Skip to main content

Recent developments in the pathology of Parkinson’s disease

  • Conference paper

Part of the book series: Journal of Neural Transmission. Supplementa ((NEURAL SUPPL,volume 62))

Abstract

Parkinson’s disease (PD) is morphologically characterized by progressive loss of neurons in the substantia nigra pars compacta (SNpc) and other subcortical nuclei associated with intracytoplasmic Lewy bodies and dystrophic (Lewy) neurites mainly in subcortical nuclei and hippocampus und, less frequently in cerebral cortex. SN cell loss is significantly related to striatal dopamine (DA) deficiency as well as to both the duration and clinical severity of disease, The two major clinical subtypes of PD show different morphologic lesion patterns: the akinetic-rigid form has more severe cell loss in the ventrolateral part of SN with negative correlation to DA loss in the posterior putamen, and motor symptoms related to overacitivty of the GABAergic “indirect” motor loop, which causes inhibition of the glutamatergic thalamocortical pathway and reduced cortical activation. The tremor-dominant type shows more severe cell loss in the medial SNpc and retrorubal field A 8, which project to the matrix of the dorsolateral striatum and ventromedial thalamus, thus causing hyperactivity of thalamomotor and cerebellar projections. These and experimental data suggesting different pathophysiological mechanisms for the major clinical subtypes of PD may have important therapeutic implications.

Lewy bodies, the morphologic markers of PD, are composed of hyperphosphorylated neurofilament proteins, lipids, redox-active iron, ubiquitin, and α-synuclein, showing a continuous accumulation in the periphery and of ubiquitin in the central core. α-synuclein, is usually unfolded in α-helical form. By gene mutation, environmental stress or other factors it can be transformed to β-folding which is sensible to self-aggregation in filamentous fibrils and formation of insoluble intracellular inclusions that may lead to functional disturbances and, finally , to death of involved neurons. While experimental and tissue culture studies suggest that apoptosis, a genetically determined form of programmed cell death, represents the most common pathway in neurodegeneration, DNA fragmentation, overexpression of proapoptotic proteins and activated caspase-3, the effector enzyme of the terminal apopoptic cascade, have only extremely rarely been detected in SN of PD brains. This is in accordance with the rapid course of apoptotis and the extremely slow progression of the neurodegenerative process in PD. The biological role of Lewy bodies and other intracellular inclusions, the mechanisms of the intracellular aggregation of insoluble protein deposits, and their implication for cellular dysfunction resulting in neurodegeneration and cell demise are still unresolved. Further elucidation of the basic molecular mechanisms of cytoskeletallesions will provide better insight into the pathogenesis of neurodegeneration in PD and related disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albin RL (1995) The pathophysiology of chorea, ballism and parkinsonism. ParkinsonismRel Disord 1: 2–133

    Google Scholar 

  • Anderson JK (2001) Does neuronal loss in Parkinson’s disease involve programmed celldeath? Bio Essays 23: 640–647

    Google Scholar 

  • Anglade P, Vyas S, Javoy-Agid F, Herrero MT, Michel PP, Marquez J, Mouatt-Prient A,Ruberg M, Agid Y (1997) Apoptosis and autophagy in nigral neurons of patients withParkinson’s disease. Histol Histopathol 12: 25–31,1997

    CAS  PubMed  Google Scholar 

  • Anichtchik OV, Rinne JO, Kalimo H, Panula P (2000) An altered histaminergicinnervation of the substantia nigra in Parkinson’s disease. Exp Neurol 163: 20–30

    CAS  PubMed  Google Scholar 

  • Antonini A, Moeller JR, Nakamura T, Spetsieris P, Dhawan V, Eidelberg D (1998) Themetabolic anatomy of tremor in Parkinson’s disease. Neurology 51: 803–810

    CAS  PubMed  Google Scholar 

  • Arai Y,Yamazaki M,Mori O,Muramatsu H, Asano G,Katayama Y,(2001) a-synuclein-positive structures in cases with sporadic Alzheimer’s disease: morphology and itsrelationship to tau aggregation. Brain Res 888: 287–296

    CAS  PubMed  Google Scholar 

  • Rendt T, Holzer M, Fruth R, Bruckner MK, Gartner U (1998) Phosphorylation of tau,Aβ-formation, and apoptosis after in vivo inhibition of PP-1 and PP-2A. NeurobiolAging 19: 3–13

    Google Scholar 

  • Baba M, Nakajo S, Tu PH, Tomita T, Nakaya K, Lee VM, Trojanowski JQ, Iwatsubo T,(1998) Aggregation of a-synuclein in Lewy bodies of sporadic Parkinson’s diseaseand dementia with Lewy bodies. Am J Pathol 152: 879–884

    CAS  PubMed  Google Scholar 

  • Banati RB, Daniel SE, Path MRC, Blunt SB (1998) Glial pathology but absence of apoptotic nigral neurons in long-standing Parkinson’s disease. Mov Disord 13: 221–227

    CAS  PubMed  Google Scholar 

  • Benarroch EE, Schmeichel AM, Parisi JE (2000) Involvement of the ventrolateral medulla in parkinsonism with autonomic failure. Neurology 54: 963–968

    CAS  PubMed  Google Scholar 

  • Benisty S, Boissiere F, Faucheux B, Agid Y, Hirsch EC (1998) TRKB messenger RNA expression in normal human brain and in the substantia nigra of parkinsonian patients ¡ª an in situ hybridization study. Neuroscience 86: 813–826

    CAS  PubMed  Google Scholar 

  • Berger B, Gaspar P, Verney C (1991) Dopaminergic innervation of the cerebral cortex: unexpected differences between rodents and primates. Trends Neurosci 14: 21–27

    CAS  PubMed  Google Scholar 

  • Bernheimer H, Birkmayer W, Hornykiewicz O, Jellinger K, Seitelberger P (1973) Brain dopamine and the syndromes of Parkinson and Huntington: clinical, morphological and neurochemical correlations. J Neurol Sci 20: 415–455

    CAS  PubMed  Google Scholar 

  • Bezard E, Brotchie JM, Gross CE (2001) Pathophysiology of levodopa-induced dyskinesia: potential for new therapies. Nat Rev Neurosci 2: 577–588

    CAS  PubMed  Google Scholar 

  • Blandini F, Nappi G, Tassorelli C, Martignoni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62: 63–88

    CAS  PubMed  Google Scholar 

  • Boecker H, Brooks DJ (1998) Functional imaging of tremor. Mov Disord 13: 64–72

    PubMed  Google Scholar 

  • Braak H, Braak E (2000) Pathoanatomy of Parkinson’s disease. J Neurol 247 [Suppl 2]: 113–10

    Google Scholar 

  • Braak H, Rub U, Sandmann-Keil D, Gai WP, de Vos RA, Jansen Steur EN, Arai K, Braak E (2000) Parkinson’s disease: affection of brain stem nuclei controlling premotor and motor neurons of the somatomotor system. Acta Neuropathol 99:489–495

    CAS  PubMed  Google Scholar 

  • Braak E,Sandmann-Keil D,Rub U,Gai WP,de Vos RAI, Jansen Steur ENH,Arai K, Braak H,(2001) a-synuclein immunopositive Parkinson’s disease-related inclusion bodies in lower brain stem nuclei. Acta Neuropathol 101:195–202

    CAS  PubMed  Google Scholar 

  • Broe M, Shephard CE, Milward EA, Halliday GM (2001) Relationship between DNA-fragmentation, morphological changes and dementia with Lewy bodies. Acta Neuropathol 101: 616–624

    CAS  PubMed  Google Scholar 

  • Calingasan NY, Park LC, Calo LL, Trifiletti RR, Gandy SE, Gibson GE (1998) Induction of nitric oxide synthase and microglial responses precede selective cell death induced by chronic impairment of oxidative metabolism. Am J Pathol 153: 599–610

    CAS  PubMed  Google Scholar 

  • Cassarino DS, Parks JK, Parker WD, Bennett JP (1999) The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism. Biochim Biophys Acta 1453: 49–62

    CAS  PubMed  Google Scholar 

  • Castellani RJ, Siedlak SL, Perry G, Smith MA (2000) Sequestration of iron by Lewy bodies in Parkinson’s disease. Acta Neuropathol 100:111–114

    CAS  PubMed  Google Scholar 

  • Choi WS, Yoon SY, Oh TH, Choi EJ, O’Malley KL, Oh YJ (1999) Two distinct mechanisms are involved in 6-hydroxydopamine-and MPP+-induced dopaminergic neuronal cell death: role of caspases, ROS, and JNK. J Neurosci Res 57: 86–94

    CAS  PubMed  Google Scholar 

  • Chung KKK, Dawson VL, Dawson TM (2001) The role of the ubiquitan-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. TINS 24 [Suppl]: S7–S14

    CAS  PubMed  Google Scholar 

  • Ciliax BJ, Drash GW, Staley JK, Haber S, Mobley CJ, Miller GW, Mufson EJ, Mash DC, Levey AI (1999) Immunocytochemical localization of the dopamine transporter in human brain. J Comp Neurol 409: 38–56

    CAS  PubMed  Google Scholar 

  • Clarke PGH, Apoptosis versus necrosis (1999) In: Koliatsosue M, Ratan RR (eds) Cell death and disease of the nervous system. Humana Press, Totowa, pp 3–28

    Google Scholar 

  • Counihan TJ, PenneyJB, Jr (1998) Regional dopamine transporter gene expression in the substantia nigra from control and Parkinson’s diseased brains. J Neurol Neurosurg Psychiatry 65: 164–169

    CAS  PubMed  Google Scholar 

  • Dale GE, Probst A, Luthert P, Martin J, Anderton BH, Leigh PN (1992) Relationships between Lewy bodies and pale bodies in Parkinson’s disease. Acta Neuropathol 83: 525–529

    CAS  PubMed  Google Scholar 

  • Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the humanbrain. II. Patterns of loss of dopamine-containing neurons in Parkinson’s disease.Brain 122: 1437–1448

    Google Scholar 

  • Davidson WS,Jonas A,Clayton DF,George JM,(1998) Stabilization of a-synucleinsecondary structure upon binding to synthetic membranes. J Biol Chem 273: 9443–9449

    CAS  PubMed  Google Scholar 

  • De Ceballos ML, Lopez-Lozano JJ (1999) Subgroups of parkinsonian patients differentiated by peptidergic immunostaining of caudate nucleus biopsies. Peptides 20: 249–257

    PubMed  Google Scholar 

  • Deuschl G, Wenzelburger R, Loffler K, Raethjen J, Stolze H (2000) Essential tremor andcerebellar dysfunction clinical and kinematic analysis of intention tremor. Brain 123(Pt 8): 1568–1580

    PubMed  Google Scholar 

  • Dickson D, Lin W-l, Liu W-K, Yen S-H (1999) Multiple system atrophy: a sporadicsynucleinopathy. Brain Pathol 9: 721–732

    CAS  PubMed  Google Scholar 

  • Dragunow M, Faull R,Lawlor P,Beilharz EJ,Singleton K,Walker EB,Mee E,(1995)In situ evidence for DNA fragmentation in Huntington’s disease striatum andAlzheimer’s disease temporal lobes. Neuroreport 6: 1053–1057

    CAS  PubMed  Google Scholar 

  • Duan W, Zhang Z, Gash DM, Mattson MP (1999) Participation of prostate apoptosisresponse-4 in degeneration of dopaminergic neurons in models of Parkinson’sdisease. Ann Neurol 46: 587–597

    CAS  PubMed  Google Scholar 

  • Duda JE, Lee VMY, Trojanowski JQ (2000) Neuropathology of synuclein aggregates. Newinsights into mechanism of neurodegenerative diseases. J Neurosci Res 61:121–127

    CAS  PubMed  Google Scholar 

  • Eberling JL, Pivirotto P, Bringas J, Bankiewicz KS (2000) Tremor is associated with PETmeasures of nigrostriatal dopamine function in MPTP-lesioned monkeys. Exp Neurol 165: 342–346

    CAS  PubMed  Google Scholar 

  • Eve DJ, Nisbet AP, Kingsburg AE, Temlett J, Marsden CD, Foster UJF (1997) Selectiveincrease in somatostatin mRNA expression in human basal ganglia in Parkinson’sdisease. Mol Brain Res 50: 59–70

    CAS  PubMed  Google Scholar 

  • Farrer M, Gwinn-Hardy K, Hutton M, Hardy J (1999) The genetics of disorders withsynuclein pathology and parkinsonism. Hum Mol Genet 8:1901–1905

    CAS  PubMed  Google Scholar 

  • Fearnley JM, Lees AJ (1994) Pathology of Parkinson’s disease. In: Calne DB (ed)Neurodegenerative diseases. Saunders, Philadelphia, pp 545–554

    Google Scholar 

  • Ferrer I, Blanco R, Cutillas B, Ambrosio S (2000) Fas and Fas-L expression in Huntington’s disease and Parkinson’s disease.Neuropathol Appl Neurobiol 26: 424–433

    Google Scholar 

  • Ferrer I, Blanco R, Marmona M, Puig B, Barrachina M, Gomec C, Ambrosio S, (2001)Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-jun, N-terminal kinase (SAPK/JNK) and p38kinase expression in Parkinson’s disease and dementia with Lewy bodies. J NeuralTransm 108: 1383–1396

    CAS  Google Scholar 

  • Forno LS (1996) Neuropathology of Parkinson’s disease. J Neuropathol Exp Neurol 55:259–272

    CAS  PubMed  Google Scholar 

  • Gai WP, Yuan HX, Li XQ, Power JT, Blumbergs PC, Jensen PH (2000) In situ and invitro study of colocalization and segregation of a-synuclein, ubiquitin, and lipids inLewy bodies. Exp Neurol 166: 324–333

    CAS  PubMed  Google Scholar 

  • Galvin JF, Lee VMY, Schmidt L, Tu P-H, Iwatsubo T, Trojanowski JQ, (1999)Pathobiology of the Lewy body. Adv Neurol 80: 313–324

    CAS  PubMed  Google Scholar 

  • Galvin JE, Lee VM,Trojanowski JQ,(2001) Synucleinopathies: clinical and pathologicalimplications. Arch Neurol 58:186–190

    CAS  PubMed  Google Scholar 

  • Elb DJ, Oliver E, Gilman S (1999) Diagnostic criteria for Parkinson disease. ArchNeurol 56: 33–39

    Google Scholar 

  • Gerfen C (1992) The neostriatal mosaic: multiple levels of compartmental organization.Trends Neurosci 15:133–139

    CAS  PubMed  Google Scholar 

  • Gleckman AM, Jiang Z, Liu Y, Smith TW (1999) DNA fragmentation in neuronsand glial cells indicates cellular injury but not apoptosis in Pick’s disease. ActaNeuropathol 98: 55–61

    CAS  Google Scholar 

  • Goldberg MS, Lansbury FT (2000) Is there a cause-and-effect relationship between a-synuclein fibrillation and Parkinson’s disease? Nat Cell Biol 2: E115–E119

    CAS  PubMed  Google Scholar 

  • Gomez-Tortosa E, Newell K,Irizarry MC,Sanders JL,Hyman BT,(2000) alpha-Synuclein immunoreactivity in dementia with Lewy bodies: morphological stagingand comparison with ubiquitin immunostaining. Acta Neuropathol 99: 352–357

    CAS  PubMed  Google Scholar 

  • Graeber MB, Grasbon-Frodl E, Abell-Aleff P, et al (1999) Nigral neurons are likely to dieof a mechanism other than classical apoptosis in Parkinson’s disease. ParkinsonismRel Disord 5: 187–192

    CAS  Google Scholar 

  • Graham JM, Sagar HJ (1999) A data-driven approach to the study of heterogeneitiy inidiopathic Parkinson’s disease: identification of three distinct subgroups. Mov Disord 14: 10–20

    CAS  PubMed  Google Scholar 

  • Groenewegen HJ (1997) Cortical-subcortical relationships and the limbic forebrain. In:Timble MR, Cummings JL (eds) Contemporary behavioral neurology. Butterworth-Heinemann, Boston, pp 29–48

    Google Scholar 

  • Guttman M, Burkholder J, Kish SJ, Hussey D, Wilson A, DaSilva J, Houle S, (1997)[HC]RTI-32 PET studies of the dopamine transporter in early dopa-naiveParkinson’s disease: implications for the symptomatic threshold. Neurology 48:1578–1583

    CAS  PubMed  Google Scholar 

  • Halliday GM, McRitchie DA, Cartwright HR, Pamphlett HS, Hely MA, Morris JGL,(1996) Midbrain neuropathology in idiopathic Parkinson’s disease and diffuse Lewybody disease. J Clin Neurosci 3: 52–60

    CAS  PubMed  Google Scholar 

  • Hardman CD, Halliday GM (1999a) The external globus pallidus in patients withParkinson’s disease and progressive upranuclear palsy. Mov Disord 14: 626–633

    CAS  PubMed  Google Scholar 

  • Hardman CD, Halliday GM (1999b) The internal globus pallidus is affected in progressive supranuclear palsy and Parkinson’s isease. Exp Neurol 158:135–142

    CAS  PubMed  Google Scholar 

  • Hardman CD, Halliday GM, McRitchie DA, Morris JGL (1997) The subthalamic nucleusin Parkinson’s disease and progressive supranuclear palsy. J Neuropathol Exp Neurol 56: 132–142

    Google Scholar 

  • Hartmann A, Hirsch EC (2001) Parkinson’s disease: the apoptosis hypothesis revisited.Adv Neurol 86:143–153

    CAS  PubMed  Google Scholar 

  • Hartmann A, Hunot S, Michel PP, Muriel MP, Vyas S, Faucheux BA, Mouatt-Prigent A,Turmel H, Srinivasan A, Ruberg M, Evan GI, Agid Y, Hirsch EC (2000) Caspase-3.A vulnerability factor and final effector in apoptotitc death of dopaminergic neuronsin Parkinson’s disease. Proc Natl Acad Sci USA 97: 2875–2880

    CAS  Google Scholar 

  • Hartmann A, Troadec JD, Hunot S, Kikly K, Faucheux BA, Mouatt-Prigent A, Ruberg M, Agid Y, Hirsch EC (2001) Caspase-8 is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 21: 2247–2255

    CAS  PubMed  Google Scholar 

  • Hartmann A, Mouatt-Prigent A, Faucheux BA, Agid Y, Hirsch EC (2002) FADD: A linkbetween TNF family receptors and caspases in Parkinson’s disease. Neurology 58:308–310

    CAS  PubMed  Google Scholar 

  • Hashimoto M, Masliah E, (1999) a-synuclein in Lewy body disease and Alzheimer’sDisease. Brain Pathol 9: 707–720

    CAS  PubMed  Google Scholar 

  • He Y, Lee T, Leong SK, (2000) 6-hydroxydopamine induced apoptosis of dopaminergiccells in the rat substantia nigra. Brain Res 858: 163–166

    CAS  PubMed  Google Scholar 

  • Henderson JM, Carpenter K, Cartwright H, Halliday GM,(2000) Degeneration of thecentre median-parafascicular complex in Parkinson’s disease. Ann Neurol 47: 345–352

    CAS  PubMed  Google Scholar 

  • Hirsch EC (2000) Glial cells and Parkinson’s disease. J Neurol 247 [Suppl 2]: 1158–62

    Google Scholar 

  • Howells DW, Porritt MJ, Wong JY, Batchelor PE, Kalnins R, Hughes AJ, Donnan GA,(2000) Reduced BDNF mRNA expression in the Parkinson’s disease substantianigra. Exp Neurol 166: 127–135

    CAS  PubMed  Google Scholar 

  • Hsu LJ, Sagara Y, Arroyo A, Rockenstein E, Sisk A, Mallory M, Wong J (2000) a-synuclein promotes mitochondrial deficit andoxidative stress. Am J Pathol 157: 401–440

    Google Scholar 

  • Hughes AJ, Daniel SE, Lees AJ (2001) Improved accuracy of clinical diagnosis of Lewybody Parkinson’s disease. Neurology 57: 1497–1499

    CAS  PubMed  Google Scholar 

  • Hughes AJ, Daniel SEW, Ben-Shlomo Y, Lees AJ (2002) The accuracy of diagnosis ofparkinsonian syndromes in a specialist movement disorder service. Brain 125: 861–870

    PubMed  Google Scholar 

  • Ito H, Kusaka H, Matsumoto S, Imai T (1996) Striatal efferent involvement and itscorrelation to levodopa efficiacy in patients with multiple system atrophy. Neurology47: 1291–1299

    Google Scholar 

  • Itoh K, Weis S, Mehraein P, Muller-Hocker J (1997) Defects of cytochrome c oxidase in the substansia nigra of Parkinson’s disease: an immunohistohcemical and morpho-metric study. Mov Disord 12: 9–16

    CAS  PubMed  Google Scholar 

  • Ito K, Morrish PK, Rakshi JS, Uema T, Ashburner J, Bailey DL, Friston KJ, Brooks DJ,(1999) Statistical parametric mapping with 18F-dopa PET shows bilaterally reducedstriatal and nigral dopaminergic function in early Parkinson’s disease. J NeurolNeurosurg Psychiatry 66: 754–758

    CAS  Google Scholar 

  • Jellinger KA (1991) Pathology of Parkinson’s disease. Changes other than the nigrostriatal pathway. Mol Chem Neuropathol 14: 153–197

    CAS  PubMed  Google Scholar 

  • Jellinger KA (1998) Neuropathology of movement disorders. Neurosurg Clin North Am 9: 237–262

    Google Scholar 

  • Jellinger KA (1999) Post mortem studies in Parkinson’s disease ¡ª is it possible to detect brain areas for specific symptoms? J Neural Transm [Suppl] 56: 1–29

    CAS  Google Scholar 

  • Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2001a) The pathology of Parkinson’s disease. Adv Neurol 86: 55–72

    CAS  PubMed  Google Scholar 

  • Jellinger KA (2001b) Cell death mechanisms in neurodegeneration. J Cell Mol Med 5:1–17

    CAS  PubMed  Google Scholar 

  • Jellinger KA, Stadelmann C (2000) The enigma of cell death in neurodegenerativedisorders. J Neural Transm [Suppl] 60: 365–380

    Google Scholar 

  • Jenner P (1998) Oxidative mechanisms in nigral cell death in Parkinson’s disease. MovDisord 13: 24–34

    Google Scholar 

  • Jha N, Jurma OP, Lalli G, Liu Y, Pettus EH, Greenamyre JT, Liu RM,(2000) Gluthathione depletion in PC12 results in selective inhibitationof mitochondrial complex I activity: implications for Parkinson’s disease. J Biol Chem 275: 26096–26101

    CAS  PubMed  Google Scholar 

  • Kassubek J, Jungling FD, Hellwig B, Spreer J, Lucking CN (2002) Thalamic gray matterchanges in unilateral parkinsonian resting tremor: a voxel-based morphametricanalysis of 3-dimensional magnetic resonance imaging. Neurosci Lett 323: 29–32

    CAS  PubMed  Google Scholar 

  • Kholodilov NG,Burke RE (1999) Synuclein expression is decreased in ratsubstantia nigra following induction of apoptosis by intrastriatal 6-hydroxydopamine.Neurosci Lett 275: 105–108

    Google Scholar 

  • Kingsbury AE, Mardsen CD, Foster OJF (1998) DNA fragmentation in human substantia nigra: apoptosis or perimortem effect? Mov Disord 13: 877–884

    CAS  PubMed  Google Scholar 

  • Kingsbury AE, Marsden CD, Foster OJF (1999) The vulnerability of nigral neurons toParkinson’s disease is unrelated to their intrinsic capacity for dopamine synthesis: anin situ hybridisation study. Mov Disord 14: 206–219

    CAS  PubMed  Google Scholar 

  • Kingsbury AE, Cooper M, Schapira AH, Foster OJ (2001) Metabolic enzyme expressionin dopaminergic neurons in Parkinson’s disease: an in situ hybridization study. AnnNeurol 50: 142–149

    CAS  Google Scholar 

  • Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in thestriatum of patients with idiopathic Parkinson’s disease. Pathophysiologic and clinicalimplications. N Engl J Med 318: 876–880

    CAS  PubMed  Google Scholar 

  • Lach H, Grimes D, Benoit B, Minkiewicz-Janda A (1992) Caudate nucleus pathology inParkinson’s disease. Ultrastructural and biochemical findings in biopsy material. ActaNeuropathol 83: 352–360

    CAS  Google Scholar 

  • Langston JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D (1999) Evidenceof active nerve cell degeneration in the substantia nigra of humans years afterl-methyl-4-phenyl-l, 2, 3, 6-tetrahydropyridine exposure. Ann Neurol 46: 598–605

    CAS  PubMed  Google Scholar 

  • Lassman H, Bancher C, Breitschopf H, Wegiel J, Bobinski M, Jellinger K, WisniewskiHM (1995) Cell death in Alzheimer’s disease evaluated by DNA fragmentation insitu. Acta Neuropathol 89: 35–41

    Google Scholar 

  • Lee MS, Kim YD, Im JH, Rinne JO, Bhatia KP, (1999) 123 I-IPT brain SPECT study in essential tremor and Parkinson’s disease. Neurology 52: 1422–1426

    CAS  PubMed  Google Scholar 

  • Levin S, Bucci TJ, Cohen SM, Fix AS, Hardisty JF, LeGrand EK, Maronpot RR, Trump BF (1999) The nomenclature of cell death: recommendations of an ad hoc committee of the Society of Toxicologic Pathologists. Toxic Pathol 27: 484–490

    CAS  Google Scholar 

  • Linert W, Jellinger KA (2001) Cell death mechanisms and the role of iron in neurodegeneration. In: Segura-Aguilar J (ed) Mechanisms of degeneration and protection of the dopaminergic system. FP Graham Publishing, Johnson City, pp 22–65

    Google Scholar 

  • Litvan I, Maclntyre A, Goetz CG, Wenning GK, Jellinger K, Verny M, Bartko JJ,Jankovic J, McKee A, Brandel JP, Chaudhuri KR, Lai EC, D’Olhaberriague L,Pearce RK, Agid Y (1998) Accuracy of the clinical diagnoses of Lewy body disease,Parkinson disease, and dementia with Lewy bodies: a clinicopathologic study. ArchNeurol 55: 969–978

    CAS  Google Scholar 

  • Ma SY, Rinne JO, Collan Y, Roytta M, Rinne UK (1995) A quantitative morphometricalstudy of the neuron degeneration in the substantia nigra in patients with Parkinson’sdisease. J Neurol Sci 140: 40–45 Ma SY, Roytta M, Rinne JO, Collam Y, Rinne UK (1997) Correlation between neuromorphometry in the substantia nigra and clinical features in Parkinson’s diseaseusing disector counts. J Neurol Sci 151: 83–87

    Google Scholar 

  • Ma SY, Ciliax BJ, Stebbins G, Jaffar S, Joyce JN, Cochran EJ, Kordower JH, Mash DC,Levey AI, Mufson EJ (1999a) Dopamine transporter-immunoreactive neuronsdecrease with age in the human substantia nigra. J Comp Neurol 409: 25–37

    CAS  Google Scholar 

  • Ma SY, Roytta M, Collan Y, Rinne OJ (1999b) Unbiased morphometrical measurementsshow loss of pigmented nigral neurones with ageing. Neuropathol Appl Neurobiol 25:394–399

    CAS  PubMed  Google Scholar 

  • Majno G, Joris I (1995) Apoptosis, oncosis, and necrosis. An overview of cell death. AmJ Pathol 146: 3–15

    CAS  Google Scholar 

  • Marshall KA, Daniel SE, Cairns N, Jenner P, Halliwell B (1997) Upregulation of the anti-apoptotic protein Bcl-2 may be early event in neurodegeneration: studies on Parkinson’s incidental Lewy body disease. Biochem Biophys Res Commun 240: 84–87

    CAS  PubMed  Google Scholar 

  • Mattson MP (2000) Apoptosis in neurodegenerative disorders. Nature Rev Mol Cell Biol 2: 120–129

    Google Scholar 

  • McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA (1996) Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): report of the consortium on DLB international workshop. Neurology 47: 1113–1124

    CAS  PubMed  Google Scholar 

  • McNaught K StP, Olanow CW, Halliwell B, Isacson O, Jenner P (2001) Failure of the ubiquitin-proteasome system in arkinson’s disease. Nature Revs 2: 589–594

    Google Scholar 

  • McNaught KStP, Lee MH, Hyun D-H, Jenner P (2001) Glial cells and abnormal proteinhandling in the pathogenesis of Parkinson’s disease. Adv Neurol 86: 73–82

    CAS  PubMed  Google Scholar 

  • McRitchie DA, Cartwright HR, Halliday GM (1997) Specific A10 dopaminergic nuclei in the midbrain degenerate in Parkinson’s disease. Exp Neurol 144: 202–213

    CAS  PubMed  Google Scholar 

  • Miller GW, Staley JK, Heilman CJ, Perez JT, Mash DC, Rye DB, Levey AI (1997) Immunochemical analysis of dopamine transporter protein in Parkinson’s disease.Ann Neurol 41: 530–539

    CAS  Google Scholar 

  • Miller GW, Erickson JD, Perez JT, Penland SN, Mash DC, Rye DB, Levey AI (1999) Immunochemical analysis of vesicular monoamine transporter (VMAT2) protein in Parkinson’s disease. Exp Neurol 156: 138–148

    CAS  PubMed  Google Scholar 

  • Mochizuki H, Mori H, Mizuno Y (1997) Apoptosis in neurodegenerative disorders.J Neural Transm [Suppl] 50: 125–140

    CAS  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (1999) Brain-derived growth factor and nerve growth factor concentrations are de creased in the substantia nigra in Parkinson’s disease. Neurosci Lett 270: 45–48

    CAS  PubMed  Google Scholar 

  • Mogi M, Togari A, Kondo T, Mizuno Y, Komure O, Kuno S, Ichinose H, Nagatsu T (2000) Caspase activities and tumor necrosis factor receptor Rl (p55) level are elevated in the substantia nigra from Parkinsonian brains. J Neural Transm 107: 335–341

    Google Scholar 

  • Morrish PK, Sawle GV, Brooks DJ (1996) Regional changes in [18F]dopa metabolism inthe striatum in Parkinson’s disease. Brain 119: 2097–2103

    PubMed  Google Scholar 

  • Morrish PK, Rakshi JS, Bailey DL, Sawle GV, Brooks DJ (1998) Measuring the rate of progression and estimating the preclinical period of Parkinson’s disease with [18F]dopa PET. J Neurol Neurosurg Psychiatry 64: 314–319

    CAS  PubMed  Google Scholar 

  • Morsch R, Simon W, Coleman PD (1999) Neurons may live for decades with neurofibrillary tangles. J Neuropathol Exp Neurol 58: 188–197

    CAS  PubMed  Google Scholar 

  • Mouatt-Prigent A, Agid Y, Hirsch EC (1994) Does the calcium binding protein calretinin protect dopaminergic neurons against degeneration in Parkinson’s disease? Brain Res 668: 62–70

    CAS  PubMed  Google Scholar 

  • Mouatt-Prigent A, Karlsson JO, Yelnik J, Agid Y, Hirsch EC (2000) Calpastatin immu-noreactivity in the monkey and human brain of control subjects and patients with Parkinson’s disease. J Comp Neurol 419: 175–192

    CAS  PubMed  Google Scholar 

  • Mouradian MM (2002) Recent advances in the genetics and pathogenesis of Parkinson disease. Neurology 58: 179–185

    PubMed  Google Scholar 

  • Munch G, Luth HJ, Wong A, Arendt T, Hirsch E, Ravid R, Riederer P (2000) Crosslinking of a-synuclein by advanced glycation endproducts ¡ª an earlypathophysiological step in Lewy body formation? J Chem Neuroanat 20: 253–257

    CAS  PubMed  Google Scholar 

  • Nakamura S, Kawamoto Y, Nakano S, Akiguchi I, Kimura J (1998) Cyclin-dependent kinase 5 and mitogen-activated protein kinase in glial cytoplasmic inclusions in multiple system atrophy. J Neuropathol Exp Neurol 57: 690–698

    CAS  PubMed  Google Scholar 

  • Narhi L, Wood SJ, Steavenson S, Jiang Y, Wu GM, Anafi D, Kaufman SA,(1999) Both familial Parkinson’s disease mutations accelerate a-synuclein aggregation. J Biol Chem 273:9843–9846

    Google Scholar 

  • Neill TH, Brown SA, Rafols JA, Shoulson L (1998) Atrophy of medium spiny type I striatal dendrites in advanced Parkinson’s disease. Brain Res 455: 148–152

    Google Scholar 

  • Neystat M,Lynch T,Przedborski S,Kholodilov N,Rzhatskaya M,Burke RE,(1999) a-synuclein expression in substantia nigra and cortex in Parkinson’s disease. Mov Disord 14: 417–422

    CAS  PubMed  Google Scholar 

  • Nicotra A, Parvez SH (2000) Cell death induced by MPTP, a substrate for monoamine oxidase B. Toxicology 153: 157–166

    CAS  PubMed  Google Scholar 

  • Obeso JA, Guridi J, DeLong M (1997) Surgery for Parkinson’s disease. J NeurolNeurosurg Psychiatry 62: 2–8

    CAS  Google Scholar 

  • Oh JH, Choi WS, Kim JE, See JW, O’Malley KL, Oh YJ (1998) Overexpression of HA-BAX but not Bcl-2 or Bcl-xL attenuates 6-hydroxydopamine induced neuronalapoptosis. Exp Neurol 154:193–198

    CAS  PubMed  Google Scholar 

  • Olanow CW, Tatton WG (1999) Etiology and pathogenesis of Parkinson’s disease. Ann Rev Neurosci 22:123–144

    CAS  PubMed  Google Scholar 

  • Orth M, Schapira AHV (2001) Mitochondria and degenerative disorders. Am J MedGenet 106: 27–36

    CAS  Google Scholar 

  • Otsuka M, Ichiya Y, Kuwabara Y, Hosokawa S, Sasaki M, Yoshida T, Fukumura T,Masuda K, Kato M (1996) Differences in the reduced 18F-Dopa uptakes of the caudate and the putamen in Parkinson’s disease: correlations with the three main symptoms. J Neurol Sci 136: 169–173

    CAS  Google Scholar 

  • Parain K, Murer MG, Yan Q, Faucheux B, Agid Y, Hirsch E, Raisman-Vozari R (1999) Reduced expression of brain-derived neurotrophic factor protein in Parkinson’s disease substantia nigra. Neuroreport 10: 557–561

    CAS  PubMed  Google Scholar 

  • Parent A, Parent M, Levesque M (1999) Basal ganglia and Parkinson’s disease: an anatomical perspective. Neurosci News 2:19–26

    Google Scholar 

  • Paulus W, Jellinger K (1991) The neuropathologic basis of different clinical subtypes of Parkinson’s disease. J Neuropathol Exp Neurol 50: 143–155

    Google Scholar 

  • Perry G, Numomura A, Lucassen PJ, Lassmann H, Smith MA (1998) Apoptosis and

    Google Scholar 

  • Alzheimer’s disease. Science 282:1265 Probst-Cousin S, Rickert CH, Schmid KW, Gullotta F (1998) Cell mechanisms in multiple

    Google Scholar 

  • systematrophy. J Neuropathol Exp Neurol 57: 814–821 Reed JC, (2000) Mechanisms of apoptosis. Am J Pathol 157:1415–1430

    Google Scholar 

  • Reichmann H, Janetzky B (2000) Mitochondrial dysfunction ¡ª a pathogenetic factor inParkinson’s disease. J Neurol 247 [Suppl 2]: 1163–68

    Google Scholar 

  • Riederer P, Reichmann H, Janetzky B, Sian J, Lesch K-P, Lange KW, Double KL,Nagatsu T, Gerlach M (2001) Neural degeneration in Parkinson’s disease. Adv Neurol 86:125–136

    CAS  Google Scholar 

  • Roth KA, Kuan C-Y, Haydar TF, D’Sa-Eipper C, Shindler KS, Zheng TS, Kuida K, Flavell RA, Rakic P (2000) Epistatic and independent functions of caspase-3 and Bel-XL in developmental programmed cell death. Proc Natl Acad Sci USA 97: 466–471

    CAS  PubMed  Google Scholar 

  • Saha AR, Ninkina NN, Hanger DP, Anderton BH, Davies AM, Buchman VL (2000) Induction of neuronal death by a-synuclein. Eur J Neurosci 12: 3073–3077

    CAS  PubMed  Google Scholar 

  • Sakamoto M, Uchihara T, Hayashi M, Nakamura A, Kikuchi E, Mizutani T, Mizusawa H,Hirai S (2002) Heterogeneity of nigral and cortical Lewy bodies differentiated by amplified triple-labeling of alpha-synuclein, ubiquitin and thiazin red. Exp Neurol (inpress)

    Google Scholar 

  • Saporito MS, Thomas BA,Scott RW,(2000) MPTP activates c-Jun NH2-terminal kinase(JNK) and its upstream regulatory kinase MKK4 in nigrostriatal neurons in vivo.J Neurochem 75:1200–1208

    CAS  PubMed  Google Scholar 

  • Schapira AHV (2001) Causes of neuronal death in Parkinson’s disease. Adv Neurol 86:155–162

    CAS  PubMed  Google Scholar 

  • Schwab C, Schulzer M, Steele JC, McGeer PL (1999) On the survival time of a tangled neuron in the hippocampal CA4 region in parkinsonism dementia complex of Guam. Neurobiol Aging 20: 57–63

    CAS  PubMed  Google Scholar 

  • Sharma N, Hewett J, Ozelius LJ, Ramesh V, McLean PJ, Breakefield XO, Hyman BT (2001) A close association of torsinA and a-synuclein in Lewy bodies: a fluorescence resonance energy transfer study. Am J Pathol 159: 339–344

    CAS  PubMed  Google Scholar 

  • Shimura H, Schlossmacher MG, Hattori N, Frosch MP, Trockenbacher A, Schneider R, Mizuno Y, Kosik KS, Selkoe DJ (2001) Ubiquitination of a new form of a-synucleinby parkin from human brain: implications for Parkinson’s disease. Science 293: 263–269

    CAS  PubMed  Google Scholar 

  • Silva MT, Schapira AHV (2001) Parkinson’s disease. In: Mattson MP (ed) Pathogenesisof neurodegenerative disorders. Human Press, Totowa, pp 53–79

    Google Scholar 

  • Smith MA, Raina AK, Nunomura A, Hochman A, Takeda A, Perry G (2000) Apoptosisin Alzheimer disease: fact or fiction. Brain Pathol 10: 797

    Google Scholar 

  • Stadelmann C, Lassmann H (2000) Detection of apoptosis in tissue sections. Cell Tissue Res 301:19–31

    CAS  PubMed  Google Scholar 

  • Spillantini MG, Crowther RA, Jakes R, Hasegawa M, Goedert M, (1998) a-synuclein in ilamentous inclusions of Lewy bodies from Parkinson’s disease and dementia with Lewy bodies. Proc Natl Acad Sci USA 95: 6469–6473

    CAS  Google Scholar 

  • Stadelmann C, Lassmann H (2000) Detection of apoptosis in tissue sections. Cell Tissue Res 301:19–31

    CAS  PubMed  Google Scholar 

  • Stadelmann C, Deckwerth TL, Srinivasan A, Bancher C, Briick W, Jellinger K, Lassmann H (1999) Activation of caspase-3 in single apopototic neurons and granules of granulovacuolar degeneration in Alzheimer disease and Down’s syndrome: a role for autophagy as antiapoptotic counterregulatory mechanism? Am J Pathol 155: 1459–1466

    CAS  PubMed  Google Scholar 

  • Tatton NA (2000) Increased caspase-3 and BAX immunoreactivity accompanying nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166: 29–43

    CAS  PubMed  Google Scholar 

  • Tatton WG, Olanow CW (1999) Apoptosis in neurodegenerative diseases: the role of mitochondria. Biochem Biophys Acta 1410:195–214

    CAS  PubMed  Google Scholar 

  • Tompkins MM, Hill WD (1997) Contribution of somal Lewy bodies to neuronal death. Brain Res 775: 24–29

    CAS  PubMed  Google Scholar 

  • Tompkins MM, Basgall EJ, Zamrini E, Hill WD (1997) Apoptotic-like changes in Lewy body-associated disorders and normal aging in substantia nigral neurons. Am J Pathol 150:119–131

    CAS  PubMed  Google Scholar 

  • Uhl GR (1998) Hypothesis: the role of dopaminergic transporters in selective vulnerability of cells in Parkinson’s disease. Ann Neurol 43: 555–560

    CAS  PubMed  Google Scholar 

  • Varastet M, Riche D, Maziere M, Hantraye P (1994) Chronic MPTP treatment reproduces in baboons the differential vulnerability of mesencephalic dopaminergic neurons in Parkinson’s disease. Neuroscience 63: 47–56

    CAS  PubMed  Google Scholar 

  • Vila M, Wu DC, Przedborski S (2001) Engineered modeling and the secrets of Parkinson’s disease. TINS 24 [Suppl]: S49–S55

    CAS  PubMed  Google Scholar 

  • Wakabayashi K, Hayashi S, Kakita A, Yamada M, Toyoshima Y, Yoshimoto M, Takahashi H (1998) Accumulation of a-synuclein MACP is a cytopathological feature common to Lewy body disease and multiple system atrophy. Acta Neuropathol 96: 445–452

    CAS  PubMed  Google Scholar 

  • Wakabayashi K, Engelender S, Yoshimoto M, Tsuji S, Ross CA, Takahashi H (2000) Synphilin-1 is present in Lewy bodies in Parkinson’s disease. Ann Neurol 47:521–523

    CAS  PubMed  Google Scholar 

  • Walker DG, Terai K, Matsuo A, Beach TG, McGeerEG, McGeer PL (1998) Immunohis-tochemical analyses of fibroblast growth factor receptor-1 in the human substantia nigra ¡ª comparison between normal and parkinson’s disease cases. Brain Res 794: 181–187

    CAS  Google Scholar 

  • Wang KKW (2000) Calpain and caspase: can you tell the difference? Trends Neurol Sci 23: 20–26

    Google Scholar 

  • Wolozin B, Behl C (2000) Mechanisms of neurodegenerative disorders, part I. Protein aggregates. Arch Neurol 57: 793–796

    CAS  PubMed  Google Scholar 

  • Wiillner U, Kornhuber J, Weller M, Schulz JB, Loschmann PA, Riederer P (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease ¡ª a cautionary note. Acta Neuropathol 97: 408–412

    Google Scholar 

  • Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68: 251–305

    CAS  PubMed  Google Scholar 

  • Yuan JY, Yankner BA (2000) Apoptosis in the nervous system. Nature 407: 802–809

    CAS  PubMed  Google Scholar 

  • Zecca L, Gallorini M, Schunemann V, Trautwein AX, Gerlach M, Riederer P, Vezzoni P, Tampellini D (2001) Iron, neuromelanin and ferritin content in the substantia nigra of normal subjects at different ages: consequences for iron storage and neurodegenerative processes. J Neurochem 76:1766–1773

    CAS  PubMed  Google Scholar 

  • Zhang J, Perry G, Smith MA, Robertson D, Olson SJ, Graham DG, Montine TJ (1999) Parkinson’s disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neurons. Am J Pathol 154: 1423–1429

    CAS  PubMed  Google Scholar 

  • Zirh TA, Lenz FA, Reich SG, Dougherty PM (1998) Patterns of bursting occurring in thalamic cells during parkinsonian tremor. Neuroscience 83:107–121

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer-Verlag Wien

About this paper

Cite this paper

Jellinger, K.A. (2002). Recent developments in the pathology of Parkinson’s disease. In: Jellinger, K.A., Schmidt, R., Windisch, M. (eds) Ageing and Dementia Current and Future Concepts. Journal of Neural Transmission. Supplementa, vol 62. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6139-5_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6139-5_33

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-83796-2

  • Online ISBN: 978-3-7091-6139-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics