Skip to main content

Isoefficiency and the Parallel Descartes Method

  • Conference paper
Symbolic Algebraic Methods and Verification Methods

Abstract

The efficiency of a parallel algorithm with input x on P ≥ 1 processors is defined as \(E(x,P) = \frac{{T(x,1)}}{{PT(x,P)}}\) where T(x, P) denotes the time it takes to perform the computation using P processors and T(x, 1) is the sequential execution time. The efficiency of many parallel algorithms decreases when the number of processors increases and the sequential execution time is fixed; likewise, the efficiency increases when the sequential computing time increases and the number of processors is fixed. The term scalability refers to this change of efficiency (Sahni & Thanvantri, 1996). Intuitively, a parallel algorithm is scalable if it stays efficient when the number of processors and the sequential execution time are both increased.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Collins, G.E. (1974). The computing time of the Euclidean algorithm. SIAM Journal on Computing, 3(1), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  • Collins, G.E., & Akritas, A.G. (1976). Polynomial real root isolation using Descartes’ rule of signs. In R.D. Jenks (Ed.), Proceedings of the 1976 ACM Symposium on Symbolic and Algebraic Computation (pp. 272–275). ACM.

    Google Scholar 

  • Collins, G.E., Johnson, J.R., & Küchlin, W. (1992). Parallel real root isolation using the coefficient sign variation method. In R.E. Zippel (Ed.), Computer Algebra and Parallelism., LNCS 584, pp. 71–87. Springer-Verlag.

    Chapter  Google Scholar 

  • Culler, D.E., Karp, R.M., Patterson, D., Sahay, A., Santos, E.E., Schauser, K.E., Subramonian, R., & von Eicken, T. (1996). LogP: A practical model of parallel computation. Communications of the ACM, 39(11),78–85.

    Article  Google Scholar 

  • Decker, T., & Krandick, W. (1999). Parallel real root isolation using the Descartes method. In P. Banerjee, V.K. Prasanna, & B.P. Sinha (Eds.), High Performance Computing-HIPC’99, LNCS 1745, pp. 261–268. Springer-Verlag.

    Chapter  Google Scholar 

  • Grama, A.Y., Gupta, A., & Kumar, V. (1993). Isoefficiency: Measuring the scalability of parallel algorithms and architectures. IEEE Parallel and Distributed Technology, 1(3), 12–21.

    Article  Google Scholar 

  • Gupta, A., Karypis, G., & Kumar, V. (1997). Highly scalable parallel algorithms for sparse matrix factorization. IEEE Transactions on Parallel and Distributed Systems, 8(5), 502–520.

    Article  Google Scholar 

  • Gupta, A., & Kumar, V. (1993). The scalability of FFT on parallel computers. IEEE Transactions on Parallel and Distributed Systems, 4(8), 922–932.

    Article  Google Scholar 

  • Johnson, J.R., & Krandick, W. (1997). Polynomial real root isolation using approximate arithmetic. In W. Küchlin (Ed.), International Symposium on Symbolic and Algebraic Computation (pp. 225–232). ACM.

    Google Scholar 

  • Krandick, W. (1995). Isolierung reeller NullstelIen von Polynomen. In J. Herzberger (Ed.), Wissenschaftliches Rechnen (pp. 105–154). Akademie Verlag, Berlin.

    Google Scholar 

  • Kruskal, C.P., Rudolph, L., & Snir, M. (1990). A complexity theory of efficient parallel algorithms. Theoretical Computer Science, 71(1),95–132.

    Article  MathSciNet  MATH  Google Scholar 

  • Kumar, V., Grama, A., Gupta, A., & Karypis, G. (1994). Introduction to Parallel C011lputing: Design and Analysis of Algorithms. Redwood City, CA, USA: Benjamin/Cummings.

    Google Scholar 

  • Kumar, V., Nageshwara Rao, V., & Ramesh, K. (1988). Parallel depth first search on the ring architecture. In D.H. Bailey (Ed.), Proceedings of the 1988 International Conference on Parallel Processing (Vol. III, pp. 128–132). The Pennsylvania State University Press.

    Google Scholar 

  • Kumar, V., & Singh, V. (1991). Scalability of parallel algorithms for the all-pairs shortest-path problem. Journal of Parallel and Distrihuted Computing, 13, 124–138.

    Article  Google Scholar 

  • Mahapatra, N.R., & Dutt, S. (1997). Scalable global and local hashing strategies for duplicate pruning in parallel A* graph search. IEEE Transactions on Parallel and Distributed Systems, 8(7), 738–756.

    Article  Google Scholar 

  • Sahni, S., & Thanvantri, V. (1996). Performance metrics: Keeping the focus on runtime. IEEE Parallel and Distributed Technology, 4(1),43–56.

    Article  Google Scholar 

  • Schreiner, W., Mittermaier, C., & Winkler, F. (2000). On solving a problem in algebraic geometry by cluster computing. In A. Bode, T. Ludwig, W. Karl, & R. Wismüller (Eds.), Euro-Par 2000 Parallel Processing, LNCS 1900, pp. 1196–1200. Springer-Verlag.

    Chapter  Google Scholar 

  • Yang. T.-R., & Lin, H.-X. (1997). Isoefficiency analysis of CGLS algorithm for parallel least squares problems. In B. Hertzberger & P. Sloot (Eds.), High-Performance Computing and Networking, LNCS 1225, pp. 452–461. Springer-Verlag.

    Chapter  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Decker, T., Krandick, W. (2001). Isoefficiency and the Parallel Descartes Method. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds) Symbolic Algebraic Methods and Verification Methods. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6280-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6280-4_6

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83593-7

  • Online ISBN: 978-3-7091-6280-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics