Skip to main content

Emerging Tools to Assess the Risk of Rupture in AAA: Wall Stress and FDG PET

  • Chapter
  • First Online:
Surgical Management of Aortic Pathology

Abstract

Abdominal aortic aneurysm (AAA) rupture is a significant cause of mortality in developed countries. The growth rate and the rupture of AAA may be unpredictable. This chapter places a special emphasis on evaluating patient-specific approaches to the risk of rupture of AAA, using imaging. Specifically, we describe two pathways of assessing this risk: one being the use of morphologic imaging data to compute wall stress (and wall stress-related parameters) via finite element simulation (FES) and the other, the use of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to assess biological processes in the aortic wall components. Both methods are described, along with the limits preventing their widespread use. Nevertheless, the current diameter-based clinical scenarios could be yet impacted by the reported value of FES and FDG PET to predict the risk of AAA rupture. Lastly, the relationship between wall stress and the biological activities as described by FDG PET points at least partially to genetic or acquired alterations of the arterial wall response to wall stress, which can be found in familial aneurysms or in smokers, for example. An integrated patient-specific risk assessment strategy that would include imaging parameters along with personal and heritable risk factors is becoming increasingly suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.

    Article  PubMed  Google Scholar 

  2. Lederle FA, Johnson GR, Wilson SE, Ballard DJ, Jordan WD Jr, Blebea J, et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA. 2002;287(22):2968–72.

    Article  PubMed  Google Scholar 

  3. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. Lancet. 1998;352(9141):1649–55.

    Google Scholar 

  4. Fillinger MF, Marra SP, Raghavan ML, Kennedy FE. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg. 2003;37(4):724–32.

    Article  PubMed  Google Scholar 

  5. Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011;41(Suppl 1):S1–S58.

    Article  PubMed  Google Scholar 

  6. Brown LC, Powell JT. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann Surg. 1999;230(3):289–96; discussion 96–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Darling RC, Messina CR, Brewster DC, Ottinger LW. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation. 1977;56(3 Suppl):II161–4.

    CAS  PubMed  Google Scholar 

  8. Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G, et al. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2004;28(2):168–76.

    CAS  PubMed  Google Scholar 

  9. Lederle FA, Johnson GR, Wilson SE, Chute EP, Littooy FN, Bandyk D, et al. Prevalence and associations of abdominal aortic aneurysm detected through screening. Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Group. Ann Intern Med. 1997;126(6):441–9.

    Article  CAS  PubMed  Google Scholar 

  10. Sakalihasan N, Limet R, Defawe OD. Abdominal aortic aneurysm. Lancet. 2005;365(9470):1577–89.

    Article  CAS  PubMed  Google Scholar 

  11. Nicholls SC, Gardner JB, Meissner MH, Johansen HK. Rupture in small abdominal aortic aneurysms. J Vasc Surg. 1998;28(5):884–8.

    Article  CAS  PubMed  Google Scholar 

  12. Stonebridge PA, Draper T, Kelman J, Howlett J, Allan PL, Prescott R, et al. Growth rate of infrarenal aortic aneurysms. Eur J Vasc Endovasc Surg. 1996;11(1):70–3.

    Article  CAS  PubMed  Google Scholar 

  13. Vardulaki KA, Prevost TC, Walker NM, Day NE, Wilmink AB, Quick CR, et al. Growth rates and risk of rupture of abdominal aortic aneurysms. Br J Surg. 1998;85(12):1674–80.

    Article  CAS  PubMed  Google Scholar 

  14. Santilli SM, Littooy FN, Cambria RA, Rapp JH, Tretinyak AS, d’Audiffret AC, et al. Expansion rates and outcomes for the 3.0-cm to the 3.9-cm infrarenal abdominal aortic aneurysm. J Vasc Surg. 2002;35(4):666–71.

    Article  PubMed  Google Scholar 

  15. Limet R, Sakalihassan N, Albert A. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J Vasc Surg. 1991;14(4):540–8.

    Article  CAS  PubMed  Google Scholar 

  16. Stenbaek J, Kalin B, Swedenborg J. Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2000;20(5):466–9.

    Article  CAS  PubMed  Google Scholar 

  17. Martufi GLLM, Sakalihasan N, Panuccio G, Hultgren R, Roy J, Gasser TC. Local diameter, wall stress and thrombus thickness influence the local growth of abdominal aortic an-eurysms. J Endovasc Ther. 2016;23(6):957–66.

    Article  PubMed  Google Scholar 

  18. Liljeqvist MHR, Gasser TC, Roy J. Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk. J Vasc Surg. 2016;63(6):1434–1442.e3.

    Article  Google Scholar 

  19. Kurvers H, Veith FJ, Lipsitz EC, Ohki T, Gargiulo NJ, Cayne NS, et al. Discontinuous, staccato growth of abdominal aortic aneurysms. J Am Coll Surg. 2004;199(5):709–15.

    Article  PubMed  Google Scholar 

  20. Sakalihasan N, Heyeres A, Nusgens BV, Limet R, Lapiere CM. Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur J Vasc Surg. 1993;7(6):633–7.

    Article  CAS  PubMed  Google Scholar 

  21. Busuttil RW, Abou-Zamzam AM, Machleder HI. Collagenase activity of the human aorta. A comparison of patients with and without abdominal aortic aneurysms. Arch Surg. 1980;115(11):1373–8.

    Article  CAS  PubMed  Google Scholar 

  22. Dobrin PB, Schwarcz TH, Baker WH. Mechanisms of arterial and aneurysmal tortuosity. Surgery. 1988;104(3):568–71.

    CAS  PubMed  Google Scholar 

  23. Sakalihasan N, Delvenne P, Nusgens BV, Limet R, Lapiere CM. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J Vasc Surg. 1996;24(1):127–33.

    Article  CAS  PubMed  Google Scholar 

  24. Defawe OD, Colige A, Lambert CA, Munaut C, Delvenne P, Lapiere CM, et al. TIMP-2 and PAI-1 mRNA levels are lower in aneurysmal as compared to athero-occlusive abdominal aortas. Cardiovasc Res. 2003;60(1):205–13.

    Article  CAS  PubMed  Google Scholar 

  25. Defawe OD, Colige A, Lambert CA, Delvenne P, Lapiere Ch M, Limet R, et al. Gradient of proteolytic enzymes, their inhibitors and matrix proteins expression in a ruptured abdominal aortic aneurysm. Eur J Clin Investig. 2004;34(7):513–4.

    Article  CAS  Google Scholar 

  26. Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 1995;270(11):5872–6.

    Article  CAS  PubMed  Google Scholar 

  27. Busti C, Falcinelli E, Momi S, Gresele P. Matrix metalloproteinases and peripheral arterial disease. Intern Emerg Med. 2010;5(1):13–25.

    Article  PubMed  Google Scholar 

  28. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.

    Article  CAS  PubMed  Google Scholar 

  29. Thompson RW, Parks WC. Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci. 1996;800:157–74.

    Article  CAS  PubMed  Google Scholar 

  30. Choke E, Cockerill GW, Dawson J, Wilson RW, Jones A, Loftus IM, et al. Increased angiogenesis at the site of abdominal aortic aneurysm rupture. Ann N Y Acad Sci. 2006;1085:315–9.

    Article  CAS  PubMed  Google Scholar 

  31. Holmes DR, Liao S, Parks WC, Thompson RW. Medial neovascularization in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophysiologic implications. J Vasc Surg. 1995;21(5):761–71; discussion 71–2.

    Article  CAS  PubMed  Google Scholar 

  32. Paik DC, Fu C, Bhattacharya J, Tilson MD. Ongoing angiogenesis in blood vessels of the abdominal aortic aneurysm. Exp Mol Med. 2004;36(6):524–33.

    Article  CAS  PubMed  Google Scholar 

  33. Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A, et al. Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology. 2009;76(5):243–52.

    Article  CAS  PubMed  Google Scholar 

  34. Sakalihasan N, Pincemail J, Defraigne JO, Nusgens B, Lapiere C, Limet R. Decrease of plasma vitamin E (alpha-tocopherol) levels in patients with abdominal aortic aneurysm. Ann N Y Acad Sci. 1996;800:278–82.

    Article  CAS  PubMed  Google Scholar 

  35. Pincemail J, Defraigne JO, Cheramy-Bien JP, Dardenne N, Donneau AF, Albert A, et al. On the potential increase of the oxidative stress status in patients with abdominal aortic aneurysm. Redox Rep. 2012;17(4):139–44.

    Article  CAS  PubMed  Google Scholar 

  36. Darling RC 3rd, Brewster DC, Darling RC, LaMuraglia GM, Moncure AC, Cambria RP, et al. Are familial abdominal aortic aneurysms different? J Vasc Surg. 1989;10(1):39–43.

    Article  PubMed  Google Scholar 

  37. Verloes A, Sakalihasan N, Koulischer L, Limet R. Aneurysms of the abdominal aorta: familial and genetic aspects in three hundred thirteen pedigrees. J Vasc Surg. 1995;21(4):646–55.

    Article  CAS  PubMed  Google Scholar 

  38. Verloes A, Sakalihasan N, Limet R, Koulischer L. Genetic aspects of abdominal aortic aneurysm. Ann N Y Acad Sci. 1996;800:44–55.

    Article  CAS  PubMed  Google Scholar 

  39. Derubertis BG, Trocciola SM, Ryer EJ, Pieracci FM, McKinsey JF, Faries PL, et al. Abdominal aortic aneurysm in women: prevalence, risk factors, and implications for screening. J Vasc Surg. 2007;46(4):630–5.

    Article  PubMed  Google Scholar 

  40. Brown PM, Zelt DT, Sobolev B. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J Vasc Surg. 2003;37(2):280–4.

    Article  PubMed  Google Scholar 

  41. Powell JT, Worrell P, MacSweeney ST, Franks PJ, Greenhalgh RM. Smoking as a risk factor for abdominal aortic aneurysm. Ann N Y Acad Sci. 1996;800:246–8.

    Article  CAS  PubMed  Google Scholar 

  42. Lindeman JH, Abdul-Hussien H, van Bockel JH, Wolterbeek R, Kleemann R. Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation. 2009;119(16):2209–16.

    Article  CAS  PubMed  Google Scholar 

  43. Nyberg A, Skagius E, Englund E, Nilsson I, Ljungh A, Henriksson AE. Abdominal aortic aneurysm and the impact of infectious burden. Eur J Vasc Endovasc Surg. 2008;36(3):292–6.

    Article  CAS  PubMed  Google Scholar 

  44. Cheuk BL, Ting AC, Cheng SW. Detection of C. pneumoniae by polymerase chain reaction-enzyme immunoassay in abdominal aortic aneurysm walls and its association with rupture. Eur J Vasc Endovasc Surg. 2005;29(2):150–5.

    Article  CAS  PubMed  Google Scholar 

  45. Marques da Silva R, Caugant DA, Lingaas PS, Geiran O, Tronstad L, Olsen I. Detection of Actinobacillus actinomycetemcomitans but not bacteria of the red complex in aortic aneurysms by multiplex polymerase chain reaction. J Periodontol. 2005;76(4):590–4.

    Article  CAS  PubMed  Google Scholar 

  46. Nakano K, Nemoto H, Nomura R, Inaba H, Yoshioka H, Taniguchi K, et al. Detection of oral bacteria in cardiovascular specimens. Oral Microbiol Immunol. 2009;24(1):64–8.

    Article  CAS  PubMed  Google Scholar 

  47. Vorp DA, Raghavan ML, Webster MW. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg. 1998;27(4):632–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, et al. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg. 2003;38(6):1283–92.

    Article  PubMed  Google Scholar 

  49. Vollmar JF, Paes E, Pauschinger P, Henze E, Friesch A. Aortic aneurysms as late sequelae of above-knee amputation. Lancet. 1989;2(8667):834–5.

    Article  CAS  PubMed  Google Scholar 

  50. Biasetti J, Hussain F, Gasser TC. Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation. J R Soc Interface. 2011;8(63):1449–61.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Biasetti J, Spazzini PG, Swedenborg J, Gasser TC. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front Physiol. 2012;3:266.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hans SS, Jareunpoon O, Balasubramaniam M, Zelenock GB. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J Vasc Surg. 2005;41(4):584–8.

    Article  PubMed  Google Scholar 

  53. Li ZY, U-King-Im J, Tang TY, Soh E, See TC, Gillard JH. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg. 2008;47(5):928–35.

    Article  PubMed  Google Scholar 

  54. Thubrikar MJ, Robicsek F, Labrosse M, Chervenkoff V, Fowler BL. Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J Cardiovasc Surg. 2003;44(1):67–77.

    CAS  Google Scholar 

  55. Touat Z, Lepage L, Ollivier V, Nataf P, Hvass U, Labreuche J, et al. Dilation-dependent activation of platelets and prothrombin in human thoracic ascending aortic aneurysm. Arterioscler Thromb Vasc Biol. 2008;28(5):940–6.

    Article  CAS  PubMed  Google Scholar 

  56. Sarda-Mantel L, Coutard M, Rouzet F, Raguin O, Vrigneaud JM, Hervatin F, et al. 99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2006;26(9):2153–9.

    Article  CAS  PubMed  Google Scholar 

  57. Houard X, Rouzet F, Touat Z, Philippe M, Dominguez M, Fontaine V, et al. Topology of the fibrinolytic system within the mural thrombus of human abdominal aortic aneurysms. J Pathol. 2007;212(1):20–8.

    Article  CAS  PubMed  Google Scholar 

  58. Martinez-Pinna R, Madrigal-Matute J, Tarin C, Burillo E, Esteban-Salan M, Pastor-Vargas C, et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2013;33(8):2013–20.

    Article  CAS  PubMed  Google Scholar 

  59. Fontaine V, Jacob MP, Houard X, Rossignol P, Plissonnier D, Angles-Cano E, et al. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol. 2002;161(5):1701–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Nchimi A, Courtois A, El Hachemi M, Touat Z, Drion P, Withofs N, et al. Multimodality imaging assessment of the deleterious role of the intraluminal thrombus on the growth of abdominal aortic aneurysm in a rat model. Eur Radiol. 2016;26(7):2378–86.

    Article  PubMed  Google Scholar 

  61. Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg. 2001;34(2):291–9.

    Article  CAS  PubMed  Google Scholar 

  62. Behr-Rasmussen C, Grondal N, Bramsen MB, Thomsen MD, Lindholt JS. Mural thrombus and the progression of abdominal aortic aneurysms: a large population-based prospective cohort study. Eur J Vasc Endovasc Surg. 2014;48(3):301–7.

    Article  CAS  PubMed  Google Scholar 

  63. Remus EW, O’Donnell RE Jr, Rafferty K, Weiss D, Joseph G, Csiszar K, et al. The role of lysyl oxidase family members in the stabilization of abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol. 2012;303(8):H1067–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24(7):1161–70.

    Article  CAS  PubMed  Google Scholar 

  65. O’Leary SA, Mulvihill JJ, Barrett HE, Kavanagh EG, Walsh MT, McGloughlin TM, et al. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J Mech Behav Biomed Mater. 2015;42:154–67.

    Article  PubMed  CAS  Google Scholar 

  66. Zienkiewicz OC. The finite elements method. The basis. 5th ed. Oxford: Butterworth Heinemann; 2000.

    Google Scholar 

  67. Leung JH, Wright AR, Cheshire N, Crane J, Thom SA, Hughes AD, et al. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed Eng Online. 2006;5:33.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Raghavan ML, Vorp DA. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech. 2000;33(4):475–82.

    Article  CAS  PubMed  Google Scholar 

  69. Polzer S, Gasser TC, Swedenborg J, Bursa J. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2011;41(4):467–73.

    Article  CAS  PubMed  Google Scholar 

  70. Auer M, Gasser TC. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans Med Imaging. 2010;29(4):1022–8.

    Article  CAS  PubMed  Google Scholar 

  71. Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann Biomed Eng. 2008;36(6):921–32.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg. 2010;40(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  73. Maier A, Gee MW, Reeps C, Pongratz J, Eckstein HH, Wall WA. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng. 2010;38(10):3124–34.

    Article  CAS  PubMed  Google Scholar 

  74. Gasser TC, Nchimi A, Swedenborg J, Roy J, Sakalihasan N, Bockler D, et al. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur J Vasc Endovasc Surg. 2014;47(3):288–95.

    Article  CAS  PubMed  Google Scholar 

  75. Xenos M, Labropoulos N, Rambhia S, Alemu Y, Einav S, Tassiopoulos A, et al. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid-structure interaction method. Ann Biomed Eng. 2015;43(1):139–53.

    Article  PubMed  Google Scholar 

  76. Vande Geest JP, Di Martino ES, Bohra A, Makaroun MS, Vorp DA. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann N Y Acad Sci. 2006;1085:11–21.

    Article  PubMed  Google Scholar 

  77. Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg. 2002;36(3):589–97.

    Article  PubMed  Google Scholar 

  78. Heng MS, Fagan MJ, Collier JW, Desai G, McCollum PT, Chetter IC. Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J Vasc Surg. 2008;47(1):17–22; discussion

    Article  PubMed  Google Scholar 

  79. Khosla S, Morris DR, Moxon JV, Walker PJ, Gasser TC, Golledge J. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br J Surg. 2014;101(11):1350–7. discussion 7

    Article  CAS  PubMed  Google Scholar 

  80. Erhart P, Hyhlik-Durr A, Geisbusch P, Kotelis D, Muller-Eschner M, Gasser TC, et al. Finite element analysis in asymptomatic, symptomatic, and ruptured abdominal aortic aneurysms: in search of new rupture risk predictors. Eur J Vasc Endovasc Surg. 2015;49(3):239–45.

    Article  CAS  PubMed  Google Scholar 

  81. Erhart P, Roy J, de Vries JP, Liljeqvist ML, Grond-Ginsbach C, Hyhlik-Durr A, et al. Prediction of rupture sites in abdominal aortic aneurysms after finite element analysis. J Endovasc Ther. 2016;23(1):115–20.

    Article  PubMed  Google Scholar 

  82. Doyle BJ, McGloughlin TM, Miller K, Powell JT, Norman PE. Regions of high wall stress can predict the future location of rupture of abdominal aortic aneurysm. Cardiovasc Intervent Radiol. 2014;37(3):815–8.

    Article  PubMed  Google Scholar 

  83. Xu XY, Borghi A, Nchimi A, Leung J, Gomez P, Cheng Z, et al. High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur J Vasc Endovasc Surg. 2010;39(3):295–301.

    Article  CAS  PubMed  Google Scholar 

  84. Erhart P, Grond-Ginsbach C, Hakimi M, Lasitschka F, Dihlmann S, Bockler D, et al. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J Endovasc Ther. 2014;21(4):556–64.

    Article  PubMed  Google Scholar 

  85. Malkawi A, Pirianov G, Torsney E, Chetter I, Sakalihasan N, Loftus IM, et al. Increased expression of Lamin A/C correlate with regions of high wall stress in abdominal aortic aneurysms. Aorta (Stamford). 2015;3(5):152–66.

    Article  Google Scholar 

  86. Georgakarakos E, Ioannou C, Kostas T, Katsamouris A. Inflammatory response to aortic aneurysm intraluminal thrombus may cause increased 18F-FDG uptake at sites not associated with high wall stress: comment on “high levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress”. Eur J Vasc Endovasc Surg. 2010;39(6):795; author reply –6

    Article  CAS  PubMed  Google Scholar 

  87. Speelman L, Hellenthal FA, Pulinx B, Bosboom EM, Breeuwer M, van Sambeek MR, et al. The influence of wall stress on AAA growth and biomarkers. Eur J Vasc Endovasc Surg. 2010;39(4):410–6.

    Article  CAS  PubMed  Google Scholar 

  88. Li ZY, Sadat U, U-King-Im J, Tang TY, Bowden DJ, Hayes PD, et al. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion: a longitudinal follow-up study. Circulation. 2010;122(18):1815–22.

    Article  PubMed  Google Scholar 

  89. Martufi G, Lindquist Liljeqvist M, Sakalihasan N, Panuccio G, Hultgren R, Roy J, et al. Local diameter, wall stress, and thrombus thickness influence the local growth of abdominal aortic aneurysms. J Endovasc Ther. 2016;23(6):957–66.

    Article  PubMed  Google Scholar 

  90. Hyhlik-Durr A, Krieger T, Geisbusch P, Kotelis D, Able T, Bockler D. Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models. J Endovasc Ther. 2011;18(3):289–98.

    Article  PubMed  Google Scholar 

  91. Teutelink A, Cancrinus E, van de Heuvel D, Moll F, de Vries JP. Preliminary intraobserver and interobserver variability in wall stress and rupture risk assessment of abdominal aortic aneurysms using a semiautomatic finite element model. J Vasc Surg. 2012;55(2):326–30.

    Article  PubMed  Google Scholar 

  92. Rudd JH. The role of 18F-FDG PET in aortic dissection. J Nucl Med. 2010;51(5):667–8.

    Article  PubMed  Google Scholar 

  93. Kadoglou NP, Liapis CD. Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Curr Med Res Opin. 2004;20(4):419–32.

    Article  CAS  PubMed  Google Scholar 

  94. Jacob T, Ascher E, Hingorani A, Gunduz Y, Kallakuri S. Initial steps in the unifying theory of the pathogenesis of artery aneurysms. J Surg Res. 2001;101(1):37–43.

    Article  CAS  PubMed  Google Scholar 

  95. Buvat I. Les limites du SUV. Méd Nucl. 2007;21:165–72.

    Article  Google Scholar 

  96. Reeps C, Bundschuh RA, Pellisek J, Herz M, van Marwick S, Schwaiger M, et al. Quantitative assessment of glucose metabolism in the vessel wall of abdominal aortic aneurysms: correlation with histology and role of partial volume correction. Int J Cardiovasc Imaging. 2013;29(2):505–12.

    Article  PubMed  Google Scholar 

  97. Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology. 2013;267(1):26–44.

    Article  PubMed  Google Scholar 

  98. Sakalihasan N, Van Damme H, Gomez P, Rigo P, Lapiere CM, Nusgens B, et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg. 2002;23(5):431–6.

    Article  CAS  PubMed  Google Scholar 

  99. Defawe OD, Hustinx R, Defraigne JO, Limet R, Sakalihasan N. Distribution of F-18 fluorodeoxyglucose (F-18 FDG) in abdominal aortic aneurysm: high accumulation in macrophages seen on PET imaging and immunohistology. Clin Nucl Med. 2005;30(5):340–1.

    Article  PubMed  Google Scholar 

  100. Truijers M, Kurvers HA, Bredie SJ, Oyen WJ, Blankensteijn JD. In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J Endovasc Ther. 2008;15(4):462–7.

    Article  PubMed  Google Scholar 

  101. Kotze CW, Menezes LJ, Endozo R, Groves AM, Ell PJ, Yusuf SW. Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur J Vasc Endovasc Surg. 2009;38(1):93–9.

    Article  CAS  PubMed  Google Scholar 

  102. Marini C, Morbelli S, Armonino R, Spinella G, Riondato M, Massollo M, et al. Direct relationship between cell density and FDG uptake in asymptomatic aortic aneurysm close to surgical threshold: an in vivo and in vitro study. Eur J Nucl Med Mol Imaging. 2012;39(1):91–101.

    Article  PubMed  Google Scholar 

  103. Courtois A, Nusgens BV, Hustinx R, Namur G, Gomez P, Somja J, et al. 18F-FDG uptake assessed by PET/CT in abdominal aortic aneurysms is associated with cellular and molecular alterations prefacing wall deterioration and rupture. J Nucl Med. 2013;54(10):1740–7.

    Article  CAS  PubMed  Google Scholar 

  104. Barwick TD, Lyons OT, Mikhaeel NG, Waltham M, O’Doherty MJ. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size. Eur J Nucl Med Mol Imaging. 2014;41(12):2310–8.

    Article  CAS  PubMed  Google Scholar 

  105. Palombo D, Morbelli S, Spinella G, Pane B, Marini C, Rousas N, et al. A positron emission tomography/computed tomography (PET/CT) evaluation of asymptomatic abdominal aortic aneurysms: another point of view. Ann Vasc Surg. 2012;26(4):491–9.

    Article  PubMed  Google Scholar 

  106. Tegler G, Ericson K, Sorensen J, Bjorck M, Wanhainen A. Inflammation in the walls of asymptomatic abdominal aortic aneurysms is not associated with increased metabolic activity detectable by 18-fluorodeoxyglucose positron-emission tomography. J Vasc Surg. 2012;56(3):802–7.

    Article  PubMed  Google Scholar 

  107. English SJ, Piert MR, Diaz JA, Gordon D, Ghosh A, D’Alecy LG, et al. Increased 18F-FDG uptake is predictive of rupture in a novel rat abdominal aortic aneurysm rupture model. Ann Surg. 2015;261(2):395–404.

    Article  PubMed  Google Scholar 

  108. Nchimi A, Cheramy-Bien JP, Gasser TC, Namur G, Gomez P, Seidel L, et al. Multifactorial relationship between 18F-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ Cardiovasc Imaging. 2014;7(1):82–91.

    Article  PubMed  Google Scholar 

  109. Timur UT, van Herwaarden JA, Mihajlovic D, De Jong P, Mali W, Moll FL. (18)F-FDG PET scanning of abdominal aortic aneurysms and correlation with molecular characteristics: a systematic review. EJNMMI Res. 2015;5(1):76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kotze CW, Groves AM, Menezes LJ, Harvey R, Endozo R, Kayani IA, et al. What is the relationship between (18)F-FDG aortic aneurysm uptake on PET/CT and future growth rate? Eur J Nucl Med Mol Imaging. 2011;38(8):1493–9.

    Article  PubMed  Google Scholar 

  111. Morel O, Mandry D, Micard E, Kauffmann C, Lamiral Z, Verger A, et al. Evidence of cyclic changes in the metabolism of abdominal aortic aneurysms during growth phases: (1)(8)F-FDG PET sequential observational study. J Nucl Med. 2015;56(7):1030–5.

    Article  CAS  PubMed  Google Scholar 

  112. Riou LM, Vanzetto G, Broisat A, Fagret D, Ghezzi C. Equivocal usefulness of FDG for the noninvasive imaging of abdominal aortic aneurysms. Eur J Nucl Med Mol Imaging. 2014;41(12):2307–9.

    Article  PubMed  Google Scholar 

  113. Sakalihasan N, Defraigne JO, Kerstenne MA, Cheramy-Bien JP, Smelser DT, Tromp G, et al. Family members of patients with abdominal aortic aneurysms are at increased risk for aneurysms: analysis of 618 probands and their families from the Liege AAA Family Study. Ann Vasc Surg. 2014;28(4):787–97.

    Article  PubMed  Google Scholar 

  114. van de Luijtgaarden KM, Bastos Goncalves F, Hoeks SE, Valentijn TM, Stolker RJ, Majoor-Krakauer D, et al. Lower atherosclerotic burden in familial abdominal aortic aneurysm. J Vasc Surg. 2014;59(3):589–93.

    Article  PubMed  Google Scholar 

  115. Vande Geest JP, Wang DH, Wisniewski SR, Makaroun MS, Vorp DA. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng. 2006;34(7):1098–106.

    Article  PubMed  Google Scholar 

  116. Svensjo S, Bjorck M, Gurtelschmid M, Djavani Gidlund K, Hellberg A, Wanhainen A. Low prevalence of abdominal aortic aneurysm among 65-year-old Swedish men indicates a change in the epidemiology of the disease. Circulation. 2011;124(10):1118–23.

    Article  PubMed  Google Scholar 

  117. Anjum A, Powell JT. Is the incidence of abdominal aortic aneurysm declining in the 21st century? Mortality and hospital admissions for England & Wales and Scotland. Eur J Vasc Endovasc Surg. 2012;43(2):161–6.

    Article  CAS  PubMed  Google Scholar 

  118. Sandiford P, Mosquera D, Bramley D. Trends in incidence and mortality from abdominal aortic aneurysm in New Zealand. Br J Surg. 2011;98(5):645–51.

    Article  CAS  PubMed  Google Scholar 

  119. Kotze CW, Rudd JH, Ganeshan B, Menezes LJ, Brookes J, Agu O, et al. CT signal heterogeneity of abdominal aortic aneurysm as a possible predictive biomarker for expansion. Atherosclerosis. 2014;233(2):510–7.

    Article  CAS  PubMed  Google Scholar 

  120. Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261(3):700–18.

    Article  PubMed  Google Scholar 

  121. Jacobs MA, Ibrahim TS, Ouwerkerk R. AAPM/RSNA physics tutorials for residents: MR imaging: brief overview and emerging applications. Radiographics. 2007;27(4):1213–29.

    Article  PubMed  Google Scholar 

  122. Nchimi A, Couvreur T, Meunier B, Sakalihasan N. Magnetic resonance imaging findings in a positron emission tomography-positive thoracic aortic aneurysm. Aorta (Stamford). 2013;1(3):198–201.

    Article  Google Scholar 

  123. Nguyen VL, Backes WH, Kooi ME, Wishaupt MC, Hellenthal FA, Bosboom EM, et al. Quantification of abdominal aortic aneurysm wall enhancement with dynamic contrast-enhanced MRI: feasibility, reproducibility, and initial experience. J Magn Reson Imaging. 2014;39(6):1449–56.

    Article  PubMed  Google Scholar 

  124. Nguyen VL, Kooi ME, Backes WH, van Hoof RH, Saris AE, Wishaupt MC, et al. Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison. PLoS One. 2013;8(10):e75173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Nchimi A, Defawe O, Brisbois D, Broussaud TK, Defraigne JO, Magotteaux P, et al. MR imaging of iron phagocytosis in intraluminal thrombi of abdominal aortic aneurysms in humans. Radiology. 2010;254(3):973–81.

    Article  PubMed  Google Scholar 

  126. Richards JM, Semple SI, MacGillivray TJ, Gray C, Langrish JP, Williams M, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ Cardiovasc Imaging. 2011;4(3):274–81.

    Article  PubMed  Google Scholar 

  127. McBride OM, Joshi NV, Robson JM, MacGillivray TJ, Gray CD, Fletcher AM, et al. Positron emission tomography and magnetic resonance imaging of cellular inflammation in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2016;51(4):518–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Kitagawa T, Kosuge H, Chang E, James ML, Yamamoto T, Shen B, et al. Integrin-targeted molecular imaging of experimental abdominal aortic aneurysms by (18)F-labeled Arg-Gly-Asp positron-emission tomography. Circ Cardiovasc Imaging. 2013;6(6):950–6.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Tegler G, Estrada S, Hall H, Wanhainen A, Bjorck M, Sorensen J, et al. Autoradiography screening of potential positron emission tomography tracers for asymptomatic abdominal aortic aneurysms. Ups J Med Sci. 2014;119(3):229–35.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Reeps C, Essler M, Pelisek J, Seidl S, Eckstein HH, Krause BJ. Increased 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms in positron emission/computed tomography is associated with inflammation, aortic wall instability, and acute symptoms. J Vasc Surg. 2008;48(2):417–23. discussion 24

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Nchimi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Austria, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nchimi, A., Van Haver, T., Gasser, C.T., Sakalihasan, N. (2019). Emerging Tools to Assess the Risk of Rupture in AAA: Wall Stress and FDG PET. In: Stanger, O., Pepper, J., Svensson, L. (eds) Surgical Management of Aortic Pathology. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4874-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4874-7_30

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4872-3

  • Online ISBN: 978-3-7091-4874-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics