Skip to main content

Microangiopathy-related cerebral damage and angiotensinogen gene: from epidemiology to biology

  • Conference paper
Book cover Ageing and Dementia Current and Future Concepts

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 62))

Abstract

Microangiopathy-related cerebral damage (MARCD) is a common finding in the elderly. It may lead to cognitive impairment and gait disturbances. Arterial hypertension and age are the best accepted risk factors for MARCD. Genes involved in blood pressure regulation, like genes encoding the proteins of the renin-angiotensin system (RAS) therefore represents good candidate genes for MARCD. Plasma angiotensinogen level is a major determinant of the RAS activity. Positive correlation between angiotensinogen gene expression and RAS activity, as well as blood pressure were observed. Common mutations described in the AGT promoter were able to alter AGT expression in cell culture. We described that 4 frequent mutations at the AGT promoter are combined in 5 haplotypes coded as A (−6:g, −20:a,−152:g, −217:g), B (−6:a, −20:c, −152:g, −217:g), C (−6:a, −20:c, −152:a, −217:g), D (−6:a, −20:a, −152:g, −217:g), and E (−6:a, −20:a, −152:g, −217:a). The B haplotype was significantly associated with MARCD in the cohort of the Austrian Stroke Prevention Study (p = 0.005). The association was independent of hypertension, which pinpointed to a possible role of the local RAS in this relationship. Investigation of the promoter activity of the AGT gene in astrocytes suggests that expression of this gene may be modulated by the haplotype.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Awad LA, Johnson PC, Spetzler RF, Hodak JA (1986) Incidental subcortical lesions identified on magnetic resonance imaging in the elderly. II. Postmorte histopatho-logical correlations. Stroke 17: 1090–1097

    Article  CAS  PubMed  Google Scholar 

  • Bots ML, van Swieten JC, Breteler MMB, de Jong PTVM, van Gijn J, Hofman A, Grobbee DE (1993) Cerebral white matter lesions and atherosclerosis in the Rotterdam study. Lancet 341: 1232–1237

    Article  CAS  PubMed  Google Scholar 

  • Bunnemann B, Fuxe K, Ganten D (1992)The brain renin-angiotens system: localisation and general significance. J Cardiovasc Pharmacol 19[5uppl 6]: S51–S62

    Article  CAS  PubMed  Google Scholar 

  • Carmelli D, DeCarli C, Swan G, Jack LM, Reed T, Wolf PA, Miller BL (1998) Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke 29: 1177–1181

    Article  CAS  PubMed  Google Scholar 

  • Fazekas F, Kleinert R, Offenbacher H, Schmidt R, Kleinert G, Payer F, Radner H, Lechner H (1993) Pathologic correlates of incidental white matter signal hyper-intensities.Neurology 43:1683–1689

    Article  CAS  PubMed  Google Scholar 

  • Ford CM, LiS, Pickering JG (1999) AngiotensinIIstimulatescollagensynthesisinhuman vascular smooth muscle cells. Involvement of the AT(I) receptor, transforming growth factor-beta, and tyrosine phosphorylation. Arterioscler Thromb Vasc Bioi 19:1843–1851

    Article  CAS  Google Scholar 

  • Fukai T, Siegfried MR, Ushio-Fukai M, Grie KK, Harrison DG (1999) Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ Res 85: 23–28

    Article  CAS  PubMed  Google Scholar 

  • Fukamizu A, Takahashi S, Seo MS, Tada M, Tanimoto K, Uehara S, Murakami K (1990) Structure and expression of the human angiotensin gene. J Bioi Chern 265: 7576–7582

    Google Scholar 

  • Haberl RL, Anneser F, Villringer A, Einhaupl KM (1990) Angiotensin II induces endot-helium dependent vasodilation of rat cerebral arterioles. Am J Physiol 258: H1840–1846

    CAS  PubMed  Google Scholar 

  • Haberl RL, Decker-Hermann PJ, Hermann K (1996) Effect of renin on brain arterioles and cerebral blood flow in rabbits. J Cereb Blood Flow Metab 16: 714–719

    Article  CAS  PubMed  Google Scholar 

  • Inoue I, Nakajima T, Williams CS, Quackenbush J, Puryear R, Powers M, Cheng T, Ludwig EH, Sharma AM, Hata A, Jaunemaitre X, Lalouel JM (1997) A nucleotide ubstitution in the promoter of human angiotensinogen is associated with essential hypertension and affects basal transcription in vitro. J Clin Invest 99: 1786–1797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jeunemaitre X, Soubrier F, Kotelevtsev YV, Lifton RP, Williams CS, Charru A, Hunt SC, Hopkins PN, Williams RR, Lalouel JM (1992) Molecular basis of human hypertension: role of angiotensinogen. Cell 71(1): 169–180

    Article  CAS  PubMed  Google Scholar 

  • Kakinuma Y, Hama H, Sugiyama F, Yagami K, Goto K, Murakami K, Fukamizu A (1998) Impaired blood-brain barrier function in angiotensinogen deficient mice. Nat Med 4: 1078–1080

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Krege JR, Kluckman KD, Hagaman JR, Hodgin JB, Best CF, Jenette JC, Coffman TM, Maeda N, Smithies O (1995) Genetic control of blood pressure and the angiotensinogen locus. Proc Natl Acad Sci USA 92: 2735–2739

    Article  CAS  PubMed  Google Scholar 

  • Lynch KR, Peach MJ (1991) Molecular biology of angiotensinogen. ypertension17:263–269

    Google Scholar 

  • Marrero MB, Schieffer B, Paxton WG, Heerdt L, Berk Be, Delafontaine P, Bernstein KE (1995) Direct stimulation of Jak/STAT pathway by the angiotensin II ATlreceptor. Nature 375: 247–250

    Article  CAS  PubMed  Google Scholar 

  • Morgan T, Craven C, Nelson L, Lalouel JM, Ward K (1997) Angiotensinogen T235 expression is elevated in decidual spiral arteries. J Clin Invest 100: 1406–1415

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pantoni L, Garcia JR (1995) The significance of cerebral white matter abnormalities 100 years after Binswanger’s report. A review. Stroke 26: 1293–1301

    Article  CAS  Google Scholar 

  • Paul M, Wagner J, Dzau VJ (1993) Gene expression of the renin-angiotensin system in human tissues. J Clin Invest 91: 2058–2064

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rajagopalan S, Kurz S, Miinzel T, Tarpey M, Freeman BA, Griendling KK, Harrison DG (1996) Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADHINADPH oxidase activation. J Clin Invest 97:1916–1923

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt H, Fazekas F, Kostner GM, Schmidt R (2000) Genetic aspects of microangiopathy-related cerebral damage. J Neural Transm [Suppl] 59: 15–21

    CAS  Google Scholar 

  • Schmidt H, Fazekas F, Kostner GM, van Duijn CM, Schmidt R (2001) Angiotensinogen gene promoter haplotype and microangiopathy-related cerebral damage. Results of the Austrian Stroke Prevention Study. Stroke 32: 405–412

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Fazekas F, Hayn M, Schmidt H, Kapeller P, Roob G, Offenbacher H, Schumacher M, Eber B, Weinrauch V, Kostner GM, Esterbauer H (1997) Risk factors for microangiopathy-related cerebral damage in the Austrian Stroke Prevention Study. J Neurol Sci 152: 15–21

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Schmidt H, Fazekas F, Launer LJ, Niederkorn K, Kapeller P, Lechner A, Kostner GM (2001) Angiotensinogen polymorphism M235T, carotid atherosclerosis,and small vessel disease-related cerebral abnormalities. Hypertension 38: 110–115

    Article  CAS  PubMed  Google Scholar 

  • Taubman MB, Berk BC, Izumo S, Tsuda T, Alexander RW, Nadal-Ginard B (1989) Angiotensin II induces c-fos mRNA in aortic smooth muscle. J Bioi Chern 264: 526–530

    Google Scholar 

  • Ushio-Fukai M, Alexander RW, Akers M, Griendling KK (1998) p38 Mitogen-activated protein kinase is a critical component of the redox-sensitive signaling pathways activated by angiotensin II. J Bioi Chern 273: 15022–15029

    Article  CAS  Google Scholar 

  • Van Swieten JC, Van den Hout JHW, Van Ketel BA, Hijdra A, Wokke JHJ, Van Gijn J (1991a). Periventricular lesions in the white on magnetic resonance imaging in the elderly. A morphometric correlation with arteriolosclerosis and dilated perivascular spaces. Brain 114: 761–774

    Article  Google Scholar 

  • Van Swieten JC, Geykes GG, Derix MMA, Peeck BM, Ramos LMP, van Latum JC, van Gijn J (1991b) Hypertension in the elderly is associated with white matter lesions and cognitive decline. Ann Neurol 30: 825–830

    Article  Google Scholar 

  • Weber H, Taylor SD, Molloy CJ (1994) Angiotensin II induces delayed mitogenesis and cellular proliferation in rat aortic smooth muscle cells. J Clin Invest 93: 788–798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wei AP, Kontos HA, Patterson JL (1978) Vasoconstrictor effect of angiotensin on pial arteries. Stroke 9: 487–489

    Article  CAS  PubMed  Google Scholar 

  • Whalley ET, Wa WM (1988) Cerebrovascular reactivity to angiotensin and angiotensin-converting enzyme activity in cerebrospinal fluid. Brain Res 438: 1–7

    Article  CAS  PubMed  Google Scholar 

  • Wright JW, Harding JW (1992) Regulatory role of brain angiotensinogens in the control of physiological and behavioral responses. Brain Res Rev 17: 227–262

    Article  CAS  PubMed  Google Scholar 

  • Yanai K, Nibu Y, Murakami K, Fukamizu A (1996) A cis-Acting DNA Element located between TATA box and transcription initiation site is critical in response to regulatory sequences in human angiotensinogen gene. J Bioi Chern 271: 15981–15986

    Article  CAS  Google Scholar 

  • Yanai K, Matsuyama S, Murakami K, Fukamizu A (1997) Differential action of AGCEF2 upon cell type-dependent expression of human angiotensinogen gene. FEBS Lett 412: 285–289

    Article  CAS  PubMed  Google Scholar 

  • Yanai K, Saito T, Hirota K, Kobayashi H, Murakami K, Fukamizu A (1997) Molecular variation of the human angiotensinogen core promoter element located between the TATA box and transcription initiation site affects its transcriptional activity. J Bioi Chern 272(48): 30558–30562

    Article  CAS  Google Scholar 

  • Yang G, Merril DC, Thompson MW, Robillard JE, Sigmund CD (1994) Functional expression of the human angiotensinogen gene in transgenic mice. J Bioi Chern 269: 32497–32502

    CAS  Google Scholar 

  • Zhao YY, Zhou J, Narayanan CS, Cui Y, Kumar A (1999) Role of CIA polymorphism at-20 on the expression of human angiotensinogen gene. Hypertension 33: 108–115

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag/Wien

About this paper

Cite this paper

Schmidt, H., Fazekas, F., Schmidt, R. (2002). Microangiopathy-related cerebral damage and angiotensinogen gene: from epidemiology to biology. In: Jellinger, K.A., Schmidt, R., Windisch, M. (eds) Ageing and Dementia Current and Future Concepts. Journal of Neural Transmission. Supplementa, vol 62. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6139-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6139-5_5

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83796-2

  • Online ISBN: 978-3-7091-6139-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics