Skip to main content

Improved site investigation Acquisition of geotechnical rock mass parameters based on 3D computer vision

  • Chapter
Numerical Simulation in Tunnelling

Abstract

Acquisition and evaluation of geotechnical data are integrated parts of subsurface and surface construction works. Geotechnical data serve as input for decision making processes during all phases of projects, ranging from feasibility studies to construction and maintenance. The present system of data acquisition, specifically applied during underground construction works, has a number of constraints. Sampling bias may be caused by the “human factor” of individual capabilities, inaccessibility of the rock exposure and time limitations. In most cases data are irrecoverable when excavation proceeds or support has to be applied. Data processing and evaluation is time consuming so that input data for numerical calculations cannot be provided on a daily basis. To overcome the listed shortcomings a digital stereoscopic colour imaging system has been developed which enables the evaluation of a large number of geotechnical data by interactive two and three dimensional image analysis. Among others the data can be used for the innovative modelling of the rock mass structure, for the provision of geometrical input data for numerical simulations performed on site as well as for a descriptive visualisation of complex structural conditions. The developed hardware and software components have been tested in different environments and on different rock mass types to investigate their general suitability and effectiveness. It was found that digital stereoscopic imaging and image evaluation are suitable for a cpmprehensive and reproducible documentation of the structural inventory of rock surfaces, and are most effective for acquisition of geotechnical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barton N., Lien R., Lunde, J. (1983) Engineering classification of rock mass for the design of tunnel support. NGI Publication 106, Rock Mech, 6, No. 4: 189–236

    Article  Google Scholar 

  2. Benosman R., Kang S. B. (eds.) (2001) Panoramic Vision: Sensors, Theory and Applications. Springer Verlag, Heidelberg

    MATH  Google Scholar 

  3. Bienniawski Z. T. (1974) Engineering classification of jointed rock masses. Trans. S. Afr. Inst. Civ. Engrs., 15: 335–344

    Google Scholar 

  4. Brown E. T. (ed.) (1981) Rock characterisation, testing and monitoring. ISRM Suggested Methods. Pergamon Press

    Google Scholar 

  5. Case J. B. (1967) The analytical reduction of panoramic and strip photography, Photogrammetria: 127–141

    Google Scholar 

  6. Cravero M. and Iabichino G. (1993) Characterization of joint patterns from trace maps. In: Eurock ’93, Ribeiro e Sousa and Grossmann (eds.), Balkema

    Google Scholar 

  7. Crosta G. (1997) Evaluating Rock Mass Geometry Prom Photogrammetric Images. Rock Mechanics and Rock Engineering, 30(1): 35–38

    Article  Google Scholar 

  8. Daller J., Riedmüller G., Schubert W. (1994) Zur Problematik der Gebirgsklas-sifizierung im Tunnelbau. Felsbau - Rock Soil Engng. 6/94: 443–447

    Google Scholar 

  9. Delaunay B. (1934) Sur la sphére vide. Izvestia Akademia Nauk SSSR, VII Seria, Otdelenie Matematicheskii i Estestvennyka Nauk, 7: 793–800

    Google Scholar 

  10. Dershowitz W., Lee, G. Geier, J. Foxford T., LaPointe P., Thomas A. (1996) Fracman - Interactive discrete feature data analysis, geometric modelling, and exploration simulation. User Documentation, Version 2.5, Golder Associates Inc.

    Google Scholar 

  11. Fasching A. (2001) Improvement of Acquisition Methods for Geotechnical Data, Phd thesis, Riedmüller, G., Schubert, W. and Semprich, S. (eds.) Gruppe Geotechnik Graz, Schriftenreihe, Heft 12b, Technische Universitat, Graz

    Google Scholar 

  12. Foley J.D., van Dam A., Feiner S.K., Hughes J.F. (1991) Computer graphics, principles and practice, 2nd ed. Reading. MA: Addison-Wesley

    Google Scholar 

  13. Franklin J.A., Maerz N.H. and Bennet C.P. (1988) Rock mass charactersation using photoanalysis. Int. Journal of Mining and Geological Engineering 6: 97– 112

    Article  Google Scholar 

  14. Gaich, A., Sehovic A., Gruber M. (1998) System zur Erzeugung hochauflosender Stereobilder für die Nahbereichs-Objektrekonstruktion, Vermessung und Geoinformation, No. 4/98: 194–201

    Google Scholar 

  15. Gaich A. (2001) Panoramic Vision for Geotechnical Analyses in Tunnelling, Phd thesis, Riedmüller, G., Schubert, W. and Semprich, S. (eds.) Gruppe Geotechnik Graz, Schriftenreihe, Heft 12a, Technische Universität, Graz

    Google Scholar 

  16. Goodman R.E. (1989) Introduction to rock mechanics. 2nd Edition. John Wiley

    Google Scholar 

  17. Grimstad E., Barton N. (1993) Updating of the Q-System for NMT. Proc. Int. Symp. on Sprayed Shotcrete, Fagernes

    Google Scholar 

  18. Hagan T.O. (1980) A Case for Terrestrial Photogrammetry in Deep-Mine Rock Structure Studies. Int. Journal of Rock Mechanics and Mining Sciences 17: 191–198

    Article  Google Scholar 

  19. [19] ITASCA Consulting Group. UDEC 3.00 user’s manual, Minnesota, USA

    Google Scholar 

  20. Linkwitz K. (1963) Terrestrisch-photogrammetrische Kluftmessung. Rock Mechanics and Engineering Geology I:152–159

    Google Scholar 

  21. [21] Maresch M. (1998) Linear CCD array based recording of buildings for digital models. Dissertation, OCG Schriftenreihe Vol. 109. Wien: Österreichische Computer Gesellschaft

    Google Scholar 

  22. Mauldon M. (1998) Estimating mean fracture trace length and density from observations in convex windows. Rock Mech. Rock Engng. Vol. 31: 201–216

    Article  Google Scholar 

  23. Priest S. D. (1993) Discontinuity Analysis for Rock Engineering, London:Chapman and Hall

    Book  Google Scholar 

  24. Price N. J., Cosgrove J. W. (1990) Analysis of geological structures. Cambridge:University Press

    Google Scholar 

  25. Raab T. (1994) . Über Tendenzen der Fehleinschätzungen einiger ingenieurgeologischer Parameter. Diploma thesis. Graz: University of Technology

    Google Scholar 

  26. Raghavan V., Masumoto S., Koike K. and Nagano S. (1995) Automatic lineament extraction from digital images using a segment tracing and rotation transformation approach. Computers and Geosciences, Vol. 21, No. 4, 555–591

    Article  Google Scholar 

  27. Reid T.R., Harrison J.P. (2000) A semi automated methodology for discontinuity trace detection in digital images of rock mass exposures. Int. Journal of Rock Mechanics and Mining Sciences 37: 1073–1089

    Article  Google Scholar 

  28. Rengers N. (1967) Terrestrial Photogrammetry: A Valuable Tool for Engineering Geological Purposes. Rock Mechanics and Engineering Geology V: 150–154

    Google Scholar 

  29. Riedmüller G., Schubert, W. (1999) Critical comments on quantitative rock mass classifications. Felsbau - Rock Soil Engng. 3/99: 164–167

    Google Scholar 

  30. Schubert P. (1992) Die Ungewißheit bei der Standsicherheitsanalyse von Felsbauwerken.Felsbau Jhg. 10, Nr. 4: 191–195

    MathSciNet  Google Scholar 

  31. Schubert W., Steindorfer A. (1997) Application of new Methods of Monitoring Data Analysis for short term Prediction in Tunnelling, Proc. of the World Tunnel Congress 97 - Tunnels for People, Rotterdam: Balkema: 65–70

    Google Scholar 

  32. Sellner P. (2000) Prediction of displacements in tunnelling. Phd thesis.Riedmüller, G., Schubert, W. and Semprich, S. (eds.) Gruppe Geotechnik Graz, Schriftenreihe, Heft 9. Technische Universität, Graz

    Google Scholar 

  33. Slama Ch. C. (ed.) (1980) Manual of Photogrammetry, Fourth Edition, Falls Church, VA: American Society of Photogrammetry

    Google Scholar 

  34. Sonka M., Hlavac V., Boyle, R. (1998) Image Processing, Analysis, and Machine Vision, 2nd ed., Pacific Grove, CA: Brooks/Cole Publishing

    Google Scholar 

  35. Steindorfer A. (1998) Short Term Prediction of Rock Mass Behaviour in Tunnelling by Advanced Analysis of Displacement Monitoring Data. Phd thesis,Riedmüller, G., Schubert, W. and Semprich, S. (eds.) Gruppe Geotechnik Graz, Schriftenreihe, Heft 1, Technische Universität, Graz

    Google Scholar 

  36. Tsoutrelis C.E., Exadactylos G.E., Kapenis A.P. (1990) Study of the rock mass discontinuity system using photoanalysis. In Rossmanith (ed.), Proc. int. conf.on Mechanics of Jointed and Faulted Rock. Rotterdam: Balkema

    Google Scholar 

  37. Vieten W. (1970) Die Ermittlung tektonischer Gefügedaten aus stereophotogrammetrischen Bruchwandaufnahmen. Clausthaler Tektonische Hefte. Heft10, 319–336

    Google Scholar 

  38. Wittke W. (1984) Felsmechanik - Grundlagen für wirtschaftliches Bauen im Fels. Springer Verlag

    Google Scholar 

  39. [39] Condor Eartch Technologies Inc., http://www.condorearth.com.

    Google Scholar 

  40. [40] DIBIT tunnel scanner, http://dib.joanneum.ac.at/bv_home.html.

    Google Scholar 

  41. [41] Golder Associates Inc. 2000. http://fracman.golder.com/

    Google Scholar 

  42. [42] MAPTEK Inc.: http://www.maptek.com/vulcan/vulcan.htm

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Gaich, A., Fasching, A., Schubert, W. (2003). Improved site investigation Acquisition of geotechnical rock mass parameters based on 3D computer vision. In: Beer, G. (eds) Numerical Simulation in Tunnelling. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6099-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6099-2_3

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7221-6

  • Online ISBN: 978-3-7091-6099-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics