Skip to main content

Substituent Effects on the Spin-Transition Temperature in Complexes with Tris(pyrazolyl) Ligands

  • Chapter
Molecular Magnets Recent Highlights

Summary

Iron (II) complexes with substituted tris(pyrazolyl) ligands, which exhibit a thermally driven transition from a low-spin state at low temperatures to a high-spin state at elevated temperatures, have been studied by Mössbauer spectroscopy and magnetic susceptibility measurements. From the observed spectra the molar high-spin fraction and the transition temperature have been extracted. All substituents, except for bromine, lead to a decrease of the transition temperature. Density functional calculations have been carried out to compare the experimentally observed shifts of the transition temperature with those derived from theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Gütlich P, Hauser H, Spiering H (1994) Angew Chem, Int Ed Engl 33: 2024

    Article  Google Scholar 

  2. Gütlich P, Köppen H, Link R, Steinhäuser HG (1979) J Chem Phys 70: 3977

    Article  Google Scholar 

  3. Winkler H, Trautwein AX, Toftlund H (1992) Hyperfine Interact 70: 1083

    Article  CAS  Google Scholar 

  4. Paulsen H, Winkler H, Trautwein AX, Grünsteudel H, Rusanov V, Toftlund H (1999) Phys Rev B 59: 975

    Article  CAS  Google Scholar 

  5. Paulsen H, Benda R, Herta C, Schünemann V, Chumakov AI, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Phys Rev Lett 86: 1351

    Article  CAS  Google Scholar 

  6. Paulsen H, Grünsteudel H, Meyer-Klaucke W, Gerdan M, Winkler H, Toftlund H, Trautwein AX (2001) Eur Phys J B 23: 463

    Article  CAS  Google Scholar 

  7. Ding X-Q, Paulsen H, Grodzicki M, Butzlaff Ch, Trautwein AX, Hartung R, Wieghardt K (1994) Hyperfine Interact 90: 485

    Article  CAS  Google Scholar 

  8. Paulsen H, Ding X-Q, Grodzicki M, Butzlaff Ch, Trautwein AX, Hartung R, Wieghardt K (1994) Chem Phys 184: 1

    Article  Google Scholar 

  9. Harris D, Loew GH, Kormonicki A (1997) J Phys Chem A 101: 3959

    Article  CAS  Google Scholar 

  10. Paulsen H, Duelund L, Winkler H, Toftlund H, Trautwein AX (2001) Inorg Chem 40: 2201

    Article  CAS  Google Scholar 

  11. Juliá S, del Mazo JM, Avila L, Elguero J (1984) Organic preparations and procedures int 16: 299

    Article  Google Scholar 

  12. Reger DL, Little CA, Rheingold AL, Lam K-C, Concolino T, Mohan A, Long GJ (2000) Inorg Chem 39: 4674

    Article  CAS  Google Scholar 

  13. Anderson PA, Astley T, Hitchman MA, Keene FR, Moubaraki B, Murray KS, Skelton BW, Tiekink ERT, Toftlund H, White AH (2000) J Chem Soc Dalton Trans 3505

    Google Scholar 

  14. Kahn 0 (1993) Molecular Magnetism, VCH Publishers, New York

    Google Scholar 

  15. Perdew JP, Burke K, Wang Y (1996) Phys Rev B 54: 16533

    Article  CAS  Google Scholar 

  16. Becke AD (1988) Phys Rev A 38: 3098

    Article  CAS  Google Scholar 

  17. Perdew JP (1986) Phys Rev B 33: 8822

    Article  Google Scholar 

  18. Lee C, Yang W, Parr RG (1988) Phys Rev B 37: 785

    Article  CAS  Google Scholar 

  19. Miehlich B, Savin A, Stoll H, Preuss H (1989) Chem Phys Lett 157: 200

    Article  CAS  Google Scholar 

  20. Becke AD (1993) J Chem Phys 98: 5648

    Article  CAS  Google Scholar 

  21. Wachters AJH (1970) J Chem Phys 52: 1033

    Article  CAS  Google Scholar 

  22. Hay PJ (1977) J Chem Phys 66: 4377

    Article  CAS  Google Scholar 

  23. Dunning Jr TH, Hay PJ (1976) in Modern Theoretical Chemistry, Ed Schaefer III HF, Plenum, New York

    Google Scholar 

  24. Hay PJ, Wadt WR (1985) J Chem Phys 82: 270

    Article  CAS  Google Scholar 

  25. Gaussian 98, Revision A7, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Zakrzewski VG, Montgomery Jr JA, Stratmann RE, Burant JC, Dapprich S, Millam JM, Daniels AD, Kudin KN, Strain MC, Farkas O, Tomasi J, Barone V, Cossi M, Cammi R, Mennucci B, Pomelli C, Adamo C, Clifford S, Ochterski J, Petersson GA, Ayala PY, Cui Q, Morokuma K, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Cioslowski J, Ortiz JV, Baboul AG, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Gomperts R, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Gonzalez C, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Andres JL, Gonzalez C, Head-Gordon M, Replogle ES, Pople JA (1998) Gaussian Inc, Pittsburgh PA

    Google Scholar 

  26. Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989) Chem Phys Lett 162: 165

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Wien

About this chapter

Cite this chapter

Paulsen, H. et al. (2003). Substituent Effects on the Spin-Transition Temperature in Complexes with Tris(pyrazolyl) Ligands. In: Linert, W., Verdaguer, M. (eds) Molecular Magnets Recent Highlights. Springer, Vienna. https://doi.org/10.1007/978-3-7091-6018-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-6018-3_13

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-7300-8

  • Online ISBN: 978-3-7091-6018-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics