receptors in the brain: correlating physiology with function. Trends Neurosci 22: 555–561PubMedCrossRefGoogle Scholar
  61. Kaneko S, Maeda T, Kume T, Kochiyama H, Akaike A, Shimohama S, Kimura J (1997) Nicotine protects cultured cortical neurons against glutamate-induced cytotoxicity via alpha7-neuronal receptors and neuronal CNS receptors. Brain Res 765: 135–140PubMedCrossRefGoogle Scholar
  62. Keegan K, Johnson DE, Williams LT, Hayman MJ (1991) Isolation of an additional member of the fibroblast growth factor receptor family, FGFR-3. Proc Natl Acad Sci USA 88: 1095–1099PubMedCrossRefGoogle Scholar
  63. Kihara T, Shimohama S, Sawada H, Kimura J, Kume T, Kochiyama H, Maeda T, Akaike A (1997) Nicotinic receptor stimulation protects neurons against beta-amyloid toxicity. Ann Neurol 42: 159–163PubMedCrossRefGoogle Scholar
  64. Kihara T, Shimohama S, Urushitani M, Sawada H, Kimura J, Kume T, Maeda T, Akaike A (1998) Stimulation of alpha4beta2 nicotinic acetylcholine receptors inhibits betaamyloid toxicity. Brain Res 792: 331–334PubMedCrossRefGoogle Scholar
  65. Kiyota Y, Takami K, Iwane M, Shino A, Miyamoto M, Tsukuda R, Nagaoka A (1991) Increase in basic fibroblast growth factor-like immunoreactivity in rat brain after forebrain ischemia. Brain Res 545: 322–328PubMedCrossRefGoogle Scholar
  66. Knusel B, Michel PP, Schwaber JS, Hefti F (1990) Selective and nonselective stimulation of central cholinergic and dopaminergic development in vitro by nerve growth factor, basic fibroblast growth factor, epidermal growth factor, insulin and the insulin-like growth factors I and II. J Neurosci 10: 558–570PubMedGoogle Scholar
  67. Kumon Y, Sakaki S, Kadota O, Matsuda S, Fujita H, Yoshimura H, Sakanaka M (1993) Transient increase in endogenous basic fibroblast growth factor in neurons of ischemic rat brains. Brain Res 605: 169–174PubMedCrossRefGoogle Scholar
  68. Lange KW, Wells FR, Jenner P, Marsden CD (1993) Altered muscarinic and nicotinic receptor densities in cortical and subcortical brain regions in Parkinson’s disease. J Neurochem 60: 197–203PubMedCrossRefGoogle Scholar
  69. Lapchak PA, Araujo DM, Hefti F (1993) Cholinergic regulation of hippocampal brain-derived neurotrophic factor mRNA expression: evidence from lesion and chronic cholinergic drug treatment studies. Neuroscience 52: 575–585PubMedCrossRefGoogle Scholar
  70. Le Novere N, Changeux JP (1995) Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J Mol Evol 40: 155–172PubMedCrossRefGoogle Scholar
  71. Levin ED (1992) Nicotinic systems and cognitive function. Psychopharmacology (Berl) 108: 417–431CrossRefGoogle Scholar
  72. Levin ED, Simon BB (1998) Nicotinic acetylcholine involvement in cognitive function in animals. Psychopharmacology (Berl) 138: 217–230CrossRefGoogle Scholar
  73. Levin ED, Christopher NC, Briggs SJ, Rose JE (1993) Chronic nicotine reverses working memory deficits caused by lesions of the fimbria or medial basalocortical projection. Brain Res Cogn Brain Res 1: 137–143PubMedCrossRefGoogle Scholar
  74. Li Y, Papke RL, He YJ, Millard WJ, Meyer EM (1999) Characterization of the neuroprotective and toxic effects of alpha7 nicotinic receptor activation in PC12 cells. Brain Res 830: 218–225PubMedCrossRefGoogle Scholar
  75. Lindstrom J, Schoepfer R, Whiting P (1987) Molecular studies of the neuronal nicotinic acetylcholine receptor family. Mol Neurobiol 1: 281–337PubMedCrossRefGoogle Scholar
  76. Lippoldt A, Andbjer B, Rosen L, Richter E, Ganten D, Cao Y, Pettersson RF, Fuxe K (1993) Photochemically induced focal cerebral ischemia in rat: time dependent and global increase in expression of basic fibroblast growth factor mRNA. Brain Res 625: 45–56PubMedCrossRefGoogle Scholar
  77. Lippoldt A, Andbjer B, Gerst H, Ganten D, Fuxe K (1996) Basic fibroblast growth factor expression and tenascin C immunoreactivity after partial unilateral hemitransection of the rat brain. Brain Res 730: 1–16PubMedGoogle Scholar
  78. Liu Z, D’Amore PA, Mikati M, Gatt A, Holmes GL (1993) Neuroprotective effect of chronic infusion of basic fibroblast growth factor on seizure-associated hippocampal damage. Brain Res 626: 335–338PubMedCrossRefGoogle Scholar
  79. Lloyd GK, Menzaghi F, Bontempi B, Suto C, Siegel R, Akong M, Stauderman K, Velicelebi G, Johnson E, Harpold MM, Rao TS, Sacaan AI, Chavez-Noriega LE, Washburn MS, Vernier JM, Cosford ND, McDonald LA (1998) The potential of subtype-selective neuronal nicotinic acetylcholine receptor agonists as therapeutic agents. Life Sci 62: 1601–1606PubMedCrossRefGoogle Scholar
  80. Maggio R, Riva M, Vaglini F, Fornai F, Molteni R, Armogida M, Racagni G, Corsini GU (1998) Nicotine prevents experimental parkinsonism in rodents and induces striatal increase of neurotrophic factors. J Neurochem 71: 2439–2446PubMedCrossRefGoogle Scholar
  81. Marin P, Maus M, Desagher S, Glowinski J, Premont J (1994) Nicotine protects cultured striatal neurones against N-methyl-D-aspartate receptor-mediated neurotoxicity. Neuroreport 5: 1977–1980PubMedCrossRefGoogle Scholar
  82. Martin EJ, Panickar KS, King MA, Deyrup M, Hunter BE, Wang G, Meyer EM (1994) Cytoprotective action of 2,4,-dimethoxybenzylidene anabaseine in differentiated PC12 cells and septal cholinergic neurons. Drug Dev Res 31: 135–141CrossRefGoogle Scholar
  83. Mattson MP, Murrain M, Guthrie PB, Kater SB (1989) Fibroblast growth factor and glutamate: opposing roles in the generation and degeneration of hippocampal neuroarchitecture. J Neurosci 9: 3728–3740PubMedGoogle Scholar
  84. Mayer E, Dunnett SB, Fawcett JW (1993) Mitogenic effect of basic fibroblast growth factor on embryonic ventral mesencephalic dopaminergic neurone precursors. Brain Res Dev Brain Res 72: 253–258PubMedCrossRefGoogle Scholar
  85. Meisinger C, Grothe C (1997) Differential regulation of fibroblast growth factor (FGF)2 and FGF receptor 1 mRNAs and FGF-2 isoforms in spinal ganglia and sciatic nerve after peripheral nerve lesion. J Neurochem 68: 1150–1158PubMedCrossRefGoogle Scholar
  86. Messi ML, Renganathan M, Grigorenko E, Delbono O (1997) Activation of alpha7 nicotinic acetylcholine receptor promotes survival of spinal cord motoneurons. FEBS Lett 411: 32–38PubMedCrossRefGoogle Scholar
  87. Meyer EM, King MA, Meyers C (1998a) Neuroprotective effects of 2,4dimethoxybenzylidene anabaseine (DMXB) and tetrahydroaminoacridine (THA) in neocortices of nucleus basalis lesioned rats. Brain Res 786: 252–254PubMedCrossRefGoogle Scholar
  88. Meyer EM, Kuryatov A, Gerzanich V, Lindstrom J, Papke RL (1998b) Analysis of 3-(4hydroxy, 2-Methoxybenzylidene)anabaseine selectivity and activity at human and rat alpha-7 nicotinic receptors. J Pharmacol Exp Ther 287: 918–925PubMedGoogle Scholar
  89. Minana MD, Montoliu C, Llansola M, Grisolia S, Felipo V (1998) Nicotine prevents glutamate-induced proteolysis of the microtubule-associated protein MAP-2 and glutamate neurotoxicity in primary cultures of cerebellar neurons. Neuropharmacology 37: 847–857PubMedCrossRefGoogle Scholar
  90. Miyamoto O, Itano T, Fujisawa M, Tokuda M, Matsui H, Nagao S, Hatase O (1993) Exogenous basic fibroblast growth factor and nerve growth factor enhance sprouting of acetylcholinesterase positive fibers in denervated rat hippocampus. Acta Med Okayama 47: 139–144PubMedGoogle Scholar
  91. Moffett J, Kratz E, Stachowiak MK (1998) Increased tyrosine phosphorylation and novel cis-acting element mediate activation of the fibroblast growth factor-2 (FGF-2) gene by nicotinic acetylcholine receptor. New mechanism for trans-synaptic regulation of cellular development and plasticity. Brain Res Mol Brain Res 55: 293–305PubMedCrossRefGoogle Scholar
  92. Monteggia LM, Arneric SP, Giordano T (1994) Nicotine effects on the regulation of amyloid precursor protein splicing, neurotrophin and glucose transporter RNA levels in aged rats. Int J Dev Neurosci 12: 133–141PubMedCrossRefGoogle Scholar
  93. Morens DM, Grandinetti A, Reed D, White LR, Ross GW (1995) Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology 45: 1041–1051PubMedCrossRefGoogle Scholar
  94. Morrison RS, Sharma A, de Vellis J, Bradshaw RA (1986) Basic fibroblast growth factor supports the survival of cerebral cortical neurons in primary culture. Proc Natl Acad Sci USA 83: 7537–7541PubMedCrossRefGoogle Scholar
  95. Nakata N, Kato H, Kogure K (1993) Protective effects of basic fibroblast growth factor against hippocampal neuronal damage following cerebral ischemia in the gerbil. Brain Res 605: 354–356PubMedCrossRefGoogle Scholar
  96. Nanri M, Kasahara N, Yamamoto J, Miyake H, Watanabe H (1997) GTS-21, a nicotinic agonist, protects against neocortical neuronal cell loss induced by the nucleus basalis magnocellularis lesion in rats. Jpn J Pharmacol 74: 285–289PubMedCrossRefGoogle Scholar
  97. Nanri M, Yamamoto J, Miyake H, Watanabe H (1998) Protective effect of GTS-21, a novel nicotinic receptor agonist, on delayed neuronal death induced by ischemia in gerbils. Jpn J Pharmacol 76: 23–29PubMedCrossRefGoogle Scholar
  98. Navarro HA, Seidler FJ, Eylers JP, Baker FE, Dobbins SS, Lappi SE, Slotkin TA (1989) Effects of prenatal nicotine exposure on development of central and peripheral cholinergic neurotransmitter systems. Evidence for cholinergic trophic influences in developing brain. J Pharmacol Exp Ther 251: 894–900PubMedGoogle Scholar
  99. Newhouse PA, Potter A, Levin ED (1997) Nicotinic system involvement in Alzheimer’s and Parkinson’s diseases. Implications for therapeutics. Drugs Aging 11: 206–228PubMedCrossRefGoogle Scholar
  100. Nordberg A (1992) Neuroreceptor changes in Alzheimer disease. Cerebrovasc Brain Metab Rev 4: 303–328PubMedGoogle Scholar
  101. Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C (1998) Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci USA 95: 5672–5677PubMedCrossRefGoogle Scholar
  102. Otto D, Unsicker K (1990) Basic FGF reverses chemical and morphological deficits in the nigrostriatal system of MPTP-treated mice. J Neurosci 10: 1912–1921PubMedGoogle Scholar
  103. Otto D, Frotscher M, Unsicker K (1989) Basic fibroblast growth factor and nerve growth factor administered in gel foam rescue medial septal neurons after fimbria fornix transection. J Neurosci Res 22: 83–91PubMedCrossRefGoogle Scholar
  104. Owman C, Fuxe K, Janson AM, Kahrstrom J (1989a) Chronic nicotine treatment eliminates asymmetry in striatal glucose utilization following unilateral transection of the mesostriatal dopamine pathway in rats. Neurosci Lett 102: 279–283PubMedCrossRefGoogle Scholar
  105. Owman C, Fuxe K, Janson AM, Kahrstrom J (1989b) Studies of protective actions of nicotine on neuronal and vascular functions in the brain of rats: comparison between sympathetic noradrenergic and mesostriatal dopaminergic fiber systems, and the effect of a dopamine agonist. Prog Brain Res 79: 267–276PubMedCrossRefGoogle Scholar
  106. Partanen J, Makela TP, Eerola E, Korhonen J, Hirvonen H, Claesson-Welsh L, Alitalo K (1991) FGFR-4, a novel acidic fibroblast growth factor receptor with a distinct expression pattern. EMBO J 10: 1347–1354PubMedGoogle Scholar
  107. Peeke SC, Peeke HV (1984) Attention, memory, and cigarette smoking. Psychopharmacology (Berl) 84: 205–216CrossRefGoogle Scholar
  108. Perry DC, Davila-Garcia MI, Stockmeier CA, Kellar KJ (1999) Increased nicotinic receptors in brains from smokers: membrane binding and autoradiography studies. J Pharmacol Exp Ther 289: 1545–1552PubMedGoogle Scholar
  109. Perry EK, Morris CM, Court JA, Cheng A, Fairbairn AF, McKeith IG, Irving D, Brown A, Perry RH (1995) Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 64: 385–395PubMedCrossRefGoogle Scholar
  110. Prats H, Kaghad M, Prats AC, Klagsbrun M, Lelias JM, Liauzun P, Chalon P, Tauber JP, Amalric F, Smith JA, et al (1989) High molecular mass forms of basic fibroblast growth factor are initiated by alternative CUG codons. Proc Natl Acad Sci USA 86: 1836–1840PubMedCrossRefGoogle Scholar
  111. Qian C, Li T, Shen TY, Libertine-Garahan L, Eckman J, Biftu T, Ip S (1993) Epibatidine is a nicotinic analgesic. Eur J Pharmacol 250: 13–14CrossRefGoogle Scholar
  112. Renko M, Quarto N, Morimoto T, Rifkin DB (1990) Nuclear and cytoplasmic localization of different basic fibroblast growth factor species. J Cell Physiol 144: 108–114PubMedCrossRefGoogle Scholar
  113. Rinne JO, Myllykyla T, Lonnberg P, Marjamaki P (1991) A postmortem study of brain nicotinic receptors in Parkinson’s and Alzheimer’s disease. Brain Res 547: 167–170PubMedCrossRefGoogle Scholar
  114. Role LW, Berg DK (1996) Nicotinic receptors in the development and modulation of CNS synapses. Neuron 16: 1077–1085PubMedCrossRefGoogle Scholar
  115. Rowntree S, Kolb B (1997) Blockade of basic fibroblast growth factor retards recovery from motor cortex injury in rats. Eur J Neurosci 9: 2432–2441PubMedCrossRefGoogle Scholar
  116. Rupniak NM, Patel S, Marwood R, Webb J, Traynor JR, Elliott J, Freedman SB, Fletcher SR, Hill RG (1994) Antinociceptive and toxic effects of (+)-epibatidine oxalate attributable to nicotinic agonist activity. Br J Pharmacol 113: 1487–1493PubMedCrossRefGoogle Scholar
  117. Sacaan AI, Reid RT, Santori EM, Adams P, Correa LD, Mahaffy LS, Bleicher L, Cosford ND, Stauderman KA, McDonald IA, Rao TS, Lloyd GK (1997) Pharmacological characterization of SIB-1765F: a novel cholinergic ion channel agonist. J Pharmacol Exp Ther 280: 373–383PubMedGoogle Scholar
  118. Sakaki T, Yamada K, Otsuki H, Yuguchi T, Kohmura E, Hayakawa T (1995) Brief exposure to hypoxia induces bFGF mRNA and protein and protects rat cortical neurons from prolonged hypoxic stress. Neurosci Res 23: 289–296PubMedCrossRefGoogle Scholar
  119. Schneider JS, Tinker JP, Van Velson M, Menzaghi F, Lloyd GK (1999) Nicotinic acetylcholine receptor agonist SIB-1508Y improves cognitive functioning in chronic low-dose MPTP-treated monkeys. J Pharmacol Exp Ther 290: 731–739PubMedGoogle Scholar
  120. Schwartz RD, Kellar KJ (1983) Nicotinic cholinergic receptor binding sites in the brain: regulation in vivo. Science 220: 214–216PubMedCrossRefGoogle Scholar
  121. Seguela P, Wadiche J, Dineley-Miller K, Dani JA, Patrick JW (1993) Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J Neurosci 13: 596–604PubMedGoogle Scholar
  122. Semba J, Miyoshi R, Kito S (1996) Nicotine protects against the dexamethasone potentiation of kainic acid-induced neurotoxicity in cultured hippocampal neurons. Brain Res 735: 335–338PubMedCrossRefGoogle Scholar
  123. Shahi GS, Moochhala SM (1991) Smoking and Parkinson’s disease — a new perspective. Rev Environ Health 9: 123–136PubMedCrossRefGoogle Scholar
  124. Shimohama S, Akaike A, Kimura J (1996) Nicotine-induced protection against glutamate cytotoxicity. Nicotinic cholinergic receptor-mediated inhibition of nitric oxide formation. Ann N Y Acad Sci 777: 356–361PubMedCrossRefGoogle Scholar
  125. Shimohama S, Greenwald DL, Shafron DH, Akaika A, Maeda T, Kaneko S, Kimura J, Simpkins CE, Day AL, Meyer EM (1998) Nicotinic alpha 7 receptors protect against glutamate neurotoxicity and neuronal ischemic damage. Brain Res 779: 359–363PubMedCrossRefGoogle Scholar
  126. Sjak-Shie NN, Meyer EM (1993) Effects of chronic nicotine and pilocarpine administration on neocortical neuronal density and [3H]GABA uptake in nucleus basalis lesioned rats. Brain Res 624: 295–298PubMedCrossRefGoogle Scholar
  127. Socci DJ, Arendash GW (1996) Chronic nicotine treatment prevents neuronal loss in neocortex resulting from nucleus basalis lesions in young adult and aged rats. Mol Chem Neuropathol 27: 285–305PubMedCrossRefGoogle Scholar
  128. Stachowiak MK, Moffett J, Joy A, Puchacz E, Florkiewicz R, Stachowiak EK (1994) Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells. J Cell Biol 127: 203–223PubMedCrossRefGoogle Scholar
  129. Sullivan JP, Decker MW, Brioni JD, Donnelly-Roberts D, Anderson DJ, Bannon AW, Kang CH, Adams P, Piattoni-Kaplan M, Buckley MJ, et al (1994) (+/—)-Epibatidine elicits a diversity of in vitro and in vivo effects mediated by nicotinic acetylcholine receptors. J Pharmacol Exp Ther 271: 624–631PubMedGoogle Scholar
  130. Sullivan JP, Decker MW, Donnelly-Roberts D, Brioni JD, Bannon AW, Holladay MW, Anderson DJ, Briggs CA, Williams M, Arneric SP (1995) Cholinergic channel activators: novel opportunities for the treatment of CNS disorders. Proc West Pharmacol Soc 38: 127–130PubMedGoogle Scholar
  131. Terry AV, Jr., Clarke MS (1994) Nicotine stimulation of nerve growth factor receptor expression. Life Sci 55: 91–98CrossRefGoogle Scholar
  132. Tooyama I, Kawamata T, Walker D, Yamada T, Hanai K, Kimura H, Iwane M, Igarashi K, McGeer EG, McGeer PL (1993) Loss of basic fibroblast growth factor in substantia nigra neurons in Parkinson’s disease. Neurology 43: 372–376PubMedCrossRefGoogle Scholar
  133. Unsicker K, Reichert-Preibsch H, Schmidt R, Pettmann B, Labourdette G, Sensenbrenner M (1987) Astroglial and fibroblast growth factors have neurotrophic functions for cultured peripheral and central nervous system neurons. Proc Natl Acad Sci USA 84: 5459–5463PubMedCrossRefGoogle Scholar
  134. Vescovi AL, Reynolds BA, Fraser DD, Weiss S (1993) bFGF regulates the proliferative fate of unipotent (neuronal) and bipotent (neuronal/astroglial) EGF-generated CNS progenitor cells. Neuron 11: 951–966PubMedCrossRefGoogle Scholar
  135. Wada E, Wada K, Boulter J, Deneris E, Heinemann S, Patrick J, Swanson LW (1989) Distribution of alpha2, alpha3, alpha4, and beta2 neuronal nicotinic receptor subunit mRNAs in the central nervous system: a hybridization histochemical study in the rat. J Comp Neurol 284: 314–335PubMedCrossRefGoogle Scholar
  136. Wada E, McKinnon D, Heinemann S, Patrick J, Swanson LW (1990) The distribution of mRNA encoded by a new member of the neuronal nicotinic acetylcholine receptor gene family (alpha 5) in the rat central nervous system. Brain Res 526: 45–53PubMedCrossRefGoogle Scholar
  137. Walicke PA (1988) Basic and acidic fibroblast growth factors have trophic effects on neurons from multiple CNS regions. J Neurosci 8: 2618–2627PubMedGoogle Scholar
  138. Walicke P, Cowan WM, Ueno N, Baird A, Guillemin R (1986) Fibroblast growth factor promotes survival of dissociated hippocampal neurons and enhances neurite extension. Proc Natl Acad Sci USA 83: 3012–3016PubMedCrossRefGoogle Scholar
  139. Warburton DM, Wesnes K, Shergold K, James M (1986) Facilitation of learning and state dependency with nicotine. Psychopharmacology (Berl) 89: 55–59CrossRefGoogle Scholar
  140. Ward CD, Duvoisin RC, Ince SE, Nutt JD, Eldridge R, Calne DB (1983) Parkinson’s disease in 65 pairs of twins and in a set of quadruplets. Neurology 33: 815–824PubMedCrossRefGoogle Scholar
  141. Warpman U, Nordberg A (1995) Epibatidine and ABT 418 reveal selective losses of alpha4 beta2 nicotinic receptors in Alzheimer brains. Neuroreport 6: 2419–2423PubMedCrossRefGoogle Scholar
  142. Whitehouse PJ, Martino AM, Wagster MV, Price DL, Mayeux R, Atack JR, Kellar KJ (1988) Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology 38: 720–723PubMedCrossRefGoogle Scholar
  143. Yamashita H, Nakamura S (1996) Nicotine rescues PC12 cells from death induced by nerve growth factor deprivation. Neurosci Lett 213: 145–147PubMedCrossRefGoogle Scholar
  144. Zoli M, Picciotto MR, Ferrari R, Cocchi D, Changeux JP (1999) Increased neurodegeneration during ageing in mice lacking high-affinity nicotine receptors. EMBO J 18: 1235–1244PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Wien 2000

Authors and Affiliations

  • N. Belluardo
    • 1
  • G. Mudo
    • 2
  • M. Blum
    • 3
  • G. Amato
    • 1
  • K. Fuxe
    • 4
  1. 1.Institute of Human PhysiologyUniversity of PalermoPalermoItaly
  2. 2.Department of Physiological SciencesUniversity of CataniaCataniaItaly
  3. 3.Fishberg Research Centre of NeurobiologyMt. Sinai School of MedicineNew York,NYU.S.A
  4. 4.Department of NeuroscienceKarolinska InstituteStockholmSweden

Personalised recommendations