Skip to main content

Invasion as limitation to anti-angiogenic glioma therapy

  • Conference paper
Local Therapies for Glioma Present Status and Future Developments

Part of the book series: Acta Neurochirurgica Supplements ((NEUROCHIRURGICA,volume 88))

Abstract

The inhibition of tumor angiogenesis could be an efficient therapeutic strategy for the treatment of malignant gliomas. Prominent neovascularization is induced by these tumors, and microvascular proliferation is a malignancy grading criterion. However, glioma cells can also invade the brain diffusely over long distances without necessarily requiring angiogenesis. Experimentally, it was shown that especially during early stages of growth in rodent brain, glioma cells can coopt the preexistent host vasculature to recruit their blood supply in the absence of neovascularization. This phenomenon was only observed in orthotopic models in which the tumor cells were implanted into the brain which is a densely vascularized environment, but not in subcutaneous models in which tumor cells are implanted into a virtual space. Using an orthotopic mouse model, we analyzed whether systemic anti-angiogenic therapy with an antibody against the vascular endothelial growth factor receptor-2 (VEGFR2) could inhibit intracerebral growth of xenografted human glioblastoma cells and what effect this treatment had on tumor morphology and invasiveness. We found that anti-angiogenic therapy inhibited tumor growth by 80% compared to buffer-treated controls. The intratumoral microvessel density was reduced by at least 40% in treated animals compared to controls. However, in mice treated with the anti-VEGFR-2 antibody, we noticed a striking increase in the number and total area of small satellite tumors clustered around the primary mass. These satellites usually contained central vessel cores, and tumor cells often had migrated along blood vessels over long distances to eventually reach the surface and spread in the subarachnoid space. Systemic anti-angiogenic therapy can thus apparently increase the invasiveness of gliomas in the orthotopic model. Tumor cell invasion was tightly associated with preexistent blood vessels, suggesting that increased cooption of the host vasculature could represent a compansatory mechanism that is selected for by inhibiting adequate tumor vascularization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brem S, Cotran R, Folkman J (1972) Tumor angiogenesis: a quantitative method for histologic grading. J Nat! Cancer Inst 48: 347–356

    PubMed  CAS  Google Scholar 

  2. Kleihues P, Cavenee WKe (2000) World health organization classification of tumours. IARC Press, Lyon

    Google Scholar 

  3. Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285: 1182–1186

    Article  PubMed  CAS  Google Scholar 

  4. Folkman J (1995) Tumor angiogenesis. WB Saunders, Philadelphia, pp 206–232

    Google Scholar 

  5. Scherer HJ (1940) The forms of growth in gliomas and their practical significance. Brain 63: 1–35

    Article  Google Scholar 

  6. Plate KH, Breier G, Risau W (1994) Molecular mechanisms of developmental and tumor angiogenesis. Brain Pathol4: 207–218

    Article  Google Scholar 

  7. Wesseling P, van der Laak JA, de Leeuw H, Ruiter DJ, Burger PC (1994) Quantitative immunohistological analysis of the microvasculature in untreated human glioblastoma multiforme.Computer-assisted image analysis of whole-tumor sections. JNeurosurg 81: 902–909

    Article  CAS  Google Scholar 

  8. Schiffer D, Chio A, Giordana MT, Mauro A, Migheli A, Vigliani MC (1989) The vascular response to tumor infiltration in malignant gliomas. Morphometric and reconstruction study. Acta Neuropathol (Berl) 77: 369–378

    Article  CAS  Google Scholar 

  9. Pezzella F, Pastorino U, Tagliabue E, Andreola S, Sozzi G, Gasparini G, Menard S, Gatter KC, Harris AL, Fox S, Buyse M, Pilotti S, Pierotti M, Rilke F (1997) Non-smaIl-cell lung carcinoma tumor growth without morphological evidence of neo-angiogenesis. Am J Pathol151: 1417–1423

    PubMed  CAS  Google Scholar 

  10. Holash J, Maisonpierre PC, Compton D, Boland P, Alexander CR, Zagzag D, Yancopoulos GD, Wiegand SJ (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 284: 1994–1998

    CAS  Google Scholar 

  11. Zagzag D, Amirnovin R, Greco MA, Yee H, Holash J, Wiegand SJ, Zabski S, Yancopoulos GD, Grumet M (2000) Vascular apoptosis and involution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 80: 837–849

    PubMed  CAS  Google Scholar 

  12. Kunkel P, Ulbricht U, Bohlen P, Brockmann MA, Fillbrandt R, Stavrou D, Westphal M, Lamszus K (2001) Inhibition of glioma angiogenesis and growth in vivo by systemic treatment with a monoclonal antibody against vascular endothelial growth factor receptor-2. Cancer Res 61: 6624–6628

    PubMed  CAS  Google Scholar 

  13. Vajkoczy P, Farhadi M, Gaumann A, Heidenreich R, Erber R, Wunder A, Tonn JC, Menger MD, Breier G (2002) Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. J Clin Invest 109:777–785

    CAS  Google Scholar 

  14. Nagano N, Sasaki H, Aoyagi M, Hirakawa K (1993) Invasion of experimental rat brain tumor: early morphological changes following microinjection of C6 glioma cells. Acta Neuropathol (Berl) 86: 117–125

    Article  CAS  Google Scholar 

  15. Bernstein JJ, Woodard CA (1995) Glioblastoma cells do not intravasate into blood vessels. Neurosurgery 36: 124–132;

    Article  PubMed  CAS  Google Scholar 

  16. Prewett M, Huber J, Li Y, Santiago A, O’Connor W, King K, Overholser J, Hooper A, Pytowski B, Witte L, Bohlen P, Hicklin DJ (1999) Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res 59: 5209–5218

    PubMed  CAS  Google Scholar 

  17. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature 362: 841–844

    Article  PubMed  CAS  Google Scholar 

  18. Ferrara N (2002) Role of vascular endothelial growth factor in physiologic and pathologic angiogenesis: therapeutic implications. Semin Oncol29: 10–14

    Google Scholar 

  19. Shibuya M (2001) Structure and dual function of vascular endothelial growth factor receptor-l (FIt-I). Int J Biochem Cell BioI 33: 409–420

    Article  CAS  Google Scholar 

  20. Lamszus K, Ulbricht U, Matschke J, Brockmann MA, Fillbrandt R, Westphal M (2003) Levels of soluble vascular endothelial growth factor (VEGF) receptor 1 in astrocytic tumors and its relation to malignancy, vascularity, and VEGF-A. Clin Cancer Res 9 (in press)

    Google Scholar 

  21. Carmeliet P, Moons L, Luttun A, Vincenti V, Compernolle V, De Mol M, Wu Y, Bono F, Devy L, Beck H, Scholz D, Acker T, DiPalma T, Dewerchin M, Noel A, Stalmans I, Barra A, Blacher S, Vandendriessche T, Ponten A, Eriksson U, Plate KH, Foidart JM, Schaper W, Charnock-Jones DS, Hicklin DJ, Herbert JM, Collen D, Persico MG (2001) Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions. Nat Med 7: 575–583

    Article  PubMed  CAS  Google Scholar 

  22. Schmidt NO, Westphal M, Hagel C, Ergun S, Stavrou D, Rosen EM, Lamszus K (1999) Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis. Int J Cancer 84: 10–18

    Article  PubMed  CAS  Google Scholar 

  23. Samoto K, Ikezaki K, Ono M, Shono T, Kohno K, Kuwano M, Fukui M (1995) Expression of vascular endothelial growth factor and its possible relation with neovascularization in human brain tumors. Cancer Res 55: 1189–1193

    PubMed  CAS  Google Scholar 

  24. Rubenstein JL, Kim J, Ozawa T, Zhang M, Westphal M, Deen DF, Shuman MA (2000) Anti-VEGF antibody treatment of glioblastoma prolongs survival but results in increased vascular cooption. Neoplasia 2: 306–314

    Article  PubMed  CAS  Google Scholar 

  25. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A (1994) Glioblastoma growth inhibited in vivo by a dominant-negative Flk-l mutant. Nature 367: 576–579

    Article  PubMed  CAS  Google Scholar 

  26. Saleh M, Stacker SA, Wilks AF (1996) Inhibition of growth of C6 glioma cells in vivo by expression of antisense vascular endothelial growth factor sequence. Cancer Res 56: 393–401

    Google Scholar 

  27. Vajkoczy P, Menger MD, Vollmar B, Schilling L, Schmiedek P, Hirth KP, Ullrich A, Fong TA (1999) Inhibition of tumor growth, angiogenesis, and microcirculation by the novel Flk-l inhibitor SU5416 as assessed by intravital multi-fluorescence videomicroscopy. Neoplasia 1: 31–41

    Article  PubMed  CAS  Google Scholar 

  28. Kim ES, Serur A, Serur J, Manley CA, McCrudden KW, Frischer JS, Soffer SZ, Ring L, New T, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Kandel JJ, Yamashiro DJ (2002) Potent VEGF blockade causes regression of coopted vessels in a model of neuroblastoma. Proc Nat! Acad Sci USA 99: 11399–11404

    Article  Google Scholar 

  29. Skobe M, Rockwell P, Goldstein N, Vosseler S, Fusenig NE (1997) Halting angiogenesis suppresses carcinoma cell invasion. Nat Med 3: 1222–1227

    Article  PubMed  CAS  Google Scholar 

  30. Thompson WD, Shiach KJ, Fraser RA, McIntosh LC, Simpson JG (1987) Tumours acquire their vasculature by vessel incorporation, not vessel ingrowth. J Pathol 151: 323–332

    Article  PubMed  CAS  Google Scholar 

  31. Plasswilm L, Tannapfel A, Cordes N, Demir R, Hoper K, Bauer J, Hoper J (2000) Hypoxia-induced tumour cell migration in an in vivo chicken model. Pathobiology 68: 99–105

    Article  PubMed  CAS  Google Scholar 

  32. Yu JL, Rak JW, Carmeliet P, Nagy A, Kerbel RS, Coomber BL (2001) Heterogeneous vascular dependence of tumor cell populations. Am J Pathol158: 1325–1334

    Article  PubMed  CAS  Google Scholar 

  33. Tamaki M, McDonald W, Amberger VR, Moore E, Del Maestro RF (1997) Implantation of C6 astrocytoma spheroid into collagen type I gels: invasive, proliferative, and enzymatic characterizations. J Neurosurg 87: 602–609

    Article  PubMed  CAS  Google Scholar 

  34. Graham CH, Forsdike J, Fitzgerald CJ, MacdonaldGoodfellow S (1999) Hypoxia-mediated stimulation of carcinoma cell invasiveness via upregulation of urokinase receptor expression. Int J Cancer 80: 617–623

    Article  PubMed  CAS  Google Scholar 

  35. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G, Iyer N, LaRusch J, Pak B, Taghavi P, Semenza GL (2003) Regulation of colon carcinoma cell invasion by hypoxiainducible factor I. Cancer Res 63: 1138–1143

    PubMed  CAS  Google Scholar 

  36. Jain RK (2001) Normalizing tumor vasculature with antiangiogenic therapy: a new paradigm for combination therapy. Nat Med 7: 987–989

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag/Wien

About this paper

Cite this paper

Lamszus, K., Kunkel, P., Westphal, M. (2003). Invasion as limitation to anti-angiogenic glioma therapy. In: Westphal, M., Tonn, JC., Ram, Z. (eds) Local Therapies for Glioma Present Status and Future Developments. Acta Neurochirurgica Supplements, vol 88. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6090-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6090-9_23

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-40355-6

  • Online ISBN: 978-3-7091-6090-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics