Advertisement

Interactive Rendering of Trees with Shading and Shadows

  • Alexandre Meyer
  • Fabrice Neyret
  • Pierre Poulin
Part of the Eurographics book series (EUROGRAPH)

Abstract

The goal of this paper is the interactive rendering of 3D trees covering a landscape, with shading and shadows consistent with the lighting conditions. We propose a new IBR representation, consisting of a hierarchy of Bidirectional Textures, which resemble 6D lightfields. A hierarchy of visibility cube-maps is associated to this representation to improve the performance of shadow calculations.

An example of hierarchy for a given tree can be a small branch plus its leaves (or needles), a larger branch, and the entire tree. A Bidirectional Texture (BT) provides a billboard image of a shaded object for each pair of view and light directions. We associate a BT for each level of the hierarchy. When rendering, the appropriate level of detail is selected depending on the distance of the tree from the viewpoint. The illumination reaching each level is evaluated using a visibility cube-map. Thus, we very efficiently obtain the shaded rendering of a tree with shadows without loosing details, contrary to mesh simplification methods. We achieved 7 to 20 fps fly-throughs of a scene with 1000 trees.

Keywords

Real-time rendering natural scenes forests IBR levels of detail billboards 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S.E. Chen. Quicktime VR — an image-based approach to virtual eovironment navigation. In SIGGRAPH 95 Conference Proceedings. pages 29–38, August 1995.Google Scholar
  2. 2.
    K. Dana, B. van Ginneken. S. Nayar, and J. Koenderink. Columbia-utrecht reflectance and texture database, http://www.cs.columbia.edu/cave/curet/.index.html.Google Scholar
  3. 3.
    K.J. Dana, B. van Ginneken, S.K. Nayar, and J.J. Koenderiok. Reflectance and texture of real-world surfaces. ACM Transactions on Graphics.. 18(1):1–34. January 1999.CrossRefGoogle Scholar
  4. 4.
    J.-M. Dischler. Efficiently rendering macrogeometric surface structures using bi-directional texture functions. In Eurographics Workshop on Rendering 98, pages 169–180, 1998.CrossRefGoogle Scholar
  5. 5.
    F. Durand. G. Drettakis. J. Thollot, and C. Puech. Conservative visibility preprocessing using extended projections. In SIGGRAPH 2000, Computer Graphics Proceedings, pages 239–248, 2000.Google Scholar
  6. 6.
    S.J. Gortler. R. Grzeszczuk. R. Szeliski, and M.E Cohen. The lumigraph. In SIGGRAPH 96 Conference Proceedings, pages 43–54, August 1996.Google Scholar
  7. 7.
    A. LeBlanc, R. Turner. and D. Thalmann. Rendering hair using pixel blending and shadow buffers. Journal of Visualization and Computer Animation 2(3), pages 92–97. 1991.CrossRefGoogle Scholar
  8. 8.
    J. Lengyel and J. Snyder. Rendering with coherent layers. Proceedings of SIGGRAPH 97. pages 233–242. August 1997.Google Scholar
  9. 9.
    M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH 96 Conference Proceedings, pages 31–42. August 1996.Google Scholar
  10. 10.
    P.W.C. Maciel and P. Shirley. Visual navigation of large environments using textured clusters. 1995 Symposium on Interactive 3D Graphics, pages 95–102, April 1995.Google Scholar
  11. 11.
    N. Max. Hierarchical rendering of trees from precomputed multi-layer Z-buffers. In Eurographics Workshop on Rendering 1996, pages 165–174, June 1996.Google Scholar
  12. 12.
    N. Max. O. Deussen. and B. Keating. Hierarchical image-based rendering using texture mapping hardware. In Eurographics Workshop on Rendering 99, pages 57–62, 1999.CrossRefGoogle Scholar
  13. 13.
    N. Max and K. Ohsalci. Rendering trees from precomputed Z-buffer views. In Eurographics Workshop on Rendering 1995. June 1995.Google Scholar
  14. 14.
    N.L. Max. Horizon mapping: shadows for bump-mapped surfaces. The Visual Computer, 4(2):109–117. July 1988.CrossRefGoogle Scholar
  15. 15.
    A. Meyer and F. Neyret. Interactive volumetric textures. In Eurographics Workshop on Rendering 1998. pages 157–168. July 1998.Google Scholar
  16. 16.
    G.S.P. Miller. S. Rubin. and D. Ponceleon. Lazy decompression of surface light fields for precomputed global illumination. Eurographics Workshop on Rendering 1998. pages 281–292. June 1998.Google Scholar
  17. 17.
    J. Neider. T. Davis. and M. Woo. OpenGL Programming Guide. Addison-Wesley. 1993.Google Scholar
  18. 18.
    F.E. Nicodemus. J.C. Richmond. J.J. Hsia. I.W. Ginsberg. and T. Limperis. Geometric considerations and nomenclature for reflectance. October 1977.Google Scholar
  19. 19.
    T. Noma. Bridging between surface rendering and volume rendering for multi-resolution display. In Eurographics Workshop on Rendering 1995. pages 31–40. June 1995.Google Scholar
  20. 20.
    M.M. Oliveira. G. Bishop. and D. McAllister. Relief texture mapping. Proceedings of SIGGRAPH 2000. July 2000.Google Scholar
  21. 21.
    H. Pfister. M. Zwicker. J. van Baar. and M. Gross. Surfels: Surface elements as rendering primitives. Proceedings of SIGGRAPH 2000. pages 335–342, July 2000.Google Scholar
  22. 22.
    P. Prusinlciewicz. A. Lindenmayer, and J. Hanan. Developmental models of herbaceous plants for computer imagery purposes. In Computer Graphics (SIGGRAPH’ 88 Proceedings). volume 22. pages 141–150. August 1988.Google Scholar
  23. 23.
    W.T. Reeves. Particle systems — a technique for modeling a class of fuzzy objects. ACM Trans. Graphics. 2:91–108. April 1983.CrossRefGoogle Scholar
  24. 24.
    W.T. Reeves and R. Blau. Approximate and probabilistic algorithms for shading and rendering structured particle systems. In Computer Graphics (SIGGRAPH’ 85 Proceedings). volume 19(3). pages 313–322. July 1985.CrossRefGoogle Scholar
  25. 25.
    G. Schaufler. Per-object image warping with layered impostors. In Eurographics Workshop on Rendering 98. pages 145–156.1998.Google Scholar
  26. 26.
    G. Schaufler. J. Dorsey. X. Decoret. and F.X. Sillion. Conservative volumetric visibility with occluder fusion. In SIGGRAPH 2000. Computer Graphics Proceedings. pages 229–238. 2000.Google Scholar
  27. 27.
    G. Schaufler and W. Stürzlinger. A three dimensional image cacbe for virtual reality. Computer Graphics Forum. 15(3):227–236. August 1996.CrossRefGoogle Scholar
  28. 28.
    J. Shade. S.J. Gortler. L. He. and R. Szelislci. Layered depth images. Proceedings of SIGGRAPH 98. pages 231–242. July 1998.Google Scholar
  29. 29.
    J. Shade. D. Lischinski, D. Salesin, T. DeRose. and J. Snyder. Hierarchical image caching for accelerated walkthroughs of complex environments. Proceedings of SIGGRAPH 96. pages 75–82, August 1996.Google Scholar
  30. 30.
    A.J. Stewart. Hierarchical visibility in terrains. In Eurographics Workshop on Rendering 97. June 1997.Google Scholar
  31. 31.
    A.J. Stewart. Fast horizon computation at all points of a terrain with visibility and shading applications. IEEE Transactions on Visualization and Computer Graphics. 4(1):82–93. March 1998.CrossRefGoogle Scholar
  32. 32.
    J. Weber and J. Penn. Creation and rendering of realistic trees. In Computer Graphics (SIGGRAPH’ 95 Proceedings). pages 119–128. August 1995.Google Scholar
  33. 33.
    L. Williams. Casting curved shadows on curved surfaces. In Computer Graphics (SIGGRAPH’ 78 Proceedings). volume 12(3). pages 270–274. August 1978.CrossRefGoogle Scholar
  34. 34.
    D.N. Wood. D.I. Azuma, K. Aldinger. B. Curless. T. Duchamp. D.H. Salesin, and W. Stuetzle. Surface light fields for 3D photography. In SIGGRAPH 2000, Computer Graphics Proceedings, pages 287–296. 2000.Google Scholar
  35. 35.
    H. Zhang. D. Manocha. T. Hudson. and K.E. Hoff III. Visibility culling using hierarchical occlusion maps. In SIGGRAPH 97 Conference Proceedings. pages 77–88. August 1997.Google Scholar

Copyright information

© Springer-Verlag Wien 2001

Authors and Affiliations

  • Alexandre Meyer
    • 1
  • Fabrice Neyret
    • 1
  • Pierre Poulin
    • 2
  1. 1.iMAGIS-GRAVIR/IMAG-INRIAUSA
  2. 2.LIGUMCanada

Personalised recommendations