Skip to main content

Dentatorubral-pallidoluysian atrophy (DRPLA)

  • Conference paper
Book cover Advances in Research on Neurodegeneration
  • 184 Accesses

Summary

Dentatorubral-pallidoluysian atrophy (DRPLA) is an autosomal dominant neurodegenerative disorder caused by expansion of CAG repeats coding for a polyglutamine stretch. The prominent anticipation and broad spectrum in the clinical presentations of DRPLA have been demonstrated to be tightly correlated with the instability of CAG repeats in the DRPLA gene. Discovery of the causative gene for DRPLA has made it possible to investigate molecular mechanisms of neurodegeneration caused by expanded polyglutamine stretches. Recent investigations suggest that nuclear transport of mutant proteins containing expanded polyglutamine stretches and intranuclear aggregate formation play important roles in neuronal degeneration. We have recently demonstrated that the aggregate formation and apoptosis are partially suppressed by trans glutaminase inhibitors, raising the possibility that trans glutaminase is involved in the aggregate body. The results may open new prospects for developing therapeutic measures for the polyglutamine diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akashi T, Ando S, Inose T et al (1987) Dentato-rubro-pallido-luysian atrophy: a clinicopathological study (in Japanese). Rinsho Seishin Igaku 29: 523–531

    Google Scholar 

  • Almqvist E, Spence N, Nichol K et al (1995) Ancestral differences in the distribution of the delta 2642 glutamic acid polymorphism is associated with varying CAG repeat lengths on normal chromosomes: insights into the geneticevolution of Huntington disease. Hum Mol Genet 4: 207–214

    Article  PubMed  CAS  Google Scholar 

  • Andrew S.E., Goldberg Y.P., Kremer Bet al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4: 398–403

    Article  PubMed  CAS  Google Scholar 

  • Bao J, Sharp A.H., Wagster M.Y. et al (1996) Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci USA 93: 5037–5042

    Article  PubMed  CAS  Google Scholar 

  • Boutell J.M., Wood J.D., Harper P.S. et al (1998) Huntingtin interacts with cystathionine beta-synthase. Hum Mol Genet 7: 371–378

    Article  PubMed  CAS  Google Scholar 

  • Burke J.R., Wingfield M.S., Lewis K.E. et al (1994) The Haw River syndrome: Dentatorubropallidoluysian atrophy (DRPLA) in an African-American family. Nat Genet 7: 521–524

    Article  PubMed  CAS  Google Scholar 

  • Burke J.R., Enghild J.J., Martin M.E. et al (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2: 347–350

    Article  PubMed  CAS  Google Scholar 

  • Chong S.S., McCall A.E., Cota J et al (1995) Gametic and somatic tissue-specific heterogeneity of the expanded SCAI CAG repeat in spinocerebellar ataxia type 1. Nat Genet 10: 344–350

    Article  PubMed  CAS  Google Scholar 

  • Chung M.Y., Ranum L.P., Duvick L.A. et al (1993) Evidence for a mechanism predisposing to intergenerational CAG repeat instability in spinocerebellar ataxia type 1. Nat Genet 5: 254–258

    Article  PubMed  CAS  Google Scholar 

  • Connarty M, Dennis N.R., Patch C et al (1996) Molecular re-investigation of patients with Huntington’s disease in Wessex reveals a family with dentatorubral and pallidoluysian atrophy. Hum Genet 97: 76–78

    Article  PubMed  CAS  Google Scholar 

  • Cooper J.K., Schilling G, Peters M.F. et al (1998) Truncated N-terminal fragments of huntingtin with expanded glutamine repeats form nuclear and cytoplasmic aggregates in cell culture. Hum Mol Genet 7: 783–790

    Article  PubMed  CAS  Google Scholar 

  • David G, Abbas N, Stevanin G et al (1997) Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 17: 65–70

    Article  PubMed  CAS  Google Scholar 

  • David G, Durr A, Stevanin G et al (1998) Molecular and clinical correlations in autosomal dominant cerebellar ataxia with progressive macular dystrophy (SCA7). Hum Mol Genet 7: 165–170

    Article  PubMed  CAS  Google Scholar 

  • Davies S.W., Turmaine M, Cozens B.A. et al (1997) Formation of neuronal intranuclear inclusions underlies the neurological dysfunction in mice transgenic for the HD mutation. Cell 90: 537–548

    Article  PubMed  CAS  Google Scholar 

  • De Barsy T.H., Myle G, Troch C et al (1968) La Dyssynergie cerebelleuse myoclonique (R. Hunt): Affection autonomeou rariante du type degeneratif de l’epilepsie-myoclonie progressive (Unvericht-Lundborg) Appoche anatomo-alinique. J Neurol Sci 8: 111–127

    Article  Google Scholar 

  • Difiglia M, Sapp E, Chase K.O. et al (1997) Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277: 1990–1993

    Article  PubMed  CAS  Google Scholar 

  • Duyao M, Ambrose C, Myers R et al (1993) Trinucleotide repeat length instability and age of onset in Huntington’s disease. Nat Genet 4: 387–392

    Article  PubMed  CAS  Google Scholar 

  • Endo K, Sasaki H, Wakisaka A et al (1996) Strong linkage disequilibrium and haplotype analysis in Japanese pedigrees with Machado-Joseph disease. Am J Med Genet 67:437–444

    Article  PubMed  CAS  Google Scholar 

  • Faber P.W., Barnes G.T., Srinidhi J et al (1998) Huntingtin interacts with a family of WW domain proteins. Hum Mol Genet 7: 1463–1474

    Article  PubMed  CAS  Google Scholar 

  • Farmer T.W., Wingfield M.S., Lynch S.A. et al (1989) Ataxia, chorea, seizures, and dementia. Pathologic features of a newly defined familial disorder. Arch Neurol 46: 774–779

    Article  PubMed  CAS  Google Scholar 

  • Goldberg Y.P., Nicholson D.W., Rasper D.M. et al (1996) Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat Genet 13:442–449

    Article  PubMed  CAS  Google Scholar 

  • Gouw L.G., Castaneda M.A., McKenna C.K. et al (1998) Analysis of the dynamic mutation in the SCA7 gene shows marked parental effects on CAG repeat transmission. Hum Mol Genet 7: 525–532

    Article  PubMed  CAS  Google Scholar 

  • Hashida H, Goto J, Kurisaki H et al (1997) Brain regional differences in the expansion of a CAG repeat in the spinocerebellar ataxias: dentatorubral-pallidoluysian atrophy, Machado-Joseph disease, and spinocerebellar ataxia type 1. Ann Neurol 41: 505–511

    Article  PubMed  CAS  Google Scholar 

  • Hayashi Y, Kakita A, Yamada M et al (1998) Hereditary dentatorubral-pallidoluysian atrophy - ubiquitinated filamentous inclusions in the cerebellar dentate nucleus neurons. Acta Neuropathol (Berl) 95: 479–482

    Article  PubMed  CAS  Google Scholar 

  • Hirayama K, Iizuka R, Maehara K et al (1981) Clinicopathological study of dentatorubropallidoluysian atrophy, part 1. Its clinical form and analysis of symptomatology- (in Japanese). Adv Neurol 25: 725–736

    Google Scholar 

  • Hodgson J.G., Agopyan N, Gutekunst C.A. et al (1999) A YAC mouse model for Huntington’s disease with full-length mutant huntingtin, cytoplasmic toxicity, and selective striatal neurodegeneration. Neuron 23: 181–192

    Article  PubMed  CAS  Google Scholar 

  • Holmberg M, Duyckaerts C, Durr A et al (1998) Spinocerebellar ataxia type 7 (SCA7): a neurodegenerative disorder with neuronal intranuclear inclusions. Hum Mol Genet 7: 913–918

    Article  PubMed  CAS  Google Scholar 

  • Igarashi S, Koide R, Shimohata T et al (1998) Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat Genet 18: 111–117

    Article  PubMed  CAS  Google Scholar 

  • Iizuka R, Hirayama K (1986) Dentato-rubro-pallido-Iuysian atrophy. In: Vinken P.J., Bruyn G.W., Klawans H.L. (eds) Handbook of clinical neurology, vol 5. North-Holland, Amsterdam, pp 437–443

    Google Scholar 

  • Iizuka R, Hirayama K, Maehara K.A. (1984) Dentato-rubro-pallido-Iuysian atrophy: a clinico-pathological study. J Neurol Neurosurg Psychiatry 47: 1288–1298

    Article  PubMed  CAS  Google Scholar 

  • Ikeda H, Yamaguchi M, Sugai S et al (1996) Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat Genet 13: 196–202

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi T, Koide R, Tanaka H et al (1995a) Dentatorubral-pallidoluysian atrophy (DRPLA): clinical features are closely related to unstable expansions of trinucleotide (CAG) repeat. Ann Neurol 37: 769–775

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi T, Onodera O, Oyake M et al (1995b) Dentatorubral-pallidoluysian atrophy (DRPLA): close correlation of CAG repeat expansions with the wide spectrum of clinical presentations and prominent anticipation. Semin Cell BioI 6: 37–44

    Article  CAS  Google Scholar 

  • Ikeuchi T, Koide R, Onodera O et al (1995c) Dentatorubral-pallidoluysian atrophy (DRPLA). Molecular basis for wide clinical features of DRPLA. Clin Neurosci 3: 23–27

    PubMed  CAS  Google Scholar 

  • Imbert G, Saudou F, Yvert G et al (1996) Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 14: 285–291

    Article  PubMed  CAS  Google Scholar 

  • Inazuki G, Kumagai K, Naito H (1990) Dentatorubral-pallidoluysian atrophy (DRPLA): its distribution in Japan and prevalence rate in Niigata. Seishin Igaku 32: 1135–1138

    Google Scholar 

  • Iwabuchi K (1987) Clinico-pathological studies ondentato-rubro-pallido-Iuysian atrophy (DRPLA). Yokohama Igaku 38: 291–301

    Google Scholar 

  • Iwabuchi K, Amano N, Yagishita S et al (1987) A clinicopathological study on familial cases of dentatorubro-pallidoluysian atrophy (DRPLA). Clin Neurol 27: 1002–1012

    CAS  Google Scholar 

  • Johansson J, Forsgren L, Sandgren O et al (1998) Expanded CAG repeats in Swedish spinocerebellar ataxia type 7 (SCA7) patients: effect of CAG repeat length on the clinical manifestation. Hum Mol Genet 7: 171–176

    Article  PubMed  CAS  Google Scholar 

  • Kahlem P, Terre C, Green H et al (1996) Peptides containing glutamine repeats as substrates for transglutaminase-catalyzed cross-linking: relevance to diseases of the nervous system. Proc Natl Acad Sci USA 93: 14580–14585

    Article  PubMed  CAS  Google Scholar 

  • Kalchman MA, Graham RK, Xia G et al (1996) Huntingtin is ubiquitinated and interacts with a specific ubiquitin-conjugating enzyme. J Biol Chem 271: 19385–19394

    Article  PubMed  CAS  Google Scholar 

  • Kalchman M.A., Koide H.B., Mccutcheon K et al (1997) HIP1, a human homologue of s-cerevisiae sla2p, interacts with membrane-associated huntingtin in the brain. Nat Genet 16: 44–53

    Article  PubMed  CAS  Google Scholar 

  • Kawakami H, Maruyama H, Nakamura S et al (1995) Unique features of the CAG repeats in Machado-Joseph disease. Nat Genet 9: 344–345

    Article  PubMed  CAS  Google Scholar 

  • Kaytor M.D., Burright E.N., Duvick L.A. et al (1997) Increased trinucleotide repeat instability with advanced maternal age. Hum Mol Genet 6: 2135–2139

    Article  PubMed  CAS  Google Scholar 

  • Klement I.A., Skinner P.J., Kaytor M.D. et al (1998) Ataxin-1 nuclear localization and aggregation: role in polyglutamine-induced disease in SCA1 transgenic mice. Cell 95:41–53

    Article  PubMed  CAS  Google Scholar 

  • Koide R, Ikeuchi T, Onodera O et al (1994) Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 6: 9–13

    Article  PubMed  CAS  Google Scholar 

  • Koshy B, Matilla T, Burright E.N. et al (1996) Spinocerebellar ataxia type-1 and spinobulbar muscular atrophy gene products interact with glyceraldehyde-3- phosphate dehydrogenase. Hum Mol Genet 5: 1311–1318

    Article  PubMed  CAS  Google Scholar 

  • La Spada A.R., Wilson E.M., Lubahn D.B. et al (1991) Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 352: 77–79

    Article  PubMed  Google Scholar 

  • La Spada A.R., Peterson K.R., Meadows S.A. et al (1998) Androgen receptor Y AC transgenic mice carrying CAG 45 alleles show trinucleotide repeat instability. Hum Mol Genet 7: 959–967

    Article  PubMed  Google Scholar 

  • Li M, Miwa S, Kobayashi Y et al (1998) Nuclear inclusions of the androgen receptor protein in spinal and bulbar muscular atrophy. Ann Neurol 44: 249–254

    Article  PubMed  CAS  Google Scholar 

  • Li X.J., Li S.H., Sharp A.H. et al (1995) A huntingtin-associated protein enriched in brain with implications for pathology. Nature 378: 398–402

    Article  PubMed  CAS  Google Scholar 

  • Mangiarini L, Sathasivam K, Seller M et al (1996) Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87: 493–506

    Article  PubMed  CAS  Google Scholar 

  • Martindale D, Hackam A, Wieczorek A et al (1998) Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat Genet 18: 150–154

    Article  PubMed  CAS  Google Scholar 

  • Matilla A, Koshy B.T., Cummings C.J. et al (1997) The cerebellar leucine-rich acidic nuclear protein interacts with ataxin-1. Nature 389: 974–978

    Article  PubMed  CAS  Google Scholar 

  • Miyashita T, Nagao K, Ohmi K et al (1998) Intracellular aggregate formation of dentatorubral-pallidoluysian atrophy (DRPLA) protein with the extended polyglutamine. Biochem Biophys Res Commun 249: 96–102

    Article  PubMed  CAS  Google Scholar 

  • Mizushima S, Nagata S (1990) pEF-BOS, a powerful mammalian expression vector. Nucl Acids Res 18: 5322

    Article  PubMed  CAS  Google Scholar 

  • Nagafuchi S, Yanagisawa H, Ohsaki E et al (1994) Structure and expression of the gene responsible for the triplet repeat disorder, dentatorubral and pallidoluysian atrophy (DRPLA). Nat Genet 8: 177–182

    Article  PubMed  CAS  Google Scholar 

  • Nagafuchi S, Yanagisawa H, Sato K et al (1994) Expansion of an unstable CAG trinucleotide on chromosome 12p in dentatorubral and pallidoluysian atrophy. Nat Genet 6:14–18

    Article  PubMed  CAS  Google Scholar 

  • Nagai Y, Onodera O, Chun J et al (1999) Expanded polyglutamine domain proteins bind neurofilament and alter the neurofilament network. Exp Neurol 155: 195–203

    Article  PubMed  CAS  Google Scholar 

  • Naito H, Oyanagi S (1982) Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 32: 798–807

    Article  PubMed  CAS  Google Scholar 

  • Naito N, Oyanagi S (1982) Familial myoclonus epilepsy and choreoathetosis: hereditary dentatorubral-pallidoluysian atrophy. Neurology 32: 789–817

    Article  Google Scholar 

  • Naito H, Izawa K, Kurosaki T et al (1972) Two families of progressive myoclonus epilepsy with Mendelian dominant heredity (in Japanese). Psychiatr Neurol Jpn 74:871–897

    CAS  Google Scholar 

  • Naito H, Ohama E, Nagai H et al (1987) A family of dentatorubropallidoluysian atrophy (DRPLA) including two cases with schizophrenic symptoms (in Japanese). Psychiatr Neurol Jpn 89: 144–158

    CAS  Google Scholar 

  • Nakai K, Kanehisa M.A. (1992) Knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897–911

    Article  PubMed  CAS  Google Scholar 

  • Norremolle A, Nielsen J.E., Sorensen S.A. et al (1995) Elongated CAG repeats of the B37 gene in a Danish family with dentato-rubro-pallido-Iuysian atrophy. Hum Genet 95:313–318

    Article  PubMed  CAS  Google Scholar 

  • Onodera O, Oyake M, Takano H et al (1995) Molecular cloning of a full-length cDNA for dentatorubral-pallidoluysian atrophy and regional expressions of the expanded alleles in the CNS. Am J Hum Genet 57: 1050–1060

    PubMed  CAS  Google Scholar 

  • Onodera O, Burke J.R., Miller S.E. et al (1997) Oligomerization of expandedpolyglutamine domain fluorescent fusion proteins in cultured mammalian cells. Biochem Biophys Res Commun 238: 599–605

    Article  PubMed  CAS  Google Scholar 

  • Orr H.T., Chung M.Y., Banfi S et al (1993) Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 4: 221–226

    Article  PubMed  CAS  Google Scholar 

  • Oyanagi S, Naito H (1977) Aclinico-neuropathological study on four autopsy cases of degenerative type of myoclonus epilepsy with Mendelian dominant heredity (in Japanese). Psychiatr Neurol Jpn 79: 113–129

    CAS  Google Scholar 

  • Paulson H.L., Perez M.K., Trottier Y et al (1997) Intranuclear inclusions of expanded polyglutamine protein in spinocerebellar ataxia type 3. Neuron 19: 333–344

    Article  PubMed  CAS  Google Scholar 

  • Perutz M.F. (1995) Glutamine repeats as polar zippers: their role in inherited neurodegenerative disease. Mol Med 1: 718–721

    PubMed  CAS  Google Scholar 

  • Perutz M.F. (1996) Blood. Taking the pressure off [news]. Nature 380: 205–206

    Article  PubMed  CAS  Google Scholar 

  • Perutz M.F., Johnson T, Suzuki M et al (1994) Glutamine repeats as polar zippers: their possible role in inherited neurodegenerative diseases. Proc Natl Acad Sci USA 91: 5355–5358

    Article  PubMed  CAS  Google Scholar 

  • Potter N.T. (1996) The relationship between (CAG)n repeat number and age of onset in a family with dentatorubral-pallidoluysian atrophy (DRPLA): diagnostic implications of confirmatory and predictive testing. J Med Genet 33: 168–170

    Article  PubMed  CAS  Google Scholar 

  • Pulst S.M., Nechiporuk A, Nechiporuk T et al (1996) Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 14: 269–276

    Article  PubMed  CAS  Google Scholar 

  • Rubinsztein D.C., Leggo J (1997) Non-mendelian transmission at the Machado-Joseph disease locus in normal females: preferential transmission of alleles with smaller CAG repeats. J Med Genet 34: 234–236

    Article  PubMed  CAS  Google Scholar 

  • Sanpei K, Takano H, Igarashi S et al (1996) Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 14: 277–284

    Article  PubMed  CAS  Google Scholar 

  • Sato A, Shimohata T, Koide R et al (1999) Adenovirus-mediated expression of mutant DRPLA proteins with expanded polyglutamine stretches in neuronally differentiated PC12 Cells: preferential intranuclear aggregate formation and apoptosis. Hum Mol Genet 8: 997–1006

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Oyake M, Nakamura K et al (1999) Transgenic mice harboring a full-length human mutant DRPLA gene reveal CAG repeat instability. Hum Mol Genet 8: 99–106

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Finkbeiner S, Devys D et al (1998) Huntingtin acts in the nucleus to induce apoptosis but death does not correlate with the formation of intranuclear inclusions. Cell 95: 55–66

    Google Scholar 

  • Sittler A, Walter S, Wedemeyer N et al (1998) SH3GL3 associates with the Huntingtin exon 1 protein and promotes the formation of polygln-containing protein aggregates. Mol Cell 2: 427–436

    Article  PubMed  CAS  Google Scholar 

  • Skinner P.J., Koshy B.T., Cummings C.J. et al (1997) Ataxin-1 with an expanded glutamine tract alters nuclear matrix-associated structures. Nature 389: 971–974

    Article  PubMed  CAS  Google Scholar 

  • Smith JK (1975) Dentatorubropallidoluysian atrophy. In: Vinken PJ, Bruyn GW (eds) Handbook of clinical neurology, vol 21. North-Holland, Amsterdam, pp 519–534

    Google Scholar 

  • Smith J.K., Gonda V.E., Malamud N (1958) Unusual form of cerebellar ataxia: combined dentato-rubral and pallido-Luysian degeneration. Neurology 8: 205–209

    Article  PubMed  CAS  Google Scholar 

  • Snell R.G., MacMillan J.C., Cheadle J.P. et al (1993) Relationship between trinucleotide repeat expansion and phenotypic variation in Huntington’s disease. Nat Genet 4:393–397

    Article  PubMed  CAS  Google Scholar 

  • Squitieri F, Andrew S.E., Goldberg Y.P. et al (1994) DNA haplotype analysis of Huntington disease reveals clues to the origins and mechanisms of CAG expansion and reasons for geographic variations of prevalence. Hum Mol Genet 3: 2103–2114

    Article  PubMed  CAS  Google Scholar 

  • Stevanin G, Cancel G, Didierjean O et al (1995) Linkage disequilibrium at the Machado-Joseph disease/spinal cerebellar ataxia 3 locus: evidence for a common founder effect in French and Portuguese-Brazilian families as well as a second ancestral Portuguese-Azorean mutation. Am J Hum Genet 57: 1247–1250

    PubMed  CAS  Google Scholar 

  • Suzuki S, Kamoshita S, Ninomura S (1985) Ramsay Hunt syndrome in dentatorubralpallidoluysian atrophy. Pediatr Neurol 1: 298–301

    Article  PubMed  CAS  Google Scholar 

  • Takano H, Onodera O, Takahashi H et al (1996) Somatic mosaicism of expanded CAG repeats in brains of patients with dentatorubral-pallidoluysian atrophy: cellular population-dependent dynamics of mitotic instability. Am J Hum Genet 58: 1212–1222

    PubMed  CAS  Google Scholar 

  • Takano T, Yamanouchi Y, Nagafuchi S et al (1996) Assignment ofthe dentatorubral and pallidoluysian atrophy (DRPLA) gene to 12p 13.31 by fluorescence in situ hybridization. Genomics 32: 171–172

    Article  PubMed  CAS  Google Scholar 

  • Takiyama Y, Igarashi S, Rogaeva E.A. et al (1995) Evidence for inter-generational instability in the CAG repeat in the MJDl gene and for conserved haplotypes at flanking markers amongst Japanese and Caucasian subjects with Machado-Joseph disease. Hum Mol Genet 4: 1137–1146

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Murobushi K, Ando S et al (1977) Combined degeneration of the globus pallidus and the cerebellar nuclei and their efferent systems in two siblings of one family: primary system degeneration of the globus palliclus and the cerebellar nuclei (in Japanese). Brain and Nerve 29: 95–104

    PubMed  CAS  Google Scholar 

  • Telenius H, Kremer B, Goldberg Y.P. et al (1994) Somatic and gonadal mosaicism of the Huntington disease gene CAG repeat in brain and sperm. Nat Genet 6: 409–414

    Article  PubMed  CAS  Google Scholar 

  • The Huntington’s disease collaborative research group (1993) A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72: 971–983

    Article  Google Scholar 

  • Titica J, van Bogaert L (1946) Heredo-degenerative hemiballismus: a contribution to the question of primary atrophy of the corpus Luysii. Brain 69: 251–263

    Article  PubMed  CAS  Google Scholar 

  • Ueno S, Kondoh K, Kotani Y et al (1995) Somatic mosaicism of CAG repeat in dentatorubral-pallidoluysian atrophy (DRPLA). Hum Mol Genet 4: 663–666

    Article  PubMed  CAS  Google Scholar 

  • Wanker E.E., Rovira C, Scherzinger E et al (1997) HIP-I: a huntingtin interacting protein isolated by the yeast two-hybrid system. Hum Mol Genet 6: 487–495

    Article  PubMed  CAS  Google Scholar 

  • Warner T.T., Lennox G.G., Janota I et al (1994b) Autosomal-dominant dentatorubropallidoluysian atrophy in the united kingdom. Mov Disord 9: 289–296

    Article  PubMed  CAS  Google Scholar 

  • Warner T.T., Williams L, Harding A.E. (1994a) DRPLA in Europe. Nat Genet 6: 225–225

    Article  PubMed  CAS  Google Scholar 

  • Wood J.D., Yuan J, Margolis R.L. et al (1998) Atrophin-1, the DRPLA gene product, interacts with two families of ww domain-containing proteins. Mol Cell Neurosci 11:149–160

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa H, Fujii K, Nagafuchi S et al (1996) A unique origin and multistep process for the generation of expanded DRPLA triplet repeats. Hum Mol Genet 5: 373–379

    Article  PubMed  CAS  Google Scholar 

  • Yazawa I, Nukina N, Hashida H et al (1995) Abnormal gene product identified in hereditary dentatorubral-pallidoluysian atrophy (DRPLA) brain. Nat Genet 10: 99–103

    Article  PubMed  CAS  Google Scholar 

  • Zhuchenko O, Bailey J, Bonnen P et al (1997) Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1a-voltagedependent calcium channel. Nat Genet 15: 62–69

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer-Verlag Wien

About this paper

Cite this paper

Tsuji, S. (2000). Dentatorubral-pallidoluysian atrophy (DRPLA). In: Mizuno, Y., Calne, D.B., Horowski, R., Poewe, W., Riederer, P., Youdim, M.B.H. (eds) Advances in Research on Neurodegeneration. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6284-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6284-2_14

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7246-9

  • Online ISBN: 978-3-7091-6284-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics