Skip to main content

Active Transport through Animal Cell Membranes

  • Chapter

Part of the book series: Protoplasmatologia ((2126,volume 8 / 7 / a))

Abstract

The province covered by the title assigned to this division of the handbook might reasonably be taken to include an appalling diversity of physiological processes. However, there is no intention here to cover such aspects as the elaboration of special glandular secretions, or the extensive renal and gastrointestinal physiology which might conceivably be included under the heading. A survey of such scope would not only involve a literature of impractically enormous proportions, but would misplace the intended emphasis. The effort here is to cover those lines of investigation which purport to deal more or less directly with the activity of cells in the translocation of substances through the cell surfaces. The transfers concerned will be in general either between the interior and the exterior of the cells, or through layers of cells from one side to the other. Discussion of-the cellular extrusion of special secretory products has been avoided; and details of the operation of the special absorptive and excretory organs are taken up only insofar as the experimental approach has been directed toward analysis of the transport phenomena in the various epithelia involved.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  • Abderhalden, E., und G. Effkemann, 1934: Über den Einfluß von α- und β-Glucosiden auf die Phosphorylierung von Traubenzucker. Biochem. Z. 268, 461–468.

    CAS  Google Scholar 

  • Abderhalden, E., und E. Tetzner, 1935: Beitrag zur Kenntnis des Verhaltens racemischer Aminosäuren im tierischen Organismus. Z. physiol. Chem. 232, 79–86.

    Article  CAS  Google Scholar 

  • Abelson, P. H., 1947: Permeability of eggs of Arbacia punctulata to radioactive phosphorus. Biol. Bull. (Am.) 93, 203.

    CAS  Google Scholar 

  • Aebi, H., 1950: Kationenmilieu und Gewebsatmung. Helv. Physiol. Acta 8, 525–543.

    CAS  Google Scholar 

  • Aebi, H., 1951: Die Bedeutung des Kaliums für die Atmung und Osmoregulation von Leberschnitten. Experientia 7, 346–347.

    Article  PubMed  CAS  Google Scholar 

  • Aebi, H., 1953: Elektrolyt-Akkumulierung und Osmoregulation in Gewebschnitten. Helv. Physiol. Pharmacol. Acta 11, 96–121.

    PubMed  CAS  Google Scholar 

  • Aebi, H., und A. Meyer, 1951: Das Osmometer-Verhalten von Leberschnitten. Ein Versuch zur Bestimmung des kolloidosmotischen Druckes an isoliertem, überlebendem Gewebe. Helv. Physiol. Acta 9, C 51–C 52.

    CAS  Google Scholar 

  • Allan, F. N., B. R. Dickson, and J. Markowitz, 1924: The relationship of phosphate and carbohydrate metabolism. II. The effect of adrenalin and phloridzin on the excretion of phosphate. Amer. J. Physiol. 70, 333–343.

    CAS  Google Scholar 

  • Aubel, E., et J. Szulmajster, 1950: Contribution à l’étude de la fermentation et de la respiration de Escherichia coli. IV. Rôle de la permeabilité dans l’étude du métabolisme bactérien de E. coli. Biochim. Biophys. Acta 5, 515–523.

    Article  PubMed  CAS  Google Scholar 

  • Auchinlachie, D. W., J. J. R. Macleod, and H. E. Magee, 1930: Studies on diffusion through surviving isolated intestine. J. Physiol. (Brit.) 69, 185–209.

    Google Scholar 

  • Baldwin, D., E. M. Kahana, and R. W. Clarke, 1950: Renal excretion of sodium and potassium in the dog. Amer. J. Physiol. 162, 655–664.

    PubMed  CAS  Google Scholar 

  • Bang, O., and S. L. Ørskov, 1937: Variations in permeability of red blood cells in man, with particular reference to conditions obtaining in pernicious anemia. J. clin. Invest. (Am.) 16, 279–288.

    Article  CAS  Google Scholar 

  • Bárány, E., and E. Sperber, 1939: Absorption of glucose against a concentration gradient by the small intestine of the rabbit. Skand. Arch. Physiol. 81, 290–299.

    Google Scholar 

  • Barnes, R. H., A. N. Wick, E. S. Miller, and E. M. Mackay, 1939: Effect of adrenalectomy on rate of fat absorption. Proc. Soc. exper. Biol. a. Med. (Am.) 40, 651–655.

    CAS  Google Scholar 

  • Barron, E. S. G., J. A. Muntz, and B. Gasvoda, 1948: Regulatory mechanisms of cellular respiration. I. The rôle of cell membranes: uranium inhibition of cellular respiration. J. gen. Physiol. (Am.) 32, 163–178.

    Article  CAS  Google Scholar 

  • Bartlett, G. R., A. N. Wick, and E. M. Mackay, 1949: The influence of insulin and adrenal cortical compounds on the metabolism of radioactive C14-glucose in the isolated rat diaphragm. J. biol. Chem. (Am.) 178, 1003–1004.

    CAS  Google Scholar 

  • Bartley, W., and R. E. Davies, 1952: Secretory activity of mitochondria. Biochem. J. 52, xx–xxi.

    PubMed  CAS  Google Scholar 

  • Bartley, W., and R. E. Davies, 1954: Active transport of ions by sub-cellular particles. Biochem. J. 57, 37–49.

    PubMed  CAS  Google Scholar 

  • Bartley, W., and R. E. Davies, and H. A. Krebs, 1954: Active transport in animal tissues and subcellular particles. Proc. roy. Soc, Lond. B 142, 187–196.

    Article  CAS  Google Scholar 

  • Bavetta, L., 1943: The effect of adrenalectomy on the absorption of the short chain fatty acids and their triglycerides. Amer. J. Physiol. 140, 44–46.

    CAS  Google Scholar 

  • Bavetta, L., L. Hollman, H. J. Deuel Jr., and P. O. Greeley, 1941: The effect of adrenalectomy on fat absorption. Amer. J. Physiol. 134, 619–622.

    CAS  Google Scholar 

  • Beament, J. W. L., 1954: Water transport in insects. Symp. Soc. exper. Biol. 8 (in press).

    Google Scholar 

  • Beck, L. V., 1942 a: Organic phosphate and “fructose” in rat intestinal mucosa, as affected by glucose and by phlorhizin. J. biol. Chem. (Am.) 143, 403–415.

    CAS  Google Scholar 

  • Beck, L. V., 1942 b: Action of phlorhizin on acid phosphatase activity and on glucose phosphorylation of kidney cortex extracts. Proc. Soc. exper. Biol. a. Med. (Am.) 49, 435–439.

    CAS  Google Scholar 

  • Berliner, R. W., and T. J. Kennedy Jr., 1948: Renal tubular secretion of potassium in the normal dog. Proc. Soc. exper. Biol. a. Med. (Am.) 67, 542–545.

    CAS  Google Scholar 

  • Berliner, R. W., and T. J. Kennedy Jr., and J. G. Hilton, 1950: Renal mechanisms for excretion of potassium. Amer. J. Physiol. 162, 348–367.

    PubMed  CAS  Google Scholar 

  • Berliner, R. W., and T. J. Kennedy Jr., and J. Orloff, 1951: Relationship between acidification of the urine and potassium metabolism. Effect of carbonic anhydrase inhibition on potassium excretion. Amer. J. Med. 11, 274–282.

    Article  PubMed  CAS  Google Scholar 

  • Beyer, K. H., R. H. Painter, and V. D. Wiebelhaus, 1950: Enzymatic factors in renal tubular secretion of phenol red. Amer. J. Physiol. 161, 259–267.

    PubMed  CAS  Google Scholar 

  • Beyer, K. H., L. D. Wright, H. F. Russo, H. R. Skeggs, and E. A. Patch, 1946: The renal clearance of essential amino acids: tryptophane, leucine, isoleucine and valine. Amer. J. Physiol. 146, 330–335.

    PubMed  CAS  Google Scholar 

  • Beyer, K. H., L. D. Wright, H. R. Skeggs, H. F. Russo, and G. A. Shaner, 1947: Renal clearance of essential amino acids: their competition for reabsorption by the renal tubules. Amer. J. Physiol. 151, 202–210.

    PubMed  CAS  Google Scholar 

  • Blickenstaff, D., D. M. Bachman, M. E. Steinberg, and W. B. Youmans, 1951: Intestinal absorption of sodium chloride solutions as influenced by intraluminal pressure and concentration. Amer. J. Physiol. 167, 768.

    Google Scholar 

  • Blowers, R., E. M. Clarkson, and M. Maizels, 1951: Flicker phenomenon in human erythrocytes. J. Physiol. (Brit.) 113, 228–239.

    CAS  Google Scholar 

  • Bogdanove, E. M., and S. B. Barker, 1950: Effect of phlorhizin on intestinal absorption of glucose, galactose, fructose, mannose, and sorbose. Proc. Soc. exper. Biol. a. Med. (Am.) 75, 77–80.

    CAS  Google Scholar 

  • Bornstein, J., and C. R. Park, 1953: Inhibition of glucose uptake by the serum of diabetic rats. J. Biol. Chem. (Am.) 205, 503–511.

    CAS  Google Scholar 

  • Bouckaert, J. P., and C. de Duve, 1947: The action of insulin. Physiol. Rev. (Am.) 27, 39–71.

    CAS  Google Scholar 

  • Boyle, P. J., and E. J. Conway, 1941: Potassium accumulation in muscle and associated changes. J. Physiol. (Brit.) 100, 1–63.

    CAS  Google Scholar 

  • Brodsky, W. A., and S. Rapoport, 1951: The mechanism of polyuria of diabetes insipidus in man. The effect of osmotic loading. J. clin. Invest. (Am.) 30, 282–291.

    Article  CAS  Google Scholar 

  • Brooks, S. C., 1943 a: Intake and loss of ions by living cells. I. Eggs and larvae of Arbacia punctulata and Asterias forbesii exposed to phosphate and sodium ions. Biol. Bull. (Am.) 84, 213–225.

    Article  CAS  Google Scholar 

  • Brooks, S. C., 1943 b: Intake and loss of ions by living cells. II. Early changes of phosphate content of Fundulus eggs. Biol. Bull. (Am.) 84, 226–239.

    Article  CAS  Google Scholar 

  • Brooks, S. C. and E. L. Chambers, 1954: The penetration of radioactive phosphate into marine eggs. Biol. Bull. (Anm.) 106, 279–296.

    Article  CAS  Google Scholar 

  • Brückner, J., 1951: Beeinflussung der selektiven Zuckerresorption durch Phlorrhizin, 2, 4-Dinitrophenol und Atebrin. Helv. Physiol. Acta 9, 259–268.

    Google Scholar 

  • Caldwell, P. C., and Sir C. Hinshelwood, 1951: The phosphorus metabolism of B. lactis aerogenes. J. Chem. Soc. (1951), 158–166.

    Google Scholar 

  • Calkins, E., I. M. Taylor, and A. B. Hastings, 1954: Potassium exchange in the isolated rat diaphragm; effect of anoxia and cold. Amer. J. Physiol. 117, 211–218.

    Google Scholar 

  • Capraro, V., 1953: Über den aktiven Wassertransport durch die Froschhaut. XIXth Internat. Physiol. Congr., 259–260.

    Google Scholar 

  • Capraro, V., and G. Bernini, 1952: Mechanism of action of extracts of the posthypophysis on water transport through the skin of the frog (Rana esculenta). Nature 169, 454.

    Article  PubMed  CAS  Google Scholar 

  • Carroll, T. C. N., C. J. Danby, A. A. Eddy, and Sir C. Hinshelwood, 1950: The uptake of alkali metals by bacteria. J. Chem. Soc. (1950), 946–949.

    Article  Google Scholar 

  • Causey, G., and E. J. Harris, 1951: The uptake and loss of phosphate by frog muscle. Biochem. J. 49, 176–183.

    PubMed  CAS  Google Scholar 

  • Chambers, E. L., and W. E. White, 1949: The accumulation of phosphate and evidence for synthesis of adenosine triphosphate in the fertilized sea-urchin egg. Biol. Bull. (Am.) 97, 225–226.

    Google Scholar 

  • Chambers, E. L., and W. E. White, 1954: The accumulation of phosphate by fertilized sea urchin eggs. Biol. Bull. (Am.) 106, 297–307.

    Article  CAS  Google Scholar 

  • Chambers, E. L., and W. E. White, N. Jeung, and S. C. Brooks, 1948: Penetration and effects of low temperature and cyanide on penetration of radioactive potassium into the eggs of Strongylocentrotus purpuratus and Arbacia punctulata. Biol. Bull. (Am.) 95, 252–253.

    CAS  Google Scholar 

  • Christensen, H. N., M. K. Cushing, and J. A. Stretcher, 1949: Concentration of amino-acids by the excised diaphragm suspended in artificial media. II. Inhibition of the concentration of glycine by amino acids and related substances. Arch. Biochem. 23, 106–110.

    PubMed  CAS  Google Scholar 

  • Christensen, H. N., and M. E. Henderson, 1952: Comparative uptake of free amino acids by mouseascites carcinoma cells and normal tissues. Cancer Res. 12, 229–231.

    PubMed  CAS  Google Scholar 

  • Christensen, H. N., B. Hess, and T. R. Riggs, 1954: Concentration of taurine, β-alanine, and triiodothyronine by ascites carcinoma cells. Cancer Res. 14, 124–127.

    PubMed  CAS  Google Scholar 

  • Christensen, H. N., and T. R. Riggs, 1951: Physostigmine uptake by cells and its effect on potassium exchange. J. biol. Chem. (Am.) 193, 621–626.

    CAS  Google Scholar 

  • Christensen, H. N., and T. R. Riggs, 1952: Concentrative uptake of amino acids by the Ehrlich mouse ascites carcinoma cell. J. biol. Chem. (Am.) 194, 57–68.

    CAS  Google Scholar 

  • Christensen, H. N., T. R. Riggs, and B. A. Coyne, 1954: Effects of pyridoxal and indoleacetate on cell uptake of amino acids and potassium. J. biol. Chem. (Am.) 209, 413–427.

    CAS  Google Scholar 

  • Christensen, H. N., T. R. Riggs, H. Fischer, and I. M. Palatine, 1952 a: Amino acid concentration by a free cell neoplasm: relations among amino acids. J. biol. Chem. (Am.) 198, 1–15.

    CAS  Google Scholar 

  • Christensen, H. N., T. R. Riggs, H. Fischer, and I. M. Palatine, 1952 b: Intense concentration of α, γ-diaminobutyric acid by cells. J. biol. Chem. (Am.) 198, 17–22.

    CAS  Google Scholar 

  • Christensen, H. N., T. R. Riggs, and N. E. Ray, 1952: Concentrative uptake of amino acids by erythrocytes in vitro. J. biol. Chem. (Am.) 194, 41–51.

    CAS  Google Scholar 

  • Christensen, H. N., and J. A. Streicher, 1948: Association between rapid growth and elevated cell concentrations of amino acids. I. In fetal tissues. J. biol. Chem. (Am.) 175, 95–100.

    CAS  Google Scholar 

  • Christensen, H. N. Christensen, H. N., and J. A. , and J. A. Streicher, 1949: Concentration of amino acids by the excised diaphragm suspended in artificial media. I. Maintenance and inhibition of the concentrating activity. Arch. Biochem. 23, 96–105.

    PubMed  CAS  Google Scholar 

  • Christensen, H. N., and J. A. Streicher, and R. L. Elbinger, 1948: Effects of feeding individual amino acids upon the distribution of other amino acids between cells and extracellular fluid. J. biol. Chem. (Am.) 172, 515–524.

    CAS  Google Scholar 

  • Cicardo, V. H., and J. A. Moglia, 1940: Liberation of potassium from muscle by acetylcholine. Nature 145, 551.

    Article  CAS  Google Scholar 

  • Clark, G. A., 1922: Glucose absorption in the renal tubules of the frog. J. Physiol. (Brit.) 56, 201–205.

    CAS  Google Scholar 

  • Clarke, E. W., Q. H. Gibson, D. H. Smyth, and G. Wiseman, 1951: Selective absorption of amino-acids from Thiry-Vella loops. J. Physiol. (Brit.) 112, 46 P.

    Google Scholar 

  • Clarkson, E. M., and M. Maizels, 1954: Respiration, glycolysis and sodium transport in chicken erythrocytes. J. Physiol. (Brit.) 124, 19 P–20 P.

    Google Scholar 

  • Cohen, P. P., 1939: Microdetermination of glutamic acid. Biochem. J. 33, 551–560.

    PubMed  CAS  Google Scholar 

  • Collet, R. A., et P. Favarger, 1951: Renouvellement du glycérol dans les phos-pholipides pendant la résorption intestinale des graisses. Helv. Physiol. Pharmacol. Acta 9, C 61–C 62.

    CAS  Google Scholar 

  • Conway, E. J., 1942: Potassium, fermentation and the cell membrane. Nature 150, 461–462.

    Article  CAS  Google Scholar 

  • Conway, E. J., 1946: Ionic permeability of skeletal muscle fibres. Nature 157, 715–717.

    Article  PubMed  CAS  Google Scholar 

  • Conway, E. J., 1951: The biological performance of osmotic work. A redox pump. Science 113, 270–273.

    Article  PubMed  CAS  Google Scholar 

  • Conway, E. J., 1954: Some aspects of ion transport through membranes. Symp. Soc. exper. Biol. 8 (in press).

    Google Scholar 

  • Conway, E. J., M. Carey, and P. T. Moore, 1950: Concerning the entrance rate of KCl into the whole isolated sartorius of the frog and into single fibres. Biochem. J. 47, iii–iv.

    Google Scholar 

  • Conway, E. J., and M. Downey, 1950: An outer metabolic region of the yeast cell. Biochem. J. 47, 347–360.

    PubMed  CAS  Google Scholar 

  • Conway, E. J., O. Fitzgerald, and T. C. MacDougald, 1946: Potassium accumulation in the proximal convoluted tubules of the frog’s kidney. J. gen. Physiol. (Am.) 29, 305–334.

    Article  CAS  Google Scholar 

  • Conway, E. J., and D. Hingerty, 1948: Relations between potassium and sodium levels in mammalian muscle and blood plasma. Biochem. J. 42, 372–376.

    CAS  Google Scholar 

  • Conway, E. J., and J. I. McCormack, 1953: The total intracellular concentration of mammalian tissues compared with that of the extracellular fluid. J. Physiol. (Brit.) 120, 1–14.

    CAS  Google Scholar 

  • Conway, E. J., and P. T. Moore, 1950: The azide effect in yeast with respect to potassium and phosphate permeability. Biochem. J. 47, iii.

    Google Scholar 

  • Conway, E. J., and E. O’Malley, 1943: Linkage of physico-chemical processes in biological systems. Nature 151, 252.

    Article  CAS  Google Scholar 

  • Conway, E. J., and E. O’Malley, 1944: Nature of the cation exchanges during short-period yeast fermentation. Nature 153, 555–556.

    Article  CAS  Google Scholar 

  • Conway, E. J., and E. O’Malley, 1946: The nature of the cation exchanges during yeast fermentation, with formation of 0.02 N — H ion. Biochem. J. 40, 59–67.

    CAS  Google Scholar 

  • Cori, C. F., 1925: The fate of sugar in the animal body. I. The rate of absorption of hexoses and pentoses from the intestinal tract. J. biol. Chem. (Am.) 66, 691–715.

    CAS  Google Scholar 

  • Cori, C. F., 1926 a: The rate of absorption of a mixture of glucose and galactose. Proc. Soc. exper. Biol. a. Med. (Am.) 23, 290–291.

    CAS  Google Scholar 

  • Cori, C. F., 1926 b: The absorption of glycine and d, 1-alanine. Proc. Soc. exper. Biol. a. Med. 24, 125–126.

    Google Scholar 

  • Cori, C. F., G. T. Cori, and H. L. Goltz, 1929: On the mechanism of glucose absorption from the intestinal tract. Proc. Soc. exper. Biol. a. Med. (Am.) 26, 433–436.

    CAS  Google Scholar 

  • Cowie, D. B., R. B. Roberts, and I. Z. Roberts, 1949: Potassium metabolism in Escherichia coli. I. Permeability to sodium and potassium ions. J. cellul. a. comp. Physiol. (Am.) 34, 243–258.

    Article  CAS  Google Scholar 

  • Crampton, R. F., Q. H. Gibson, and D. H. Smyth, 1951: The excretion of the D- and L-isomers of amino-acids in the urine. J. Physiol. (Brit.) 115, 7 P.

    Google Scholar 

  • Creese, R., 1951: Exchangeability of muscle potassium. J. Physiol. (Brit.) 115, 23 P.

    Google Scholar 

  • Creese, R., 1952: Bicarbonate ion and muscle potassium. Biochem. J. (Brit.) 50, xviii.

    Google Scholar 

  • Cross, R. J., and J. V. Taggart, 1950: Renal tubular transport: accumulation of p-aminohippurate by rabbit kidney slices. Amer. J. Physiol. 161, 181–190.

    PubMed  CAS  Google Scholar 

  • Cumings, J. N., 1940: The rôle of potassium in myasthenia gravis. J. Neur. Psychiat. 3, 115–122.

    Article  CAS  Google Scholar 

  • Danowski, T. S., 1941: The transfer of potassium across the human blood cell membrane. J. biol. Chem. (Am.) 139, 693–705.

    CAS  Google Scholar 

  • Darlington, W. A., and J. H. Quastel, 1953: Absorption of sugars from isolated surviving intestine. Arch. Biochem. Biophys. 43, 194–207.

    Article  PubMed  CAS  Google Scholar 

  • Davies, M. E., and E. B. Edney, 1953: The evaporation of water from spiders. J. exper. Biol. 29, 571–582.

    Google Scholar 

  • Davies, R., J. P. Folkes, E. F. Gale, and L. C. Bigger, 1953: The assimilation of amino-acids by micro-organisms. 16. Changes in sodium and potassium accompanying the accumulation of glutamic acid or lysine by bacteria and veast. Biochem. J. 54, 430–437.

    PubMed  CAS  Google Scholar 

  • Davies, R. E., and A. W. Galston, 1951: Rapid rate of turnover of potassium ions in kidney slices. Nature 168, 700.

    Article  PubMed  CAS  Google Scholar 

  • Davies, R. E. and H. A. Krebs, 1952: Biochemical aspects of the transport of ions by nervous tissue. Biochem. J. 50, xxv.

    Google Scholar 

  • Davson, H., 1939: Studies on the permeability of erythrocytes. VI. The effect of reducing the salt content of the medium surrounding the cell. Biochem. J. 33, 389–401.

    PubMed  CAS  Google Scholar 

  • Davson, H., 1940: Ionic permeability. The comparative effects of environmental changes on the permeability of the cat erythrocyte membrane to sodium and potassium. J. cellul. a. comp. Physiol. (Am.) 15, 317–330.

    Article  CAS  Google Scholar 

  • Davson, H., 1941: The effect of some metabolic poisons on the permeability of the rabbit erythrocyte to potassium. J. cellul. a. comp. Physiol. (Am.) 18, 173–185.

    Article  CAS  Google Scholar 

  • Davson, H., 1951: Textbook of General Physiology, Philadelphia.

    Google Scholar 

  • Davson, H., and J. F. Danielli, 1938: Studies on the permeability of erythrocytes. V. Factors in cation permeability. Biochem. J. 32, 991–1001.

    PubMed  CAS  Google Scholar 

  • Davson, H., and J. F. Danielli, 1943: The Permeability of Natural Membranes, Cambridge.

    Google Scholar 

  • Davson, H., and J. M. Reiner, 1942: Ionic permeability; enzyme-like factor concerned in migration of sodium through cat erythrocyte membrane. J. cellul. a. comp. Physiol. (Am.) 20, 325–342.

    Article  CAS  Google Scholar 

  • Dean, R. B., 1940: Anaerobic loss of potassium from frog muscle. J. cellul. a. comp. Physiol. (Am.) 15, 189–193.

    Article  CAS  Google Scholar 

  • Dean, R. B., T. R. Noonan, L. Haege, and W. O. Fenn, 1941: Permeability of erythrocytes to radioactive potassium. J. gen. Physiol. (Am.) 24, 353–365.

    Article  CAS  Google Scholar 

  • Demis, D. J., 1953: A study of the effects of insulin and of mercury on the utilization of monosaccharides by excised rat diaphragm. University of Rochester Atomic Energy Project, Report UR—297.

    Google Scholar 

  • Desmedt, J., 1953: Electrical activity and intracellular sodium concentration in frog muscle. J. Physiol. (Brit.) 121, 191–205.

    CAS  Google Scholar 

  • Deyrup, I., 1953: A study of the fluid uptake of rat kidney slices in vitro. J. gen. Physiol. (Am.) 36, 739–749.

    Article  CAS  Google Scholar 

  • Dixon, K. C., 1949: Anaerobic leakage of potassium from brain. Biochem. J. 44, 187–190.

    CAS  Google Scholar 

  • Donhoffer, Sz., 1935: Über die elektive Resorption der Zucker. Arch. exper. Path. (D.) 177, 689–692.

    Article  CAS  Google Scholar 

  • Doty, J. R., 1941: Reabsorption of certain amino acids and derivatives by the kidney tubules. Proc. Soc. exper. Biol. a. Med. (Am.) 46, 129–130.

    Google Scholar 

  • Drury, D. R., and A. N. Wick, 1951: Insulin and the volume of distribution of glucose. Amer. J. Physiol. 166, 159–164.

    PubMed  CAS  Google Scholar 

  • Drury, D. R., and A. N. Wick, 1952: Insulin and cell permeability to galactose. Amer. J. Physiol. 171, 721.

    Google Scholar 

  • Drury, D. R., and A. N. Wick, 1953: The nature of the action of insulin. XIXth Internat. Physiol. Congr. 319–320.

    Google Scholar 

  • Eddy, A. A., T. C. N. Carroll, C. J. Danby, and Sir C. Hinshelwood, 1951: Alkali-metal ions in the metabolism of Bad. lactis aerogenes. I. Experiments on the uptake of radioactive potassium, rubidium and phosphorus. Proc. roy. Soc. Lond. B 138, 219–228.

    Article  CAS  Google Scholar 

  • Eddy, A. A., and Sir C. Hinshelwood, 1950: The utilization of potassium by Bact. ladis aerogenes. Proc. roy. Soc, Lond. B 136, 544–562.

    Article  CAS  Google Scholar 

  • Eddy, A. A., and Sir C. Hinshelwood, 1951: Alkali-metal ions in the metabolism of Bad. ladis aerogenes. III. General discussion of their role and mode of action. Proc rov. Soc, Lond. B 138, 237–240.

    Article  CAS  Google Scholar 

  • Ege, R., 1919: Studier over glukosens fordeling mellem plasmaet og de rode blodlegemer. Thesis, Copenhagen. Cited by Bang and Ørskov (1937).

    Google Scholar 

  • Ege, R., E. Gottlieb, and N. W. Rakestraw, 1925: The distribution of glucose between human blood plasma and red corpuscles and the rapiditv of its penetration. Amer. J. Physiol. 72, 76–83.

    CAS  Google Scholar 

  • Ege, R., and K. M. Hansen, 1927: Distribution of sugar between plasma and red blood corpuscles in man. Acta med. scand. (Schwd.) 65, 279–299.

    Article  CAS  Google Scholar 

  • Eggleton, M. G., and Y. A. Habib, 1950: Urinarv excretion of phosphate in man and the cat. J. Physiol. (Brit.) 111, 423–436.

    CAS  Google Scholar 

  • Eggleton, M. G., and S. Shuster, 1954 a: Glucose and phosphate excretion in the cat. J. Physiol. (Brit.) 124, 613–622.

    CAS  Google Scholar 

  • Eggleton, M. G., and S. Shuster, 1954 b: The effect of insulin on the excretion of glucose and phosphate by the kidney of the cat. J. Physiol. (Brit.) 124, 623–630.

    CAS  Google Scholar 

  • Eisenmann, A. J., L. Ott, P. K. Smith, and A. W. Winkler, 1940: Permeability of human erythrocytes to potassium, sodium, and inorganic phosphate by the use of radioactive isotopes. J. biol. Chem. (Am.) 135 165–173.

    Google Scholar 

  • Ellinger, P., et A. Lambrechts, 1937: La localisation de l’effet de la phlorhizine dans le rein vivant. C. r. Soc. Biol. 124, 261–263.

    CAS  Google Scholar 

  • Elliott, K. A. C., 1946: Swelling of brain slices and the permeability of brain cells to glucose. Proc. Soc. exper. Biol. a. Med. (Am.) 63, 234–236.

    CAS  Google Scholar 

  • Elsden, S. R., Q. H. Gibson, and G. Wiseman, 1950: Selective absorption of aminoacids from the small intestine of the rat. J. Physiol. (Brit.) 111, 56 P.

    Google Scholar 

  • Emmens, C. W., and A. W. Blackshaw, 1953: The fertility of ram and bull semen after deep freezing. XIXth Internat. Physiol. Congr. 334–335.

    Google Scholar 

  • Fenn, W. O., 1937: Loss of potassium in voluntary contraction. Amer. J. Physiol. 120, 675–680.

    CAS  Google Scholar 

  • Fenn, W. O., and D. M. Cobb, 1936: Electrolyte changes in muscle during activity. Amer. J. Physiol. 115, 345–356.

    CAS  Google Scholar 

  • Fenn, W. O., and D. M. Cobb, J. F. Manery, and W. R. Bloor, 1937: Electrolyte changes in cat muscle during stimulation. Amer. J. Physiol. 121, 595–608.

    Google Scholar 

  • Fenn, W. O., and R. Gerschman, 1950: The loss of potassium from frog nerves in anoxia and other conditions. J. gen. Physiol. (Am.) 33, 195–203.

    Article  CAS  Google Scholar 

  • Fenn, W. O., R. H. Koenemann, and E. T. Sheridan, 1940: The potassium exchange of perfused frog muscle during asphyxia. J. cellul. a. comp. Physiol. (Am.) 16, 225–264.

    Google Scholar 

  • Fenn, W. O., T. R. Noonan, L. J. Mullins, and L. Haege, 1942: The exchange of radioactive potassium with body potassium. Amer. J. Physiol. 135, 149–163.

    Google Scholar 

  • Fenton, P. F., 1945: Response of the gastrointestinal tract to ingested glucose solutions. Amer. J. Physiol. 144, 609–619.

    CAS  Google Scholar 

  • Feyder S., and H. B. Pierce, 1935: Rates of absorption and glycogenesis from various sugars. J. Nutrit. (Am.) 9, 435–455.

    CAS  Google Scholar 

  • Fisher, R. B., and D. B. Lindsay, 1954: The effect of insulin on the penetration of galactose into the perfused rat heart. J. Physiol. (Brit.) 124, 20 P–21 P.

    Google Scholar 

  • Fisher, R. B., and D. S. Parsons, 1953 a: Glucose movements across the wall of the rat small intestine. J. Physiol. (Brit.) 119, 210–223.

    CAS  Google Scholar 

  • Fisher, R. B., and D. S. Parsons, 1953 b: Galactose absorption from the surviving small intestine of the rat. J. Physiol. (Brit.) 119, 224–232.

    CAS  Google Scholar 

  • Flemister, L. J., and S. C. Flemister, 1951: Chloride ion regulation and oxygen consumption in the crab Ocypode albicans (Bosq). Biol. Bull. (Am.) 101, 259–273.

    Article  CAS  Google Scholar 

  • Flynn, F., and M. Maizels. 1950: Cation control in human erythrocytes. J. Physiol. (Brit.) 110, 301–318.

    Google Scholar 

  • Forster, R. P., and J. V. Taggart, 1950: Use of isolated renal tubules for the examination of metabolic processes associated with active cellular transport. J. cellul. a. comp. Physiol. (Am.) 36, 251–270.

    Article  CAS  Google Scholar 

  • Foulks, J., P. Brazeau, E. S. Koelle, and A. Gilman, 1952: Renal secretion of thiosulfate in the dog. Amer. J. Physiol. 168, 77–85.

    PubMed  CAS  Google Scholar 

  • Foulks, J., G. H. Mudge, and A. Gilman, 1952: Renal excretion of cation in the dog during infusion of isotonic solutions of lithium chloride. Amer. J. Physiol. 168, 642–649.

    PubMed  CAS  Google Scholar 

  • Franck, J., and J. E. Mayer, 1947: An osmotic diffusion pump. Arch. Biochem. 14, 297–313.

    PubMed  CAS  Google Scholar 

  • Fridlander, L., and J. H. Quastel, 1953: Absorption of sugars and amino acids by isolated surviving intestine. XIXth Internat. Physiol. Congr. 365–366.

    Google Scholar 

  • Fuhrman, F. A., 1952: Inhibition of active sodium transport in the isolated frog skin. Amer. J. Physiol. 171, 266–278.

    PubMed  CAS  Google Scholar 

  • Fuhrman, F. A., and H. H. Ussing, 1951: A characteristic response of the isolated frog skin potential to neurohypophysial principles and its relation to the transport of sodium and water. J. cellul. a. comp. Physiol. (Am.) 38, 109–130.

    Article  CAS  Google Scholar 

  • Furchgott, R. F., and E. Shorr, 1943: Phosphate exchange in resting cardiac muscle as indicated by radioactivity studies. IV. J. biol. Chem. (Am.) 151, 65–86.

    CAS  Google Scholar 

  • Gale, E. F., 1947 a: The assimilation of amino-acids by bacteria. I. The passage of certain amino-acids across the cell wall and their concentration in the internal environment of Streptococcus faecalis. J. gen. Microbiol. 1, 53–76.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., 1947 b: The assimilation of amino-acids by bacteria. 6. The effect of protein synthesis on glutamic acid accumulation and the action thereon of sulpha-thiazole. J. gen. Microbiol. 1, 327–334.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., 1949: The assimilation of amino-acids by bacteria. 8. Trace metals in glutamic acid assimilation and their inactivation by 8-hydroxyquinoline. J. gen. Microbiol. 3, 369–386.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., 1951 a: The assimilation of amino-acids by bacteria. 10. Action of inhibitors on the accumulation of free glutamic acid in Staphylococcus aureus and Streptococcus faecalis. Biochem. J. 48, 286–290.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., 1951b: The assimilation of amino-acids by bacteria. 11. The relationship between accumulation of free glutamic acid and the formation of combined glutamic acid in Staphylococcus aureus. Biochem. J. 48, 290–297.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., 1953: Assimilation of amino-acids by gram-positive bacteria and some actions of antibiotics thereon. Adv. in Prot. Chem. 8, 285–391.

    Article  CAS  Google Scholar 

  • Gale, E. F., 1954: The accumulation of amino-acids within staphylococcal cells. Symp. Soc. exper. Biol. 8 (in press).

    Google Scholar 

  • Gale, E. F., and P. D. Mitchell, 1947: The assimilation of amino-acids by bacteria. 4. The action of triphenvlmethane dyes on glutamic acid assimilation. J. gen. Microbiol. 1, 299–313.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and A. W. Rodwell, 1948: Amino acid metabolism of penicillin-resistant staphylococci. J. Bacter. (Am.) 55, 161–167.

    CAS  Google Scholar 

  • Gale, E. F., and A. W. Rodwell 1949: The assimilation of amino-acids by bacteria. 7. The nature of resistance to penicillin in Staphylococcus aureus. J. gen. Microbiol. 3, 127–142.

    PubMed  CAS  Google Scholar 

  • Gale, E. F., and E. S. Taylor, 1947: The assimilation of amino-acids by bacteria. 5. The action of penicillin in preventing the assimilation of glutamic acid by Staphylococcus aureus. J. gen. Microbiol. 1, 314–326.

    PubMed  CAS  Google Scholar 

  • Gammeltoft, A., and K. Kjerulf-Jensen, 1943: The mechanism of renal excretion of fructose and galactose in rabbit, cat, dog and man (with special reference to the phosphorylation theory). Acta Physiol. Scand. (D.) 6, 368–384.

    Article  CAS  Google Scholar 

  • Geiger, A., J. Magnes, and J. Dobkin, 1953: The role of a liver factor in maintaining the glucose uptake, carbohydrate metabolism and the responsiveness of the brain. The utilization of glucosamine. XIXth Internat. Physiol. Congr. 383–384.

    Google Scholar 

  • Geiger, A., J. Magnes, R. M. Taylor, and M. Veralli, 1954: Effect of blood constituents on uptake of glucose and on metabolic rate of the brain in perfusion experiments. Amer. J. Physiol. 177, 138–149.

    PubMed  CAS  Google Scholar 

  • Gemmill, C. L., and L. Hamman Jr., 1941: The effect of insulin on glycogen deposition and on glucose utilization by isolated muscles. Bull. Johns Hopkins Hosp. 68, 50–57.

    CAS  Google Scholar 

  • Gibson, Q. H., and G. Wiseman, 1951: Selective absorption of stereo-isomers of amino-acids from loops of the small intestine of the rat. Biochem. J. 48, 426–429.

    PubMed  CAS  Google Scholar 

  • Goldstein, M. S., W. L. Henry, B. Huddlestun, and R. Levine, 1953: Action of insulin on transfer of sugars across cell barriers: common chemical configuration of substances responsive to action of the hormone. Amer. J. Physiol. 173, 207–211.

    PubMed  CAS  Google Scholar 

  • Goldstein, M. S., V. Mullick, B. Huddlestun, and R. Levine, 1953: Action of muscular work on transfer of sugars across cell barriers: comparison with action of insulin. Amer. J. Physiol. 173, 212–216.

    PubMed  CAS  Google Scholar 

  • Gourley, D. R. H., 1951: Inhibition of uptake of radioactive phosphate by human erythrocytes in vitro. Amer. J. Physiol. 164, 213–220.

    PubMed  CAS  Google Scholar 

  • Gourley, D. R. H., 1952: The role of adenosine triphosphate in the transport of phosphate in the human erythrocyte. Arch. Biochem. 40, 1–12.

    Article  PubMed  CAS  Google Scholar 

  • Gourley, D. R. H., and C. L. Gemmill, 1950: The effect of temperature upon the uptake of radioactive phosphate by human erythrocytes in vitro. J. cellul. a. comp. Physiol. (Am.) 35, 341–352.

    Article  CAS  Google Scholar 

  • Greig, M. E., J. S. Faulkner, and T. C. Mayberry, 1953: Studies on permeability. IX. Replacement of potassium in erythrocytes during Cholinesterase activity. Arch. Biochem. Biophys. 43, 39–47.

    Article  PubMed  CAS  Google Scholar 

  • Greig, M. E., and W. C. Holland, 1949 a: Effect of the D- and L-isomers of isoamidone on the permeability of dog erythrocytes. Proc. Soc. exper. Biol. a. Med. (Am.) 71, 189–192.

    CAS  Google Scholar 

  • Greig, M. E., and W. C. Holland, 1949 b: Studies on the permeability of erythrocytes. I. The relationship between Cholinesterase activity and permeability of dog erythrocytes. Arch. Biochem. 23, 370–384.

    PubMed  CAS  Google Scholar 

  • Greig, M. E., and W. C. Holland, 1951: Studies on the permeability of erythrocytes. IV. Effect of certain choline and non-choline esters on permeability of dog erythrocytes. Amer. J. Physiol. 164, 423–427.

    PubMed  CAS  Google Scholar 

  • Greig, M. E., T. C. Mayberry, and C. E. Dunn, 1951: Replacement of potassium in the human erythrocyte during Cholinesterase activity. Fed. Proc. 10, 302–303.

    Google Scholar 

  • Groen, J., 1937: Absorption of hexoses from upper part of small intestine in man. J. clin. Invest. (Am.) 16, 245–255.

    Article  CAS  Google Scholar 

  • Grossfeld, H. D., 1951: Cell permeability to electrolytes in tissue culture. Exper. Cell Res. 2, 141–143.

    Article  CAS  Google Scholar 

  • Grundfest, H., and D. Nachmansohn, 1950: Increased sodium entry into squid giant axons during activity at high frequencies and during reversible inactivation of Cholinesterase. Fed. Proc. 9, 53.

    Google Scholar 

  • Guensberg, E., 1947: Die Glukoseaufnahme in menschliche rote Blutkörperchen. Inauguraldissertation, Bern; Schwarzenburg.

    Google Scholar 

  • Hahn, L., and G. Hevesy, 1942: Rate of penetration of ions into erythrocytes. Acta Physiol. Scand. (D.) 3, 193–223.

    Article  CAS  Google Scholar 

  • Hahn, L., and G. Hevesy, and O. H. Rebbe, 1939: Do the potassium ions inside the muscle cells and blood corpuscles exchange with those present in the plasma? Biochem. J. 33, 1549–1558.

    PubMed  CAS  Google Scholar 

  • Hald, P. M., A. J. Heinsen, and J. P. Peters, 1948: Effects of isotonic solutions and of sulfates and phosphates on the distribution of water and electrolytes in human blood. Amer. J. Physiol. 152, 77–85.

    PubMed  CAS  Google Scholar 

  • Hald, P. M., M. Tulin, T. S. Danowski, P. H. Lavietes, and J. P. Peters, 1947: The distribution of sodium and potassium in oxygenated human blood and their effects upon the movements of water between cells and plasma. Amer. J. Physiol. 149, 340–349.

    PubMed  CAS  Google Scholar 

  • Halpern, L., 1936: The transfer of inorganic phosphorus across the red blood cell membrane. J. biol. Chem. (Am.) 114, 747–770.

    CAS  Google Scholar 

  • van Harreveld, A., 1950: The potassium permeability of the myelin sheath of a vertebrate nerve. J. cellul. a. comp. Physiol. (Am.) 35, 331–340.

    Article  Google Scholar 

  • Harris, E. J., 1953 a: The exchange of frog muscle potassium. J. Physiol. (Brit). 120, 246–253.

    CAS  Google Scholar 

  • Harris, E. J., 1953 b: Phosphate liberation from isolated frog muscle. J. Physiol. (Brit.) 122, 366–370.

    CAS  Google Scholar 

  • Harris, E. J., 1954: Linkage of Na and K transport in human erythrocytes. Symp. Soc. exper. Biol. 8 (in press).

    Google Scholar 

  • Harris, E. J., and G. P. Burn, 1949: The transfer of sodium and potassium ions between muscle and the surrounding medium. Trans. Farad. Soc. 45, 508–528.

    Article  CAS  Google Scholar 

  • Harris, E. J., and M. Maizels, 1951: The permeability of human erythrocytes to sodium. J. Physiol. (Brit.) 113, 506–524.

    CAS  Google Scholar 

  • Harris, E. J., and M. Maizels, 1952: Distribution of ions in suspensions of human erythrocytes. J. Physiol. (Brit.) 118, 40–53.

    CAS  Google Scholar 

  • Harris, J. E., 1941: The influence of the metabolism of human erythrocytes on their potassium content. J. biol. Chem. (Am.) 141, 579–595.

    CAS  Google Scholar 

  • Heinsen, A. J., 1948: Effect of inorganic phosphate on the glycolysis of human blood. Amer. J. Physiol. 152, 216–218.

    PubMed  CAS  Google Scholar 

  • Heppel, L. A., 1939: The electrolytes of muscle and liver in potassium-depleted rats. Amer. J. Physiol. 127, 385–392.

    CAS  Google Scholar 

  • Heppel, L. A., 1940: The diffusion of radioactive sodium into the muscles of potassium-deprived rats. Amer. J. Physiol. 128, 449–454.

    CAS  Google Scholar 

  • Hestrin-Lerner, S., and B. Shapiro 1953: Active absorption of glucose from the intestine. Nature 171, 745–746.

    Article  PubMed  CAS  Google Scholar 

  • Hetényi, G., and M. Winter, 1952: Contributions to the mechanism of the intestinal absorption of amino acids. Acta Physiol. Acad. Sci. Hungar. 3, 49–58.

    Article  Google Scholar 

  • Hevesy, G., E. Hofer, and A. Krogh, 1935: The permeability of the skin of frogs to water as determined by D2O and H2O. Skand. Arch. Physiol. (D.) 72, 199–214.

    Google Scholar 

  • Hevesy, G., and N. Nielsen, 1941: Potassium interchange in yeast cells. Acta Physiol. Scand. 2, 347–354.

    Article  CAS  Google Scholar 

  • Hewitt, J. A., 1924: The metabolism of carbohydrates. Part III. The absorption of glucose, fructose and galactose from the small intestine. Biochem. J. 18, 160–170.

    Google Scholar 

  • Hodgkin, A. L., 1949: Ionic exchange and electrical activity in nerve and muscle. Arch. Sci. Physiol. 3, 151–163.

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley, 1952 a: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Brit.) 116, 449–472.

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley, 1952 b: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Brit.) 116, 473–496.

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley, 1952 c: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Brit.) 116, 497–506.

    CAS  Google Scholar 

  • Hodgkin, A. L., and A. F. Huxley, 1953: Movement of radioactive potassium and membrane current in a giant axon. J. Physiol. (Brit.) 121, 403–414.

    CAS  Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes, 1953: The mobility and diffusion coefficient of potassium in giant axons from Sepia. J. Physiol. (Brit.) 119, 513–528.

    CAS  Google Scholar 

  • Hodgkin, A. L., and R. D. Keynes, 1954: Movement of cations during recovery in nerve. Symp. Soc. exper. Biol. 8 (in press).

    Google Scholar 

  • Höber, R., 1945: Physical Chemistry of Cells and Tissues, Philadelphia.

    Google Scholar 

  • Höber, R., and J. Höber, 1937: Experiments on the absorption of organic solutes in the small intestine of rats. J. cellul. a. comp. Physiol. (Am.) 10, 401–422.

    Article  Google Scholar 

  • Hogben, C. A. M., and J. L. Bollman, 1951: Excretion of phosphate by isolated frog kidney: an “adsorption semipermeability” model for maximal tubular transport. Amer. J. Physiol. 164, 662–669.

    PubMed  CAS  Google Scholar 

  • Holland, W. C., C. E. Dunn, and M. E. Greig, 1952 a: Studies on permeability. VII. Effect of several substrates and inhibitors of acetyl Cholinesterase on permeability of isolated auricles to Na and K. Amer. J. Physiol. 168, 546–556.

    PubMed  CAS  Google Scholar 

  • Holland, W. C., C. E. Dunn, and M. E. Greig, 1952 b: Studies on permeability. VIII. Role of acetylcholine metabolism in the genesis of the electrocardiogram. Amer. J. Physiol. 170, 339–345.

    PubMed  CAS  Google Scholar 

  • Holland, W. C., and M. E. Greig, 1950 a: Studies on permeability. II. The effect of acetylcholine and physostigmine on the permeability to potassium of dog erythrocytes. Arch. Biochem. 26, 151–155.

    CAS  Google Scholar 

  • Holland, W. C., and M. E. Greig, 1950 b: Studies on the permeability of erythrocytes. III. The effect of physostigmine and acetyl choline on the permeability of dog, cat and rabbit erythrocytes to sodium and potassium. Amer. J. Physiol. 162, 610–615.

    PubMed  CAS  Google Scholar 

  • Holland, W. C., and M. E. Greig, 1951: Studies on permeability. VI. Increased permeability of dog erythrocytes caused by Cholinesterase inhibitors. Arch. Biochem. Biophys. 32, 428–435.

    Article  PubMed  CAS  Google Scholar 

  • Horváth, I., and G. Wix, 1951: Hormonal influences on glucose resorption from the intestines. I. Methodical principles. Daily variations in the absorption of sugar. The proportion between the absorption of glucose and xylose. Acta Physiol. Acad. Sci. Hungar. 2, 435–443.

    Google Scholar 

  • Hotchkiss, R. D., 1944: Gramicidin, tyrocidine, and tyrothricin. Adv. in Enzymol. 4, 153–199.

    CAS  Google Scholar 

  • Huf, E. G., 1935 a: Versuche über den Zusammenhang zwischen Stoffwechsel, Potentialbildung und Funktion der Froschhaut. Arch. ges. Physiol. 235, 655–673.

    Article  CAS  Google Scholar 

  • Huf, E. G., 1935 b: Über den Anteil vitaler Kräfte bei der Resorption von Flüssigkeit durch die Froschhaut. Arch. ges. Physiol. 236, 1–19.

    Article  CAS  Google Scholar 

  • Huf, E. G., 1936 a: Über aktiven Wasser- und Salztransport durch die Froschhaut. Arch, ges. Physiol. 237, 143–166.

    Article  CAS  Google Scholar 

  • Huf, E. G., 1936 b: Die Bedeutung der Atmungsvorgänge für die Resorptionsleistung und Potentialbildung bei der Froschhaut. Biochem. Z. 288, 116–122.

    CAS  Google Scholar 

  • Huf, E. G., 1936 c: Die Reproduzierbarkeit des Reidschen Versuchs. Arch. ges. Physiol. 238, 97–102.

    Google Scholar 

  • Huf, E. G., and J. Parrish, 1951: Nature of the electrolyte pump in surviving frog skin. Amer. J. Physiol. 164, 428–436.

    PubMed  CAS  Google Scholar 

  • Huf, E. G., J. Parrish, and C. Weatherford, 1951: Active salt and water uptake by isolated frog skin. Amer. J. Physiol. 164, 137–142.

    PubMed  CAS  Google Scholar 

  • Huf, E. G., and J. Wills, 1951: Influence of some inorganic cations on active salt and water uptake by isolated frog skin. Amer. J. Physiol. 167, 255–260.

    PubMed  CAS  Google Scholar 

  • Huf, E. G., and J. Wills, 1953: The relationship of sodium uptake, potassium rejection, and skin potential in isolated frog skin. J. gen. Physiol. (Am.) 36, 473–487.

    Article  CAS  Google Scholar 

  • Huf, E. G., and J. Wills, and M. J. Cooley, 1951: The significance of the anion in active salt uptake by isolated frog skin. Arch. ges. Physiol. 255, 16–26.

    Google Scholar 

  • Hunter, F. R., 1936: The effect of lack of oxygen on cell permeability. J. cellul. a. comp. Physiol. (Am.) 9, 15–27.

    Article  Google Scholar 

  • Hunter, F. R., 1937: Effect of prolonged exposures to lack of oxygen on permeability of erythrocyte. J. cellul. a. comp. Physiol. (Am.) 10, 241–245.

    Article  Google Scholar 

  • Hunter, F. R., 1941: Metabolism and permeability. Anat. Rec. (Am.) 81 Suppl., 31–32.

    Google Scholar 

  • Hunter, F. R., 1947 a: Further studies on the relationship between cell permeability and metabolism. The effect of certain respiratory inhibitors on the permeability of erythrocytes to non-electrolytes. J. cellul. a. comp. Physiol. (Am.) 29, 301–312.

    Article  CAS  Google Scholar 

  • Hunter, F. R., 1947 b: The effect of washing on the permeability and metabolism of chicken erythrocytes. J. cellul. a. comp. Physiol. (Am.) 29, 313–321.

    Article  CAS  Google Scholar 

  • Hunter, F. R., and V. Pahigian, 1940: The effect of temperature on cell permeability and on cell respiration. J. cellul. a. comp. Physiol. (Am.) 15, 387–394.

    Article  CAS  Google Scholar 

  • Hurwitz, L., and A. Rothstein, 1951: The relationship of the cell surface to metabolism. VII. The kinetics and temperature characteristics of uranium-inhibition. J. cellul. a. comp. Physiol. (Am.) 38, 437–450.

    Article  CAS  Google Scholar 

  • Ingraham, R. C., and M. B. Visscher, 1936 a: The production of chloride-free solutions by the action of the intestinal epithelium. Amer. J. Physiol. 114, 676–680.

    CAS  Google Scholar 

  • Ingraham, R. C., and M. B. Visscher, 1936 b: The influence of various poisons on the movement of chloride against concentration gradients from intestine to plasma. Amer. J. Physiol. 114, 681–687.

    CAS  Google Scholar 

  • Ingraham, R. C., and M. B. Visscher, 1938: Further studies on intestinal absorption with the performance of osmotic work. Amer. J. Physiol. 121, 771–785.

    CAS  Google Scholar 

  • Jacobs, M. H., 1931: The permeability of the erythrocyte. Erg. Biol. 7, 1–55.

    Article  Google Scholar 

  • Jacobs, M. H., 1950: Surface properties of the erythrocyte. Ann. N. Y. Ac. Sci. 50, 824–834.

    Article  Google Scholar 

  • Jacobs, M. H., and S. A. Corson, 1934: The influence of minute traces of copper on certain hemolytic processes. Biol. Bull. (Am.) 67, 325–326.

    Google Scholar 

  • Jacobs, M. H., H. N. Glassman, and A. K. Parpart, 1935: Osmotic properties of the erythrocyte. VII. The temperature coefficients of certain hemolytic processes. J. cellul. a. comp. Physiol. (Am.) 7, 197–225.

    Article  Google Scholar 

  • Jacobs, M. H., H. N. Glassman, and A. K. Parpart, 1938: Osmotic properties of the erythrocyte. XI. Differences in the permeability of the erythrocytes of two closely related species. J. cellul. a. comp. Physiol. (Am.) 11, 479–494.

    Article  CAS  Google Scholar 

  • Jacobs, M. H., and A. K. Parpart, 1933: Osmotic properties of the erythrocyte. VI. The influence of the escape of salts on hemolysis by hypotonic solutions. Biol. Bull. (Am.) 65, 512–528.

    Article  CAS  Google Scholar 

  • Jacobs, M. H., and A. K. Parpart, 1937: The influence of certain alcohols on the permeability of the erythrocyte. Biol. Bull. (Am.) 73, 380–381.

    Google Scholar 

  • Jacobs, M. H., and D. R. Stewart, 1946: Observations on an oligodynamic action of copper on human erythrocytes. Amer. J. med. Sci. 211, 246.

    PubMed  CAS  Google Scholar 

  • Jørgensen, C. B., 1947: The effect of adrenaline and related compounds on the permeability of isolated frog skin to ions. Acta Physiol. Scand. 14, 213–219..

    Article  Google Scholar 

  • Jørgensen, C. B., H. Levi, and H. H. Ussing, 1947: On the influence of the neurohypophyseal principles on the sodium metabolism in the axolotl (Amblystoma mexicanum). Acta Physiol. Scand. 12, 350–371.

    Article  Google Scholar 

  • Johnson, C. A., and O. Bergeim, 1951: The distribution of free amino-acids between erythrocytes and plasma in man. J. Biol. Chem. (Am.) 188, 833–838.

    CAS  Google Scholar 

  • Jonas, H., 1954: Observations on the mechanism of phosphate uptake by rabbit erythrocytes. Phosphate adsorption in relation to cell surface structure; equilibria of phosphate adsorption and absorption. Biochim. Biophys. Acta 13, 241–250.

    Article  PubMed  CAS  Google Scholar 

  • Jonas, H., and D. R. H. Gourley, 1954: Effect of adenosine triphosphate, magnesium and calcium on the phosphate uptake by rabbit erythrocytes. Biochim. Biophys. Acta (in press).

    Google Scholar 

  • Jones, L. L., 1941: Osmotic regulation in several crabs of the Pacific coast of North America. J. cellul. a. comp. Physiol. (Am.) 18, 79–92.

    Article  CAS  Google Scholar 

  • Kabat, E. A., and J. Furth, 1941: A histochemical study of the distribution of alkaline phosphatase in various normal and neoplastic tissues. Amer. J. Path. 17, 303–318.

    PubMed  CAS  Google Scholar 

  • Kamen, M. D., and S. Spiegelman, 1948: Studies on the phosphate metabolism of some unicellular organisms. Cold Spring Harbor Symp. Quant. Biol. 13, 151–163.

    Article  CAS  Google Scholar 

  • Kamin, H., and P. Handler, 1951: Effect of infusion of single amino acids upon excretion of other amino acids. Amer. J. Physiol. 164, 654–661.

    PubMed  CAS  Google Scholar 

  • Katzin, L. I., 1940: The use of radioactive tracers in the determination of irreciprocal permeability of biological membranes. Biol. Bull. (Am.) 79, 342.

    Google Scholar 

  • Kekwik, R. A., and E. N. Harvey, 1934: The effect of anaerobic conditions on the permeability of the egg of Arbacia punctulata to water. J. cellul. a. comp. Physiol. (Am.) 5, 43–51.

    Article  Google Scholar 

  • Keynes, R. D., 1949: Movements of radioactive ions in resting and stimulated nerve. Arch. Sci. Physiol. 3, 165–175.

    CAS  Google Scholar 

  • Keynes, R. D., 1951 a: The leakage of radioactive potassium from stimulated nerve. J. Physiol. (Brit.) 113, 99–114.

    CAS  Google Scholar 

  • Keynes, R. D., 1951b: The ionic movements during nervous activity. J. Physiol. (Brit.) 114, 119–150.

    CAS  Google Scholar 

  • Keynes, R. D., 1954: The ionic fluxes in frog muscle. Proc. roy. Soc, Lond. B 142, 359–382.

    Article  CAS  Google Scholar 

  • Keynes, R. D., and P. R. Lewis, 1950: Determination of the ionic exchange during nervous activity by activation analysis. Nature 165, 809–810.

    Article  PubMed  CAS  Google Scholar 

  • Keynes, R. D., and P. R. Lewis, 1951: The resting exchange of radioactive potassium in crab nerve. J. Physiol. (Brit.) 113, 73–98.

    CAS  Google Scholar 

  • Keynes, R. D., and G. W. Maisel, 1954: The energy requirement for sodium extrusion from a frog muscle. Proc. roy. Soc, Lond. B 142, 383–392.

    Article  CAS  Google Scholar 

  • Keys, A. B., 1931: Chloride and water secretion and absorption by the gills of the eel. Z. vergl. Physiol. 15, 364–388.

    Article  Google Scholar 

  • Keys, A. B., and E. N. Willmer, 1932: “Chloride secreting cells” in the gills of fishes, with special reference to the common eel. J. Physiol. (Brit.) 76, 368–378.

    CAS  Google Scholar 

  • Kirschner, L. B., 1953: Effect of Cholinesterase inhibitors and atropine on active sodium transport across frog skin. Nature 172, 348–350.

    Article  PubMed  CAS  Google Scholar 

  • Kitching, J. A., 1938 a: Contractile vacuoles. Biol. Rev. 13, 403–444.

    Article  CAS  Google Scholar 

  • Kitching, J. A., 1938 b: The physiology of contractile vacuoles. III. The water balance of fresh-water peritricha. J. exper. Biol. 15, 143–151.

    CAS  Google Scholar 

  • Kjerulf-Jensen, K., und E. Lundsgaard, 1940: Quantitative Wertung des Umsatzes der Phosphatester in der Darmschleimhaut von Ratten während der Fructose-resorption. Z. physiol. Chem. 266, 217–224.

    Article  CAS  Google Scholar 

  • Klinghoffer, K. A., 1935: Permeability of the red cell membrane to glucose. Amer. J. Physiol. 111, 231–242.

    CAS  Google Scholar 

  • Klinghoffer, K. A., 1938: The effect of monoiodoacetatic acid on the intestinal absorption of monosaccharides and sodium chloride. J. biol. Chem. (Am.) 126, 201–205.

    CAS  Google Scholar 

  • Klingmuller, V. O. G., 1953: Asymmetric absorption, distribution and excretion of optical antipodes. XIXth Internat. Physiol. Congr. 925–926.

    Google Scholar 

  • Koch, H. J., 1938: The absorption of chloride ions by the anal papillae of Diptera larvae. J. exper. Biol. 15, 152–160.

    CAS  Google Scholar 

  • Koefoed-Johnsen, V., H. Levi, and H. H. Ussing, 1952: The mode of passage of chloride ions through the isolated frog skin. Acta Physiol. Scand. 25, 150–163.

    Article  Google Scholar 

  • Koefoed-Johnsen, V., and H. H. Ussing, 1949: The influence of the corticotropic hormone from ox on the active salt uptake in the axolotl. Acta Physiol. Scand. 17, 38–43.

    Article  Google Scholar 

  • Koefoed-Johnsen, V., and H. H. Ussing, 1953: The contributions of diffusion and flow to the passage of D2O through living membranes. Effect of neurohypophyseal hormone on isolated anuran skin. Acta Physiol. Scand. 28, 60–76.

    Article  PubMed  CAS  Google Scholar 

  • Koefoed-Johnsen, V., H. H. Ussing, and K. Zerahn, 1952: The origin of the short-circuit current in the adrenaline stimulated frog-skin. Acta Physiol. Scand. 27, 38–48.

    Article  PubMed  CAS  Google Scholar 

  • Korey, S. R., 1950: Permeability of axonal surface membranes to amino acids. Fed. Proc. 9, 191–192.

    Google Scholar 

  • Korey, S. R., 1952: Studies on permeability in relation to nerve function. IV. Effect of glutamate and aspartate upon the rate of entrance of potassium into brain cortical slices. Biochim. Biophys. Acta 9, 633–635.

    Article  PubMed  CAS  Google Scholar 

  • Korey, S. R., and R. Mitchell, 1951: Studies on permeability in relation to nerve function. III. Permittivity of brain cortex slices to glycin and aspartic acid. Biochim. Biophys. Acta 7, 507–519.

    Article  PubMed  CAS  Google Scholar 

  • Kozawa, S., 1914: Beiträge zum arteigenen Verhalten der roten Blutkörperchen. III. Artdifferenzen in der Durchlässigkeit der roten Blutkörperchen. Biochem. Z. 60, 231–256.

    Google Scholar 

  • Krahl, M. E., 1951: The effect of insulin and pituitary hormones on glucose uptake in muscle. Ann. N.Y. Ac. Sci. 54, 649–670.

    Article  CAS  Google Scholar 

  • Krahl, M. E., and C. F. Cori, 1947: The uptake of glucose by the isolated diaphragm of normal, diabetic and adrenalectomized rats. J. biol. Chem. (Am.) 170, 607–618.

    CAS  Google Scholar 

  • Krahl, M. E., and C. R. Park, 1948: The uptake of glucose by the isolated diaphragm of normal and hypophysectomized rats. J. biol. Chem. (Am.) 174, 939–946.

    CAS  Google Scholar 

  • Krebs, H. A., L. V. Eggleston, and C. Terner, 1951: In vitro measurements of the turnover rate of potassium in brain and retina. Biochem. J. 48, 530–537.

    PubMed  CAS  Google Scholar 

  • Kritzler, R. A., and A. B. Gutman, 1941: “Alkaline” phosphatase activity of the proximal convoluted tubules and the mechanism of phlorizin glycuresis. Amer. J. Physiol. 134, 94–101.

    CAS  Google Scholar 

  • Krogh, A., 1937 a: Osmotic regulation in the frog (Rana esculenta) by active absorption of chloride ions. Skand. Arch. Physiol. 76, 60–73.

    CAS  Google Scholar 

  • Krogh, A., 1937 b: Active absorption of anions in the animal kingdom. Nature 139, 755.

    Article  CAS  Google Scholar 

  • Krogh, A., 1937 c: Osmotic regulation in fresh water fishes by active absorption of chloride ions. Z. vergl. Physiol. 24, 656–666.

    Article  CAS  Google Scholar 

  • Krogh, A., 1938: The active absorption of ions in some freshwater animals. Z. vergl. Physiol. 25, 335–350.

    Google Scholar 

  • Krogh, A., 1943: The exchange of ions between cells and extracellular fluid. I. The uptake of potassium into the chorion membrane from the hen’s egg. Acta Physiol. Scand. 6, 203–221.

    Article  CAS  Google Scholar 

  • Krogh, A., 1946: The active and passive exchanges of inorganic ions through the surfaces of living cells and through living membranes generally. Proc. roy. Soc, Lond. B 133, 140–200.

    Article  CAS  Google Scholar 

  • Lambrechts, A., 1934: Appréciation de la quantité de phlorhizine dans le foie et les reins après injection intraveineuse chez le chien. C. r. Soc. Biol. 116, 355–357.

    CAS  Google Scholar 

  • Lambrechts, A., 1936 a: Processus de déphosphorylation pendant le diabète phlorhizique chez le chien. C. r. Soc. Biol. 122, 72–73.

    CAS  Google Scholar 

  • Lambrechts, A., 1936 b: Phlorhizine et excrétion urinaire de phosphore. C. r. Soc. Biol. 122, 468–470.

    CAS  Google Scholar 

  • Lambrechts, A., 1936: Influence de la phlorhizine sur la phosphatase rénale in vitro. C. r. Soc. Biol. 123, 311–313.

    CAS  Google Scholar 

  • Lambrechts, A., 1937: Nouvelles recherches sur le diabète phlorhizique, la phlorhizine et quelques substances apparentées. Quatrième memoire: Quelques recherches sur le mécanisme de la glycosurie phlorhizique. Arch, internat. Physiol. 44, Suppl., 136–162.

    Article  CAS  Google Scholar 

  • Laszt, L., 1935: Die Resorption von Glukose und Xylose bei verschiedener H-Kon-zentration. Biochem. Z. 276, 40–43.

    CAS  Google Scholar 

  • Laszt, L., und H. Süllmann, 1935: Nachweis der Bildung von Phosphorsäureestern in der Darmschleimhaut bei der Resorption von Zuckern und Glyzerin. Biochem. Z. 278, 401–417.

    CAS  Google Scholar 

  • Lees, A. D., 1947: Transpiration and the structure of the epicuticle in ticks. J. exper. Biol. 23, 379–410.

    CAS  Google Scholar 

  • LeFevre, P. G., 1947: Evidence of active transfer across the human erythrocyte membrane. Biol. Bull. (Am.) 93, 224.

    CAS  Google Scholar 

  • LeFevre, P. G., 1948: Evidence of active transfer of certain non-electrolytes across the human red cell membrane. J. gen. Physiol. (Am.) 31, 505–527.

    Article  CAS  Google Scholar 

  • LeFevre, P. G., 1953: Further characterization of the sugar-transfer system in the red cell membrane by the use of phloretin. Fed. Proc. 12, 84.

    Google Scholar 

  • LeFevre, P. G., 1954: The evidence for active transport of monosaccharides across the red cell membrane. Symp. Soc. exper. Biol. 8 (in press).

    Google Scholar 

  • LeFevre, P. G., and R. I. Davies, 1951: Active transport into the human erythrocyte: evidence from comparative kinetics and competition among monosaccharides. J. gen. Physiol. (Am.) 34, 515–524.

    Article  CAS  Google Scholar 

  • LeFevre, P. G., and M. E. LeFevre, 1952: The mechanism of glucose transfer into and out of the human red cell. J. gen. Physiol. (Am.) 35, 891–906.

    CAS  Google Scholar 

  • Leibowitz, J., and N. Kupermintz, 1942: Potassium in bacterial fermentation. Nature 150, 233.

    Article  CAS  Google Scholar 

  • Levi, H., and H. H. Ussing, 1948: The exchange of sodium and chloride ions across the fibre membrane of the isolated frog sartorius. Acta Physiol. Scand. 16, 232–249.

    Article  CAS  Google Scholar 

  • Levi, H., and H. H. Ussing, 1949: Resting potential and ion movements in the frog skin. Nature 164, 928–929.

    Article  PubMed  CAS  Google Scholar 

  • Levine, R., and M. S. Goldstein, 1955: The effect of insulin on the transfer of sugars across cell barriers. XIXth Internat. Physiol. Congr. 557–558.

    Google Scholar 

  • Levine, R., and M. S. Goldstein, B. Huddlestun, and S. P. Klein, 1950: Action of insulin on the “permeability” of cells to free hexoses, as studied by its effect on the distribution of galactose. Amer. J. Physiol. 163, 70–76.

    PubMed  CAS  Google Scholar 

  • Levine, R., and M. S. Goldstein, S. Klein, and B. Huddlestun, 1949: The action of insulin on the distribution of galactose in eviscerated nephrectomized dogs. J. biol. Chem. (Am.) 179, 985–986.

    CAS  Google Scholar 

  • Levinsky, N. G., and W. H. Sawyer, 1953: Relation of metabolism of frog skin to cellular integrity and electrolyte transfer. J. gen. Physiol. (Am.) 36, 607–615.

    Article  CAS  Google Scholar 

  • Lillie, R. S., 1916: Increase of permeability to water following normal and artificial activation in sea-urchin eggs. Amer. J. Physiol. 40, 249–266.

    CAS  Google Scholar 

  • Lindberg, O., 1950: On surface reactions in the sea urchin egg. Exper. Cell. Res. 1, 105–114

    Article  CAS  Google Scholar 

  • Linderholm, H., 1952: Active transport of ions through frog skin with special reference to the action of certain diuretics. A study of the relation between electrical properties, the flux of labelled ions, and respiration. Acta Physiol. Scand. 27, suppl. 97.

    Google Scholar 

  • Linderholm, H., 1953: The electrical potential across isolated frog skins and its dependence on the permeability of the skins to chloride ions. Acta Physiol. Scand. 28, 211–217.

    Article  PubMed  CAS  Google Scholar 

  • Lindvig, P. E., M. E. Greig, and S. W. Peterson, 1951: Studies on permeability. Y. The effects of acetylcholine and physostigmine on the permeability of human erythrocytes to sodium and potassium. Arch. Biochem. 30, 241–250.

    PubMed  CAS  Google Scholar 

  • Ling, G. N., 1953: Selective cellular permeability according to the fixed charge hypothesis (FCH). XIXth Internat. Physiol. Congr. 566–567.

    Google Scholar 

  • Lotspeich, W. D., 1947: Renal tubular reabsorption of inorganic sulphate in the normal dog. Amer. J. Physiol. 151, 311–318.

    PubMed  CAS  Google Scholar 

  • Lotspeich, W. D., R. C. Swan, and R. F. Pitts, 1947: The renal tubular reabsorption of chloride. Amer. J. Physiol. 148, 445–448.

    PubMed  CAS  Google Scholar 

  • Lourau, M., et O. Lartigue, 1951: L’absorption intestinale du glucose chez les cobayes irradiés. Arch. Sci. Physiol. 5, 83–92.

    CAS  Google Scholar 

  • Lundsgaard, E., 1933 a: Hemmung von Esterifizierungsvorgängen als Ursache der Phlorrhizinwirkung. Biochem. Z. 264, 209–220.

    CAS  Google Scholar 

  • Lundsgaard, E., 1933 b: Die Wirkung von Phlorrhizin auf die Glukoseresorption. Biochem. Z. 264, 221–223.

    CAS  Google Scholar 

  • Lundsgaard, E., 1935: The effect of phloridzin on the isolated kidev and isolated liver. Skand. Arch. Physiol. 72, 265–270.

    CAS  Google Scholar 

  • Lundsgaard, E., 1939: Die säurelöslichen Phosphatverbindungen in der Darmschleimhaut bei Ruhe und während der Hexoseresorption. Z. physiol. Chem. 261, 193–208.

    Article  CAS  Google Scholar 

  • Macfarlane, M. G., and A. G. Spencer, 1953: Changes in the water, sodium and potassium content of rat-liver mitochondria during metabolism. Biochem. J. 54, 569–575.

    PubMed  CAS  Google Scholar 

  • Mackay, E. M., and H. C. Bergman, 1933: The rate of absorption of glucose from the intestinal tract. J. biol. Chem. (Am.) 101, 453–462.

    CAS  Google Scholar 

  • Macleod, J. J. R., H. E. Magee, and C. B. Purves, 1930: Selective absorption of carbohydrates. J. Physiol. (Brit.) 70, 404–416.

    CAS  Google Scholar 

  • Magee, H. E., and E. Ried, 1931: Absorption of glucose from alimentary canal. J. Physiol. (Brit.) 73, 163–183.

    CAS  Google Scholar 

  • Maizels, M., 1935: The permeation of erythrocytes by cations. Biochem. J. 29, 1970–1982.

    PubMed  CAS  Google Scholar 

  • Maizels, M., 1948: Control of cations in erythrocytes. J. Physiol. (Brit.) 107, 9 P–10 P.

    Google Scholar 

  • Maizels, M., 1949: Cation control in human erythrocytes. J. Physiol. (Brit.) 108, 247–263.

    Google Scholar 

  • Maizels, M., 1951: Factors in active transport of cations. J. Physiol. (Brit.) 112, 59–83.

    CAS  Google Scholar 

  • Maizels, M., 1954: Cation transport in chicken erythrocytes. J. Physiol. (Brit.) 125, 263–277.

    CAS  Google Scholar 

  • Malm, M., 1940: Quantitative Bestimmungen der Permeabilität der Hefezellen für Fluor. Die Naturwissenschaften 28, 723–724.

    Article  CAS  Google Scholar 

  • Malm, M., 1948: Über die Permeabilität der Hefezellen und die von den permeierenden Stoffen, insbesondere Fluorwasserstoff, bedingten Plasmaveränderungen. Ark. Kemi Mineral. Geol. 25, 1–187.

    Google Scholar 

  • Marsh, J. B., and D. L. Drabkin, 1947: Kidney phosphatase in alimentary hyperglycemia and phlorhizin glycosuria. A dynamic mechanism for renal threshold for glucose. J. biol. Chem. (Am.) 168, 61–73.

    CAS  Google Scholar 

  • Mathieu, Fr., 1935: Die Resorption von Hexose-di- und -monophosphorsäure im Vergleich zu anderen Hexosen. Biochem. Z. 276, 49–54.

    CAS  Google Scholar 

  • Matthews, D. M., and D. H. Smyth, 1952: Stereochemically specific absorption of alanine from the intestine into the blood stream. J. Physiol. (Brit.) 116. 20 P–21 P.

    CAS  Google Scholar 

  • Meldahl, K. F., und S. L. Orskov, 1940: Photoelektrische Methode zur Bestimmung der Permeierungsgeschwindigkeit von Anelektrolyten durch die Membran von roten Blutkörperchen. Untersuchungen über die Gültigkeit des Fickschen Gesetzes für die Permeierungsgeschwindigkeit. Skand. Arch. Physiol. 83, 266–280.

    Google Scholar 

  • Meyer, D. K., 1951: Sodium flux through the gills of goldfish. Amer. J. Physiol. 165, 580–587.

    PubMed  CAS  Google Scholar 

  • Minibeck, H., 1939: Die selektive Zuckerresorption beim Kaltblüter und ihre Beeinflussung durch Nebennieren- und Hypophysenexstirpation. Arch. ges. Physiol. 242, 344–353.

    Article  CAS  Google Scholar 

  • Monroy Oddo, A., and M. Esposito, 1951: Changes in the potassium content of sea urchin eggs on fertilization. J. gen. Physiol. (Am.) 34, 285–293.

    Article  Google Scholar 

  • Montgomery, H., and J. A. Pierce, 1937: The site of acidification of the urine within the renal tubule in amphibia. Amer. J. Physiol. 118, 144–152.

    CAS  Google Scholar 

  • Mortensen, R. A., and K. E. Kellogg, 1944: The uptake of lead by blood cells as measured with a radioactive isotope. J. cellul. a. comp. Physiol. (Am.) 23, 11–20.

    Article  CAS  Google Scholar 

  • Mudge, G. H., 1951a: Studies on potassium accumulation by rabbit kidney slices: effect of metabolic activity. Amer. J. Physiol. 165, 113–127.

    PubMed  CAS  Google Scholar 

  • Mudge, G. H., 1951b: Electrolyte and water metabolism of rabbit kidney slices: effect of metabolic inhibitors. Amer. J. Physiol. 167, 206–223.

    PubMed  CAS  Google Scholar 

  • Mudge, G. H., 1953: Electrolyte metabolism of rabbit-kidney slices: studies with radioactive potassium and sodium. Amer. J. Physiol. 173, 511–522.

    PubMed  CAS  Google Scholar 

  • Mudge, G. H., 1954: Renal Mechanisms of Electrolyte Transport, in Clarke, H. T., and D. Nachmansohn: Ion Transport across Membranes, New York.

    Google Scholar 

  • Mudge, G. H., J. Foulks, and A. Gilman, 1948: The renal excretion of potassium. Proc. Soc. exper. Biol. a. Med. (Am.) 67, 545–547.

    CAS  Google Scholar 

  • Mudge, G. H., J. Foulks, and A. Gilman, 1949: Effect of urea diuresis on renal excretion of electrolytes. Amer. J. Physiol. 158, 218–230.

    PubMed  CAS  Google Scholar 

  • Mudge, G. H., J. Foulks, and A. Gilman, 1950: Renal secretion of potassium during cellular dehydration. Amer. J. Physiol. 161, 159–166.

    PubMed  CAS  Google Scholar 

  • Mudge, G. H., and J. V. Taggart, 1950 a: Effect of 2,4-dinitrophenol on renal transport mechanisms in the dog. Amer. J. Physiol. 161, 173–180.

    PubMed  CAS  Google Scholar 

  • Mudge, G. H., and J. V. Taggart, 1950 b: Effect of acetate on the renal excretion of p-aminohippurate in the dog. Amer. J. Physiol. 161, 191–197.

    PubMed  CAS  Google Scholar 

  • Mueller, C. B., and A. B. Hastings, 1951: The rate of transfer of phosphorus across the red blood cell membrane. J. biol. Chem. (Am.) 189, 869–879.

    CAS  Google Scholar 

  • Mullins, L. J., 1942: The permeability of yeast cells to radiophosphate. Biol. Bull. (Am.) 83, 326–333.

    Article  CAS  Google Scholar 

  • Nagano, J., 1902: Zur Kenntnis der Resorption einfacher, im besonderen sterioisomerer Zucker im Dünndarm. Arch. ges. Physiol. 90, 389–404.

    Article  CAS  Google Scholar 

  • Nagel, H., 1934: Die Aufgabe der Excretionsorgane und der Kiemen bei der Osmoregulation von Carciuus maenas. Z. vergl. Physiol. 21, 468–491.

    Google Scholar 

  • Nakazawa, F., 1922: Influence of phlorhizin on intestinal absorption. Tohoku J. exper. Med. 3, 288–294.

    Article  CAS  Google Scholar 

  • Nickerson, W. J., 1948: Riboflavin enhancement of radioactive phosphate exchange by yeasts. J. gen. Microbiol. 2, 1. c.

    Google Scholar 

  • Nickerson, W. J., 1949: Dependence, in yeasts, of phosphate uptake and polymerization upon the occurrence of glucose polymerization. Experientia 5, 202–203.

    Article  PubMed  CAS  Google Scholar 

  • Nickerson, W. J., and L. J. Mullins, 1948: Riboflavin enhancement of radioactive phosphate exchange by yeasts. Nature 161, 939–940.

    Article  PubMed  CAS  Google Scholar 

  • Nickerson, W. J., and K. Zerahn, 1949: Accumulation of radioactive cobalt by dividing yeast cells. Biochim. Biophys. Acta 3, 476–483.

    Article  CAS  Google Scholar 

  • Öhnell, R., and R. Höber, 1939: Effect of various poisons on absorption of sugars and some other non-electrolytes from normal and isolated artificially perfused intestine. J. cellul. a. comp. Physiol. (Am.) 13, 161–174.

    Article  Google Scholar 

  • Ørskov, S. L., 1935: Untersuchungen über den Einfluß von Kohlensäure und Blei auf die Permeabilität der Blutkörperchen für Kalium und Rubidium. Biochem. Z. 279, 250–261.

    Google Scholar 

  • Ørskov, S. L., 1945: Investigations on the permeability of yeast cells. Acta Path. Microbiol. Scand. 22, 523–559.

    Article  Google Scholar 

  • Ørskov, S. L., 1948: Experiments on active and passive permeability of Bacillus coli communis. Acta Path. Microbiol. Scand. 25, 277–283.

    Article  Google Scholar 

  • Ørskov, S. L., 1950: Experiments with substances which make bakers yeast absorb potassium. Acta Physiol. Scand. 20, 62–78.

    Article  PubMed  Google Scholar 

  • Opie, E. L., 1949: The movement of water in tissues removed from the body and its relation to movement of water during life. J. exper. Med. (Am.) 89, 185–208.

    Article  CAS  Google Scholar 

  • Opie, E. L., 1950: The effect of injury by toxic agents upon osmotic pressure maintained by cells of liver and of kidney. J. exper. Med. (Am.) 91, 285–294.

    Article  CAS  Google Scholar 

  • Paine, T. F. Jr., 1951: The similarity in action of bacitracin and penicillin on the staphylococcus. J. Bacter. (Am.) 61, 259–260.

    Google Scholar 

  • Park, C. R., 1952: in W. D. McElroy and B. Glass: Phosphorus Metabolism, Vol. II, Baltimore.

    Google Scholar 

  • Park, C. R., 1954: An effect of insulin on glucose metabolism by muscle. Fed. Proc. 13, 108.

    Google Scholar 

  • Park, C. R., D. H. Brown, M. Cornblath, W. H. Daughaday, and M. E. Krahl, 1952: The effect of growth hormone on glucose uptake by the isolated rat diaphragm. J. biol. Chem. (Am.) 197, 151–166.

    CAS  Google Scholar 

  • Park, C. R., and W. H. Daughaday, 1949: Effect of growth hormone on the glucose uptake and glycogen synthesis by the rat diaphragm. Fed. Proc. 9, 212–213.

    Google Scholar 

  • Park, C. R., and L. H. Johnson, 1953: The effect of insulin on the distribution of free glucose in muscle. XIXth Internat. Physiol. Congr. 661.

    Google Scholar 

  • Parpart, A. K., E. S. G. Barron, and T. Dey 1947: Are -SH groups involved in the penetration of glycerol into human red cells? Biol. Bull. (Am.) 93, 199.

    CAS  Google Scholar 

  • Parpart, A. K., and J. F. Hoffman, 1952: Acidity vs. acetylcholine and cation permeability of red cells. Fed. Proc. 11, 117.

    Google Scholar 

  • Parpart, A. K., and J. F. Hoffman, 1954: Ion Permeability of the Red Cell, in Clarke, H. T., and D. Nachmansohn, Ion Transport across Membranes, New York.

    Google Scholar 

  • Pertzoff, V., and C. L. Gemmill, 1949: The effect of anesthetics on the uptake of radioactive phosphorus by human erythrocytes. J. Pharmacol. (Am.) 95, 106–115.

    CAS  Google Scholar 

  • Pitts, R., 1943 a: A renal reabsorptive mechanism in the dog common to glycin and creatine. Amer. J. Physiol. 140, 156–167.

    CAS  Google Scholar 

  • Pitts, R., 1943 b: A comparison of the renal reabsorptive processes for several amino acids. Amer. J. Physiol. 140, 535–547.

    Google Scholar 

  • Pitts, R., and R. S. Alexander, 1944: The renal reabsorptive mechanism for inorganic phosphate in normal and acidotic dogs. Amer. J. Physiol. 142, 648–662.

    CAS  Google Scholar 

  • Pitts, R., J. L. Ayer, and W. A. Schiess, 1948: The reabsorption and excretion of bicarbonate in normal man. Fed. Proc. 7, 94.

    PubMed  CAS  Google Scholar 

  • Pitts, R., W. D. Lotspeich, W. A. Schiess, and J. L. Ayer, 1948: The renal regulation of acid-base balance in man. I. The nature of the mechanism for acidifying the urine. J. clin. Invest. (Am.) 27, 48–56.

    Article  CAS  Google Scholar 

  • Ponder, E., 1949: The rate of loss of potassium from human red cells in systems to which lysins have not been added. J. gen. Physiol. (Am.) 32, 461–479.

    Article  CAS  Google Scholar 

  • Ponder, E., 1950: Accumulation of potassium by human red cells. J. gen. Physiol. (Am.) 33, 745–757.

    Article  CAS  Google Scholar 

  • Ponder, E., 1951: Anomalous features of the loss of K from human red cells: results of extended observations. J. gen. Physiol. (Am.) 34, 359–372.

    Article  CAS  Google Scholar 

  • Ponder, E., and G. Saslow, 1931: Measurement of red cell volume; alterations of cell volume in extremely hypotonic solutions. J. Physiol. (Brit.) 73, 267–296.

    CAS  Google Scholar 

  • Popják, G., 1950: Mechanism of absorption of inorganic phosphate from blood by tissue cells. Nature 166, 184–185.

    Article  PubMed  Google Scholar 

  • Poulsson, L. T., 1930: On the mechanism of sugar elimination in phlorrhizin glycosuria. A contribution to the filtration-reabsorption theory on kidney function. J. Physiol. (Brit.) 69, 411–422.

    CAS  Google Scholar 

  • Prankerd, T. A. J., and K. I. Altman, 1954: Phosphate partition and turnover in human red cells. Nature 173, 870–871.

    Article  PubMed  CAS  Google Scholar 

  • Prescott, D. M., and E. Zeuthen, 1953: Comparison of water diffusion and water filtration across cell surfaces. Acta Physiol. Scand. 28, 77–94.

    Article  PubMed  CAS  Google Scholar 

  • Price, C. A., and R. E. Davies, 1954: Active transport of water by mitochondria. Biochem. J. 58, xvii.

    PubMed  CAS  Google Scholar 

  • Pulver, R., und F. Verzár, 1940 a: Der Zusammenhang von Kalium- und Kohlehydratstoffwechsel bei der Hefe. Helvet. Chim. Acta 23, 1087–1100.

    Article  CAS  Google Scholar 

  • Pulver, R., und F. Verzár, 1940 b: Connexion between carbohydrate and potassium metabolism in the yeast cell. Nature 145, 823–824.

    Article  CAS  Google Scholar 

  • Pulver, R., und F. Verzár, 1941: Kalium- und Kohlehydratstoffwechsel der Leukocyten. Helvet. Chim. Acta 24, 272–277.

    Article  CAS  Google Scholar 

  • Raker, J. W., I. M. Taylor, J. M. Weller, and A. B. Hastings, 1950: Rate of potassium exchange of the human erythrocyte. J. gen. Physiol. (Am.) 33, 691–702.

    Article  CAS  Google Scholar 

  • Ramsay, J. A., 1951: Osmotic regulation in mosquito larvae: the role of the Malpighian tubules. J. exper. Biol. 28, 62–73.

    CAS  Google Scholar 

  • Ramsay, J. A., 1953: Active transport of potassium by the Malpighian tubules of insects. J. exper. Biol. 30, 358–369.

    CAS  Google Scholar 

  • Reiser, R., 1942: The lipids of the duodenal mucosa of swine during the absorption of fat. J. biol. Chem. (Am.) 143, 109–114.

    CAS  Google Scholar 

  • Rice, L., J. Frieden, and M. Smith, 1953: Tubular action of mercurial diuretics. Amer. J. Physiol. 175, 47–50.

    PubMed  CAS  Google Scholar 

  • Richards, A. G., and O. H. Schmitt, 1953: Asymmetrical penetration through the isolated cuticles of fly larvae. XIXth Internat. Physiol. Congr. 699–700.

    Google Scholar 

  • Riggs, T. R., H. N. Christensen, and I. M. Palatine, 1952: Concentrating activity of reticulocytes for glycine. J. biol. Chem. (Am.) 194, 53–55.

    CAS  Google Scholar 

  • Riggs, T. R., B. Coyne, and H. N. Christensen, 1953: Intensification of the cellular accumulation of amino acids by pyridoxal. Biochim. Biophys. Acta 11, 303–304.

    Article  PubMed  CAS  Google Scholar 

  • Riggs, T. R., B. Coyne, and H. N. Christensen, 1954: Amino acid concentration by a free cell neoplasm. Structural influences. J. biol. Chem. (Am.) 209, 395–411.

    CAS  Google Scholar 

  • Roberts, R. B., and I. Z. Roberts, 1950: Potassium metabolism of Escherichia coli. III. Interrelationship of potassium and phosphorus metabolism. J. cellul. a. comp. Physiol. (Am.) 36, 15–39.

    Article  CAS  Google Scholar 

  • Roberts, R. B., and I. Z. Roberts, and D. B. Cowie, 1949: Potassium metabolism in Escherichia coli. II. Metabolism in the presence of carbohydrates and their metabolic derivatives. J. cellul. a. comp. Physiol. (Am.) 34, 259–291.

    Article  CAS  Google Scholar 

  • Robinson, J. R., 1950 a: Osmoregulation in surviving slices of the kidneys of adult rats. Proc. roy. Soc., Lond. B 137, 378–402.

    Article  CAS  Google Scholar 

  • Robinson, J. R., 1950 b: Effect of 2, 4-dinitrophenol on osmoregulation in isolated kidney slices. Nature 166, 989–990.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. R., 1952 a: Osmoregulation in surviving slices from the livers of adult rats (with a note on cloudy swelling). Proc. roy. Soc, Lond. B 140, 135–144.

    Article  CAS  Google Scholar 

  • Robinson, J. R., 1952 b: Total concentration of fixed base in cells of the renal cortex of the rat. Nature 169, 713–714.

    Article  PubMed  CAS  Google Scholar 

  • Robinson, J. R., 1953: The active transport of water in living systems. Biol. Rev. 28, 158–194.

    Article  CAS  Google Scholar 

  • Ronkin, R. R., 1950 a: The uptake of radioactive phosphate by the excised gill of the mussel, Mytilus edulis. J. cellul. a. comp. Physiol. (Am.) 35, 241–260.

    Article  CAS  Google Scholar 

  • Ronkin, R. R., 1950 b: Effect of inhibitors on phosphate uptake in excised gills of the mussel (Mytilus edulis). Proc. Soc. exper. Biol. a. Med. (Am.) 73, 41–44.

    CAS  Google Scholar 

  • Rosenberg, T., 1948: On accumulation and active transport in biological systems. I. Thermodynamic considerations. Acta Chem. Scand. 2, 14–33.

    Article  CAS  Google Scholar 

  • Rosenberg, T., and W. Wilbrandt, 1952: Enzymatic processes in cell membrane penetration. Internat. Rev. Cytol. 1, 65–92.

    Article  CAS  Google Scholar 

  • Ross, E. J., 1952: The influence of insulin on the permeability of the blood-aqueous barrier to glucose. J. Physiol. (Brit.) 116, 414–423.

    CAS  Google Scholar 

  • Ross, E. J., 1953: Insulin and the permeability of cell membranes to glucose. Nature 171, 125.

    Article  PubMed  CAS  Google Scholar 

  • Rothenberg, M. A., 1950: Studies on permeability in relation to nerve function. II. Ionic movements across axonal membranes, Biochim. Biophys. Acta 4, 96–114.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, A., 1954: Enzyme systems of the cell-surface involved in the uptake of sugars by yeast. Symp. Soc. exper. Biol. 8 (in press).

    Google Scholar 

  • Rothstein, A., and C. Demis, 1953: The relationship of the cell surface to metabolism. The stimulation of fermentation by extracellular potassium. Arch. Biochem. Biophys. 44, 18–29.

    Article  PubMed  CAS  Google Scholar 

  • Rothstein, A., and L. H. Enns, 1946: The relationship of potassium to carbohydrate metabolism in baker’s yeast. J. cellul. a. comp. Physiol. (Am.) 28, 231–252.

    Article  CAS  Google Scholar 

  • Rothstein, A., A. Frenkel, and C. Larrabee, 1948: The relationship of the cell surface to metabolism. III. Certain characteristics of the uranium complex with cell surface groups of yeast. J. cellul. a. comp. Physiol. (Am.) 32, 261–274.

    Article  CAS  Google Scholar 

  • Rothstein, A., and C. Larrabee, 1948: The relationship of the cell surface to metabolism. II. The cell surface of yeast as the site of inhibition of glucose metabolism by uranium. J. cellul. a. comp. Physiol. (Am.) 32, 247–259.

    Article  CAS  Google Scholar 

  • Rothstein, A., and R. Meier, 1951: The relationship of the cell surface to metabolism. VI. The chemical nature of uranium-complexing groups of the cell surface. J. cellul. a. comp. Physiol. (Am.) 38, 245–270.

    Article  CAS  Google Scholar 

  • Rothstein, A., and R. Meier, 1954: Unpublished observations.

    Google Scholar 

  • Rothstein, A., and R. Meier, and L. Hurwitz, 1951: The relationship of the cell surface to metabolism. V. The role of uranium-complexing loci of yeast in metabolism. J. cellul. a. comp. Physiol. (Am.) 37, 57–81.

    Article  CAS  Google Scholar 

  • Rothstein, A., and R. Meier, and T. Scharff, 1953: The relationship of the cell surface to metabolism. IX. The digestion of phosphorylated compounds by enzymes located on the surface of the intestinal cell. University of Rochester Atomic Energy Project, Report UR-237.

    Google Scholar 

  • Runnström, J., 1939: Permeabilität und Stoffwechsel bei Hefe. Arch, exper. Zellforsch. 22, 614–619.

    Google Scholar 

  • Runnström, J., und E. Sperber, 1938: Zur Kenntnis der Beziehungen zwischen Permeabilität und Stoffwechsel der Hefezelle. Biochem. Z. 298, 340–367.

    Google Scholar 

  • Russo, H. F., L. D. Wright, and H. R. Skeggs, 1947: Renal clearance of essential amino acids: threonine and phenylalanine. Proc. Soc. exper. Biol. a. Med. (Am.) 65, 215–217.

    CAS  Google Scholar 

  • Sabbatani, L.. 1901: Détermination du point de congélation des organes animaux. J. Physiol. Path. gén. 3, 939–950.

    Google Scholar 

  • Sacks, J., 1944 a: Radioactive phosphorus studies on hexosemonophosphate metabolism in resting muscle. Amer. J. Physiol. 142, 145–151.

    CAS  Google Scholar 

  • Sacks, J., 1944 b: Some factors influencing phosphate turnover in muscle. Amer. J. Physiol. 142, 621–626.

    CAS  Google Scholar 

  • Sacks, J., 1945: The effect of insulin on phosphorus turnover in muscle. Amer. J. Physiol. 143, 157–162.

    CAS  Google Scholar 

  • Sacks, J., 1948: Mechanism of phosphate transfer across cell membranes. Cold Spring Harbor Symp. Quant. Biol. 13, 180–184.

    Article  CAS  Google Scholar 

  • Sacks, J., 1951: Phosphate transport and turnover in the liver. Arch. Biochem. 30, 423–437.

    PubMed  CAS  Google Scholar 

  • Sacks, J., and C. H. Altshuler, 1942: Radioactive phosphorus studies on striated and cardiac muscle metabolism. Amer. J. Physiol. 137, 750–760.

    CAS  Google Scholar 

  • Sawyer, W. H., 1951: Effect of posterior pituitary extract on permeability of frog skin to water. Amer. J. Physiol. 164, 44–48.

    PubMed  CAS  Google Scholar 

  • Schlieper, C., 1933: Über die osmoregulatorische Funktion der Aalkiemen. Z. vergl. Physiol. 18, 682–695.

    Google Scholar 

  • Schmidt, G., L. Hecht, and S. J. Thanhauser, 1949: The effect of potassium ions on the absorption of orthophosphate and the formation of metaphosphate bv bakers’ yeast. J. biol. Chem. (Brit.) 178, 733–742.

    CAS  Google Scholar 

  • Schmidt-Nielsen, K., 1946: Investigations on the fat absorption in the intestine. Acta Physiol. Scand. 12, Suppl. 37.

    Google Scholar 

  • Schönheyder, F., 1934: Über die Permeabilität der roten Blutkörperchen für Malonamid. Skand. Arch. Physiol. 71, 39–60.

    Google Scholar 

  • Schoffeniels, E., 1951: L’absorption du radiophosphore par la branchie isolée de l’anodonte. Arch. internat. Physiol. 59, 245–247.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, F. A., and H. B. Lewis, 1947: A comparative study of the metabolism of α-alanine, β-alanine, serine and isoserine. J. biol. Chem. (Am.) 168, 439–445.

    CAS  Google Scholar 

  • Schwartz, W. B., and W. M. Wallace, 1951: Electrolyte equilibrium during mercurial diuresis. J. clin. Invest. (Am.) 30, 1089–1104.

    Article  CAS  Google Scholar 

  • Schwerin, P., S. P. Bessman, and H. Waelsch, 1950: The uptake of glutamic acid and glutamine by brain and other tissues of the rat and mouse. J. biol. Chem. (Am.) 184, 37–44.

    CAS  Google Scholar 

  • Shanes, A. M., 1951: Potassium movement in relation to nerve activity. J. gen. Physiol. (Am.) 34, 795–807.

    Article  CAS  Google Scholar 

  • Shannon, J. A., 1938: Tubular reabsorption of xylose in normal dog. Amer. J. Physiol. 122, 775–781.

    CAS  Google Scholar 

  • Shannon, J. A., and S. Fisher, 1938: Renal tubular reabsorption of glucose in normal dog. Amer. J. Physiol. 122, 765–774.

    CAS  Google Scholar 

  • Sheppard, C. W., and W. R. Martin, 1950: Cation exchange between cells and plasma of mammalian blood. I. Methods and application to potassium exchange in human blood. J. gen. Physiol. (Am.) 33, 703–722.

    Article  CAS  Google Scholar 

  • Sheppard, C. W., and W. R. Martin, and G. Beyl, 1951: Cation exchange between cells and plasma of mammalian blood. II. Sodium and potassium exchange in the sheep, dog, cow, and man and the effect of varying the plasma potassium concentration. J. gen. Physiol. (Am.) 34, 411–429.

    Article  CAS  Google Scholar 

  • Shideman, F. E., and R. M. Rene, 1951: Succinate oxidation and Krebs cycle as an energy source for renal tubular transport mechanisms. Amer. J. Physiol. 166, 104–112.

    PubMed  CAS  Google Scholar 

  • Sivilla, S. V., 1953: Effect of hypertonic solutions on intestinal absorption of selective and non-selective sugars. XIXth Internat. Physiol. Congr. 761–762.

    Google Scholar 

  • Smith, H. W., 1910: The absorption and excretion of water and salts by marine teleosts. Amer. J. Physiol. 93, 480–505.

    Google Scholar 

  • Sollner, K., S. Dray, E. Grim, and R. Neihof, 1954: Electrochemical Studies with Model Membranes, in H. T. Clarke and D. Nachmansohn: Ion Transport across Membranes, New York.

    Google Scholar 

  • Solomon, A. K., 1952: The permeability of the human erythrocyte to sodium and potassium, J. gen. Physiol. (Am.) 36, 57–110.

    Article  CAS  Google Scholar 

  • Solomon, A. K. and G. L. Gold, 1955: Potassium transport in human erythrocytes: evidence for a three compartment system (in press).

    Google Scholar 

  • Soulairac, A., 1947: La régulation neuro-endocrinienne de l’absorption intestinale des glucides. Ann. d’Endocr. 8, 377–393.

    CAS  Google Scholar 

  • Soulairac, A., P. Desclaux, et J. Teysseyre, 1949: Étude histochimique de la phosphatase alcaline rénale. La régulation endocrinienne de la réabsorption tubulaire du glucose. Ann. d’Endocr. 10, 535–546.

    Google Scholar 

  • Spanner, D. C., 1954: The active transport of water under temperature gradients. Symp. Soc. exper. Biol. 8 (in press).

    Google Scholar 

  • Sperry, W. M., and F. C. Brand, 1939: Absorption of water by liver slices from “physiological” saline solutions. Proc. Soc. exper. Biol. a. Med. (Am.) 42, 147–150.

    CAS  Google Scholar 

  • Spiegelman, S., M. D. Kamen, and M. Sussman, 1948: Phosphate metabolism and the dissociation of anaerobic glycolysis from synthesis in the presence of sodium azide. Arch. Biochem. 18, 409–436.

    PubMed  CAS  Google Scholar 

  • Stadie, W. C., 1953: Studies on the action of insulin in vitro. XIXth Internat. Physiol. Congr. 24–28.

    Google Scholar 

  • Stadie, W. C., 1954: Current concepts of the action of insulin. Physiol. Rev. 34, 52–100.

    PubMed  CAS  Google Scholar 

  • Stadie, W. C., N. Haugaard, A. G. Hills, and J. B. Marsh, 1949: Hormonal influences on the chemical combination of insulin with rat muscle (diaphragm). Amer. J. med. Sci. 218, 275–280.

    Article  PubMed  CAS  Google Scholar 

  • Stadie, W. C., N. Haugaard, and J. B. Marsh, 1951 a: Combination of insulin with muscle of the hypophysectomized rat. J. biol. Chem. (Am.) 188, 167–172.

    CAS  Google Scholar 

  • Stadie, W. C., N. Haugaard, and J. B. Marsh, 1951b: Combination of epinephrine and 2,4-dinitrophenol with muscle of the normal rat. J. biol. Chem. (Am.) 188, 173–178.

    CAS  Google Scholar 

  • Stadie, W. C., N. Haugaard, and J. B. Marsh, and A. G. Hills, 1949: The chemical combination of insulin with muscle (diaphragm) of normal rat. Amer. J. med. Sci. 218, 265–274.

    Article  PubMed  CAS  Google Scholar 

  • Stadie, W. C., N. Haugaard, and M. Vaughan, 1952: Studies of insulin binding with isotopically labeled insulin. J. biol. Chem. (Am.) 199, 729–739.

    CAS  Google Scholar 

  • Stamler, J., 1951: Failure of tubular reabsorptive loads of ascorbic acid or amino acids to affect renal handling of sodium and potassium. Amer. J. Physiol. 165. 109–112.

    PubMed  CAS  Google Scholar 

  • Stanbury, S. W., and G. H. Mudge, 1953: Potassium metabolism of liver mitochondria. Proc. Soc. exper. Biol. a. Med. (Am.) 82, 675–681.

    CAS  Google Scholar 

  • Steggerda, F. R., 1931: The relation of pitressin to water interchange in frogs. Amer. J. Physiol. 98, 255–261.

    CAS  Google Scholar 

  • Steinbach, H. B., 1940: Sodium and potassium in frog muscle. J. biol. Chem. (Am.) 133, 695–701.

    CAS  Google Scholar 

  • Steinbach, H. B., 1951: Permeability. Ann. Rev. Physiol. 13, 21–40.

    Article  CAS  Google Scholar 

  • Steinbach, H. B., 1951: Sodium extrusion from isolated frog muscle. Amer. J. Physiol. 167. 284–287.

    PubMed  CAS  Google Scholar 

  • Steinbach, H. B., 1952: On the sodium and potassium balance of isolated frog muscles. Proc. Nat. Ac. Sci. 38, 451–455.

    Article  CAS  Google Scholar 

  • Stern, J. R., L. V. Eggleston, R. Hems, and H. A. Krebs, 1949: Accumulation of glutamic acid in isolated brain tissue. Biochem. J. 44, 410–418.

    CAS  Google Scholar 

  • Stewart, D. R., and M. H. Jacobs, 1932 a: The effect of fertilization on the permeability of the eggs of Arbacia and Asterias to ethylene glycol. J. cellul. a. comp. Physiol. (Am.) 1, 83–92.

    Article  CAS  Google Scholar 

  • Stewart, D. R., and M. H. Jacobs, 1932 b: The permeability of the egg of Arbacia to ethylene glycol at different temperatures. J. cellul. a. comp. Physiol. (Am.) 2, 275–283.

    Article  Google Scholar 

  • Taggart, J. V., and R. P. Forster, 1950: Renal tubular transport: effect of 2, 4-dinitrophenol and related compounds on phenol red transport in the isolated tubules of the flounder. Amer. J. Physiol. 161, 167–172.

    PubMed  CAS  Google Scholar 

  • Taylor, E. S., 1947: The assimilation of amino-acids by bacteria. 3. Concentration of free amino-acids in the internal environment of various bacteria and yeasts.

    Google Scholar 

  • Taylor, I. M., and J. M. Weller, 1950: Studies on the permeability of human erythrocytes to potassium. Biol. Bull. (Am.) 99, 311.

    CAS  Google Scholar 

  • Taylor, I. M., J. M. Weller, and A. B. Hastings, 1952: Effect of Cholinesterase and choline acetylase inhibitors on the potassium concentration gradient and potassium exchange of human erythrocytes. Amer. J. Physiol. 168, 658–668.

    PubMed  CAS  Google Scholar 

  • Teorell, T., 1953: Transport processes and electrical phenomena in ionic membranes. Progress in Biophysics and Biophysical Chemistry 3, 305–369.

    CAS  Google Scholar 

  • Terner, C., L. V. Eggleston, and H. A. Krebs, 1950: The role of glutamic acid in the transport of potassium in brain and retina. Biochem. J. 47, 159–149.

    Google Scholar 

  • Thompson, V., and A. Tice, 1941: Action of drugs beneficial in myasthenia gravis. I. Effect of prostigmine and guanidine on serum and muscle potassium. J. Pharm. exper. Ther. 73, 455–462.

    CAS  Google Scholar 

  • Tosteson, D. C., and E. T. Dunham, 1954: Effect of sickling on sodium and cesium transport. Fed. Proc. 13, 523.

    Google Scholar 

  • Trimble, H. C., B. W. Carey Jr., and S. J. Maddock, 1933: The rate of absorption of glucose from the gastrointestinal tract of the dog. J. biol. Chem. (Am.) 100, 125–138.

    CAS  Google Scholar 

  • Ussing, H. H., 1943 a: The nature of the amino nitrogen of red corpuscles. Acta Physiol. Scand. 5, 335–351.

    Article  CAS  Google Scholar 

  • Ussing, H. H., 1943 b: On the partition of certain amino acids between blood and tissues. Acta Physiol. Scand. 6, 222–232.

    Article  CAS  Google Scholar 

  • Ussing, H. H., 1945: The reabsorption of glycine and other amino acids in the kidneys of man. Acta Physiol. Scand. 9, 193–213.

    Article  CAS  Google Scholar 

  • Ussing, H. H., 1947: Interpretation of the exchange of radio-sodium in isolated muscle. Nature 160, 262–263.

    Article  CAS  Google Scholar 

  • Ussing, H. H., 1948: The use of tracers in the study of active ion transport across animal membranes. Cold Spring Harbor Symp. Quant. Biol. 13, 193–200.

    Article  CAS  Google Scholar 

  • Ussing, H. H., 1949: The active ion transport through the isolated frog skin in the light of tracer studies. Acta Physiol. Scand. 17, 1–37.

    Article  PubMed  CAS  Google Scholar 

  • Ussing, H. H., 1952: Some aspects of the application of tracers in permeability studies. Adv. in Enzymol. 13, 21–65.

    CAS  Google Scholar 

  • Ussing, H. H., 1953: Transport through biological membranes. Ann. Rev. Physiol. 15, 1–20.

    Article  CAS  Google Scholar 

  • Ussing, H. H., 1954: Active transport of inorganic ions. Symp. Soc. exper. Biol. 8 (in press).

    Google Scholar 

  • Ussing, H. H., and K. Zerahn, 1951: Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol. Scand. 23, 110–127.

    Article  PubMed  CAS  Google Scholar 

  • Van Slyke, D. D., and G. M. Meyer, 1913: The fate of protein digestion products in the body. III. The absorption of amino-acids from the blood by the tissues. J. biol. Chem. (Am.) 16, 197–212.

    Google Scholar 

  • Verzár, F., 1935: Die Rolle von Diffusion und Schleimhautaktivität bei der Resorption von verschiedenen Zuckern aus dem Darm. Biochem. Z. 276, 17–27.

    Google Scholar 

  • Verzár, F., und L. Laszt, 1934 a: Untersuchungen über die Resorption von Fettsäuren. Biochem. Z. 270, 24–34.

    Google Scholar 

  • Verzár, F., und L. Laszt, 1934 b: Hemmung der Fettresorption durch Monoiodessigsäure und Phlorrhizin. Biochem. Z. 270, 35–43.

    Google Scholar 

  • Verzár, F., und L. Laszt, 1935 a: Die Hemmung der Fettresorption durch Phlorrhizin. Biochem. Z. 276. 1–10.

    Google Scholar 

  • Verzár, F., und L. Laszt, 1935 b: Die Hemmung der Fettresorption nach Exstirpation der Nebennieren. Biochem. Z. 276, 11–16.

    Google Scholar 

  • Verzár, F., und L. Laszt, 1935 c: Die Resorption aus dem Darm von isotonischen Lösungen von Glucose und Sorbose, verglichen mit der von Natriumsulfat. Biochem. Z. 276, 28–39.

    Google Scholar 

  • Verzár, F., and J. C. Somogyi, 1939: Connexion between carbohydrate and potassium metabolism in normal and adrenalectomized animale. Nature 144, 1014–1015.

    Article  Google Scholar 

  • Verzár, F., and J. C. Somogyi, 1940: Liberation of potassium from muscle by acetylcholine and muscle contraction and its’ absence after adrenalectomy. Nature 145, 781.

    Article  Google Scholar 

  • Verzár, F., and V. Wenner, 1948: The influence in vitro of deoxycorticosterone on glycogen formation in muscle. Biochem. J. 42, 35–41.

    Google Scholar 

  • Verzár, F., und H. WiRz, 1937: Weitere Untersuchungen über die Bedingungen der selektiven Glucoseresorption. Biochem. Z. 292, 174–181.

    Google Scholar 

  • Villee, C. A., and A. B. Hastings, 1949: The metabolism of C14-labelled glucose by the rat diaphragm in vitro. J. biol. Chem. (Am.) 179, 673–687.

    CAS  Google Scholar 

  • Villee, C. A., M. Lowens, M. Gordon, E. Leonard, and A. Rich, 1949: The incorporation of P32 into the nucleoproteins and phosphoproteins of the developing sea urchin embryo. J. cellul. a. comp. Physiol. (Am.) 33, 93–112.

    Article  CAS  Google Scholar 

  • Visscher, M. B., E. S. Fetcher Jr., C. W. Carr, H. P. Gregor, M. S. Bushey, and D. E. Baker, 1944: Isotopic tracer studies on the movement of water and ions between intestinal lumen and blood. Amer. J. Physiol. 142, 550–575.

    CAS  Google Scholar 

  • Visscher, M. B., and R. R. Roepke, 1945: Osmotic and electrolyte concentration relationships during absorption of salt solutions from ileal segments. Amer. J. Physiol. 144, 468–476.

    CAS  Google Scholar 

  • Visscher, M. B., R. H. Varco, C. W. Carr, R. B. Dean, and D. Erickson, 1944: Sodium ion movement between the intestinal lumen and the blood. Amer. J. Physiol. 141, 488–505.

    CAS  Google Scholar 

  • Walker, A. M., P. A. Bott, J. Oliver, and M. C. MacDowell, 1941: The collection and analysis of fluid from single nephrons of the mammalian kidney. Amer. J. Physiol. 134, 580–595.

    CAS  Google Scholar 

  • Walker, A. M., and C. L. Hudson, 1937 a: The reabsorption of glucose from the renal tubule in amphibia and the action of phlorizin upon it. Amer. J. Physiol. 118, 130–143.

    CAS  Google Scholar 

  • Walker, A. M., and C. L. Hudson, 1937 b: The rôle of the tubule in the excretion of inorganic phosphates by the amphibian kidney. Amer. J. Physiol. 118, 167–173.

    CAS  Google Scholar 

  • Walker, A. M., and C. L. Hudson, T. Findley Jr., and A. N. Richards, 1937: The total molecular concentration and the chloride concentration of fluid from different segments of the renal tubule of amphibia. Amer. J. Physiol. 118, 121–129.

    CAS  Google Scholar 

  • Webb, D. A., 1940: Ionic regulation in Carcinus maenas. Proc. roy. Soc., Loud. B129, 107–136.

    Article  Google Scholar 

  • Welt, L. G., J. Orloff, D. M. Kydd, and J. E. Oltman, 1950: An example of cellular hyperosmolarity. J. clin. Invest. (Am.) 29, 935–939.

    Article  CAS  Google Scholar 

  • Wertheimer, E., 1933: Phlorrhizinwirkung auf die Zuckerresorption. Arch. ges. Physiol. 233, 514–528.

    CAS  Google Scholar 

  • Wertheimer, E., Über die ersten Anfänge der Zuckerassimilation. Versuche an Hefezellen. Protoplasma 21, 522–560.

    Google Scholar 

  • Wesson, L. G. Jr., W. E. Cohn, and A. M. Brues, 1949: The effect of temperature on potassium equilibria in chick embryo muscle. J. gen. Physiol. (Am.) 32, 511–524.

    Article  CAS  Google Scholar 

  • West, C. D., S. A. Kaplan, S. J. Fomon, and S. Rapoport, 1952: Urine flow and solute excretion during osmotic diuresis in hydrated dogs: role of distal tubule in the production of hypotonic urine. Amer. J. Physiol. 170, 239–254.

    PubMed  CAS  Google Scholar 

  • Westenbrink, H. G. K., 1934: Über die Anpassung der Darmresorption an die Zusammensetzung der Nahrung. Arch. Néerl. Physiol. 19, 563–583.

    CAS  Google Scholar 

  • Westenbrink, H. G. K., 1937: Relative velocities of the absorption of different sugars from the intestine of rat and pigeon. Nature 138, 203–204.

    Article  Google Scholar 

  • Westenbrink, H. G. K., und K. Gratama, 1937: Über die Spezifität der Resorption einiger Monosen aus dem Darme der Ratte und der Taube. Arch. Néerl. Physiol. 21, 433–454.

    Google Scholar 

  • Whittam, R., and R. E. Davies, 1953 a: Transport of water, sodium, potassium, and α-ketoglutarate in kidney cortex slices. Biochem. J. 54, vii.

    Google Scholar 

  • Whittam, R., and R. E. Davies, 1953 b: Measurements of the turnover-rates of sodium and potassium in kidney cortex slices. Biochem. J. 54, vii–viii.

    Google Scholar 

  • Whittam, R., and R. E. Davies, 1953 c: Active transport of water, sodium, potassium and α-oxoglutarate by kidney-cortex slices. Biochem. J. 55, 880–888.

    PubMed  CAS  Google Scholar 

  • Whittam, R., and R. E. Davies, 1954: Relations between metabolism and the rate of turnover of sodium and potassium in guinea pig kidney-cortex slices. Biochem. J. 56, 445–453.

    PubMed  CAS  Google Scholar 

  • Wick, A. N., and D. R. Drury, 1951 a: Action of insulin on the permeability of cells to sorbitol. Amer. J. Physiol. 166, 421–423.

    PubMed  CAS  Google Scholar 

  • Wick, A. N., and D. R. Drury, 1951b: Does concentration of glucose in extracellular fluid influence its utilization by the tissues? Amer. J. Physiol. 167, 359–363.

    PubMed  CAS  Google Scholar 

  • Wick, A. N., and D. R. Drury, 1953 a: Action of insulin on volume of distribution of galactose in the body. Amer. J. Physiol. 173, 229–232.

    PubMed  CAS  Google Scholar 

  • Wick, A. N., and D. R. Drury, 1953 b: Influence of glucose concentration on the action of insulin. Amer. J. Physiol. 174, 445–447.

    PubMed  CAS  Google Scholar 

  • Widdas, W. F., 1952 a: Inability of diffusion to account for placental glucose transfer in the sheep. J. Physiol. (Brit.) 115, 36 P.

    Google Scholar 

  • Widdas, W. F., 1952 b: Inability of diffusion to account for placental transfer in the sheep and consideration of the kinetics of a possible carrier transfer. J. Physiol. (Brit.) 118, 23–39.

    CAS  Google Scholar 

  • Widdas, W. F., 1953 a: Kinetics of glucose transfer across the human erythrocyte membrane. J. Physiol. (Brit.) 120, 23 P–24 P.

    Google Scholar 

  • Widdas, W. F., 1953 b: Hexose permeability of mammalian foetal erythrocytes. XIXth Internat. Physiol. Congr. 885–886.

    Google Scholar 

  • Widdas, W. F., 1954: Facilitated transfer of hexoses across the human erythrocyte membrane. J. Physiol. (Brit.) 125, 163–180.

    CAS  Google Scholar 

  • Wilbrandt, W., 1938: Die Permeabilität der roten Blutkörperchen für einfache Zucker. Arch. ges. Physiol. 241, 302–309.

    Article  Google Scholar 

  • Wilbrandt, W., 1940 a: Die Abhängigkeit der Ionenpermeabilität der Erythrocyten vom glykolytischen Stoffwechsel. Arch. ges. Physiol. 243, 519–536.

    Article  CAS  Google Scholar 

  • Wilbrandt, W., 1940 b: Die Ionenpermeabilität der Erythrocyten in Nichtleiterlösungen. Arch. ges. Physiol. 243, 537–556.

    Article  CAS  Google Scholar 

  • Wilbrandt, W., 1941: Die Wirkung von Schwermetallsalzen auf die Erythrocyten-permeabilität für Glyzerin. Arch. ges. Physiol. 244, 637–643.

    Article  CAS  Google Scholar 

  • Wilbrandt, W., 1947: Die Wirkung des Phlorrhizins auf die Permeabilität der menschlichen Erythrocyten für Glukose und Pentosen. Helvet. Physiol. Acta 5, C 64–C 65.

    CAS  Google Scholar 

  • Wilbrandt, W., 1950: Permeabilitätsprobleme. Arch, exper. Path. Pharmakol. 212, 9–29.

    Article  CAS  Google Scholar 

  • Wilbrandt, W., E. Guensberg, und H. Lauener, 1947: Der Glukoseeintritt durch die Erythro-cytenmembran. Helvet. Physiol. Pharmacol. Acta 5, C 20–C 22.

    CAS  Google Scholar 

  • Wilbrandt, W., und L. Laszt, 1933: Untersuchungen über die Ursachen der selektiven Resorption der Zucker aus dem Darm. Biochem. Z. 259, 398–417.

    CAS  Google Scholar 

  • Wilbrandt, W., und T. Rosenberg, 1950: Weitere Untersuchungen über die Glukosepenetration durch die Erythrocytenmembran. Helvet. Physiol. Pharmacol. Acta 8, C 82–C 83.

    CAS  Google Scholar 

  • Wilbrandt, W., und T. Rosenberg, 1951: Die Kinetik des enzymatischen Transports. Helvet. Physiol. Acta 9, C 86–C 87.

    CAS  Google Scholar 

  • Wilmer, H. A., 1944: Renal phosphatase. The correlation between the functional activity of the renal tubule and its phosphatase content. Arch. Path. 37, 227–237.

    CAS  Google Scholar 

  • Wilson, R. H., 1932: The effect of phlorhizin on the rate of absorption from the gastrointestinal tract of the white rat. J. biol. Chem. (Am.) 97, 497–502.

    CAS  Google Scholar 

  • Wilson, T. H., 1954: Ionic permeabilitv and osmotic swelling of cells. Science 120, 104–105.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, T. H., and G. Wiseman, 1954: The use of sacs of everted small intestine for the study of the transference of substances from the mucosal to the serosal surface. J. Physiol. (Brit.) 123, 116–125.

    CAS  Google Scholar 

  • Wirz, H., B. Hargitay und W. Kuhn, 1951: Lokalisation des Konzentrierungsprozesses in der Niere durch direkte Kryoscopie. Helvet. Physiol. Acta 9, 196–207.

    CAS  Google Scholar 

  • Wiseman, G., 1951: Active stereochemically selective absorption of amino-acids from rat small intestine. J. Physiol. (Brit.) 114, 7 P–8 P.

    Google Scholar 

  • Wiseman, G., 1953: Absorption of amino-acids using an in vitro technique. J. Physiol. (Brit.) 120, 63–72.

    CAS  Google Scholar 

  • Wix, G., I. Bonta, L. György, and G. Fekete, 1952: Hormonal influences on glucose resorption from the intestines. Y. Contributions to the mechanism of insulin effect. Acta Physiol. Ac. Sci. Hungar. 3, 59–68.

    CAS  Google Scholar 

  • Wix, G., G. Fekete, and I. Horvâth, 1951: Hormonal influences on glucose resorption from the intestines. III. The effect of adrenalin and the resorption of glucose. Acta Physiol. Ac. Sci. Hungar. 2, 451–457.

    CAS  Google Scholar 

  • Wood, E. H., 1941: Glucose reabsorption in the amphibian kidney. Amer. J. Physiol. 133, P497.

    Google Scholar 

  • Wood, E. H., D. A. Collins, and G. K. Moe, 1940: Electrolyte and water exchanges between mammalian muscle and blood in relation to activity. Amer. J. Physiol. 128, 635–652.

    CAS  Google Scholar 

  • Wright, L. D., H. F. Russo, H. R. Skeggs, E. A. Patch, and K. H. Beyer, 1947: The renal clearance of essential amino acids: arginine, histidine, lysine, and methionine. Amer. J. Physiol. 149, 130–134.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1955 Springer-Verlag

About this chapter

Cite this chapter

LeFevre, P.G. (1955). Active Transport through Animal Cell Membranes. In: Active Transport through Animal Cell Membranes. Protoplasmatologia, vol 8 / 7 / a. Springer, Vienna. https://doi.org/10.1007/978-3-7091-5768-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-5768-8_1

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-80387-5

  • Online ISBN: 978-3-7091-5768-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics