Skip to main content

Surface Reconstruction Using Adaptive Clustering Methods

  • Conference paper
Geometric Modelling

Part of the book series: Computing ((COMPUTING,volume 14))

Abstract

We present an automatic method for the generation of surface triangulations from sets of scattered points. Given a set of scattered points in three-dimensional space, without connectivity information, our method reconstructs a triangulated surface model in a two-step procedure. First, we apply an adaptive clustering technique to the given set of points, identifying point subsets in regions that are nearly planar. The output of this clustering step is a set of two-manifold “tiles” that locally approximate the underlying, unknown surface. Second, we construct a surface triangulation by triangulating the data within the individual tiles and the gaps between the tiles. This algorithm can generate multiresolution representations by applying the triangulation step to various resolution levels resulting from the hierarchical clustering step. We compute deviation measures for each cluster, and thus we can produce reconstructions with prescribed error bounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Algorri, M.-E., Schmitt, F.: Surface reconstruction from unstructured 3D data. Comput. Graphics Forum 15, 47–60 (1996).

    Article  Google Scholar 

  2. Amenta, N., Bern, M., Kamvysselis, M.: A new Voronoi-based surface reconstruction algorithm. In: SIGGRAPH 98 Conference Proceedings (Cohen, M., ed.), pp. 415–422. Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 1998.

    Chapter  Google Scholar 

  3. Attali, D.: r-regular shape reconstruction from unorganized points. Computational Geometry Theory and Applications 10 239–247 (1998).

    Article  MathSciNet  MATH  Google Scholar 

  4. Bajaj, C. L., Bernardini, F., Xu, G.: Automatic reconstruction of surfaces and scalar fields from 3D scans. Comput. Graphics 29 Annual Conference Series 109–118 (1995).

    Google Scholar 

  5. Bernardini, F., Bajaj, C. L.: Sampling and reconstructing manifolds using alpha-shapes. In: Proc. 9th Canadian Conf. Computational Geometry, pp. 193–198 (1997).

    Google Scholar 

  6. Bernardini, F., Mittleman, J., Rushmeier, H., Silva, C., Taubin, G.: The ball-pivoting algorithm for surface reconstruction. IEEE Trans. Visual. Comput. Graphics 5 145–161 (1999).

    Article  Google Scholar 

  7. Bittar, E., Tsingos, N., Gascuel, M.-P.: Automatic reconstruction of unstructured 3D data: Combining medial axis and implicit surfaces. Comput. Graphics Forum 14 C/457—C/468 (1995).

    Google Scholar 

  8. Boissonnat, J.-D.: Geometric structures for three-dimensional shape representation. ACM Trans. Graphics 3, 266–286 (1984).

    Article  Google Scholar 

  9. Bolle, R. M., Vemuri, B. C.: On three-dimensional surface reconstruction methods. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-13, 1 1–13 (1991).

    Article  Google Scholar 

  10. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. Comput Graphics 30 Annual Conference Series 303–312 (1996).

    Google Scholar 

  11. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution analysis of arbitrary meshes. In: SIGGRAPH 95 Conference Proceedings (Cook, R., ed.), pp. 173–182. Annual Conference Series, ACM SIGGRAPH. New York: ACM Press, 1995.

    Chapter  Google Scholar 

  12. Edelsbrunner, H., Mücke, E. P.: Three-dimensional alpha shapes. ACM Trans. Graphics 13 4372 (1994).

    Google Scholar 

  13. Gordon, A. D.: Hierarchical classification. In: Clustering and classification (Arabie, R., Hubert, L., DeSoete, G., eds.), pp. 65–105. Singapore: World Scientific, 1996.

    Chapter  Google Scholar 

  14. Guo, B.: Surface reconstruction: from points to splines. Comput. Aided Des. 29 269–277 (1997).

    Article  Google Scholar 

  15. Heckel, B., Uva, A., Hamann, B.: Clustering-based generation of hierarchical surface models. In: Proceedings of Visualization 1998 (Late Breaking Hot Topics) (Wittenbrink, C., Varshney, A., eds.), pp. 50–55. Los Alamitos: IEEE Computer Society Press, 1998.

    Google Scholar 

  16. Hinker, P., Hansen, C.: Geometric optimization. In: Proceedings of the Visualization ’93 Conference (San Jose, CA, Oct. 1993) (Nielson, G. M., SBergeron, D., eds.), pp. 189–195. Los Alamitos: IEEE Computer Society Press, 1993.

    Google Scholar 

  17. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Surface reconstruction from unorganized points. Comput. Graphics 26 71–78 (1992).

    Article  Google Scholar 

  18. Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., Stuetzle, W.: Mesh optimization. Comput. Graphics 27 19–26 (1993).

    Google Scholar 

  19. Hotelling, H.: Analysis of a complex of statistical variables into principal components. J. Educat. Psychol. 24 417–441 (1993).

    Article  Google Scholar 

  20. Jackson, J. E.: A user’s guide to principal components. New York: Wiley, 1991.

    Google Scholar 

  21. Kalvin, A. D., Taylor, R. H.: Superfaces: Polyhedral approximation with bounded error. In: Medical Imaging: Image Capture Formatt. Display, 2164 2–13 (1994).

    Google Scholar 

  22. Kalvin, A. D., Taylor, R. H.: Superfaces: Polygonal mesh simplification with bounded error. IEEE Comput. Graphics Appl. 16 64–77 (1996).

    Article  Google Scholar 

  23. Lorensen, W. E., Cline, H. E.: Marching cubes: a high resolution 3D surface construction algorithm. Comput. Graphics 21 163–170 (1987).

    Article  Google Scholar 

  24. Manly, B.: Multivariate statistical methods, A primer. New York: Chapman & Hall, 1994.

    Google Scholar 

  25. Mencl, R.: A graph-based approach to surface reconstruction. Comput. Graphics Forum 14 C/ 445—C/456 (1995).

    Google Scholar 

  26. Mend, R., Müller, H.: Graph-based surface reconstruction using structures in scattered point sets. In: Proceedings of the Conference on Computer Graphics International 1998 (CGI-98) (Los Alamitos, California, June 22–26 1998) (Wolter, F.-E., Patrikalakis, N. M., eds.), pp. 22–26. Los Alamitos: IEEE Computer Society Press, 1998.

    Google Scholar 

  27. Mount, D. M.: Voronoi diagrams on the surface of a polyhedron. Technical Report CAR-TR121, CS-TR-1496, Department of Computer Science, University of Maryland, College Park, MD, May 1985.

    Google Scholar 

  28. Nielson, G. M.: Coordinate-free scattered data interpolation. In: Topics in multivariate approximation (Schumaker, L., Chui, C., Utreras, F., eds.), pp. 175–184. New York: Academic Press, 1987.

    Google Scholar 

  29. Nielson, G. M., Foley, T.: A survey of applications of an affine invariant norm. In: Mathematical methods in computer aided geometric design (Lyche, T., Schumaker, L., eds.), pp. 445–467. San Diego: Academic Press, 1989.

    Google Scholar 

  30. Okabe, A., Boots, B., Sugihara, K.: Spatial tesselations — concepts and applications of Voronoi diagrams. Chichester: Wiley, 1992.

    Google Scholar 

  31. Schroeder, W. J., Zarge, J. A., Lorensen, W. E.: Decimation of triangle meshes. Comput. Graphics 26 65–70 (1992).

    Article  Google Scholar 

  32. Soucy, M., Laurendeau, D.: A general surface approach to the integration of a set of range views. IEEE Trans. Pattern Anal. Mach. Intell. 17 344–358 (1995).

    Article  Google Scholar 

  33. Teichmann, M., Capps, M.: Surface reconstruction with anisotropic density-scaled alpha shapes. In: Proceedings of Visualization 98 (Oct. 1998), (Ebert, D., Hagen, H., Rushmeier, H., eds.), pp. 67–72. Los Alamitos: IEEE Computer Society Press, 1998.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Wien

About this paper

Cite this paper

Heckel, B., Uva, A.E., Hamann, B., Joy, K.I. (2001). Surface Reconstruction Using Adaptive Clustering Methods. In: Brunnett, G., Bieri, H., Farin, G. (eds) Geometric Modelling. Computing, vol 14. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6270-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6270-5_11

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83603-3

  • Online ISBN: 978-3-7091-6270-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics