Emerging Tools to Assess the Risk of Rupture in AAA: Wall Stress and FDG PET

  • Alain NchimiEmail author
  • Thomas Van Haver
  • Christian T. Gasser
  • Natzi Sakalihasan


Abdominal aortic aneurysm (AAA) rupture is a significant cause of mortality in developed countries. The growth rate and the rupture of AAA may be unpredictable. This chapter places a special emphasis on evaluating patient-specific approaches to the risk of rupture of AAA, using imaging. Specifically, we describe two pathways of assessing this risk: one being the use of morphologic imaging data to compute wall stress (and wall stress-related parameters) via finite element simulation (FES) and the other, the use of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) to assess biological processes in the aortic wall components. Both methods are described, along with the limits preventing their widespread use. Nevertheless, the current diameter-based clinical scenarios could be yet impacted by the reported value of FES and FDG PET to predict the risk of AAA rupture. Lastly, the relationship between wall stress and the biological activities as described by FDG PET points at least partially to genetic or acquired alterations of the arterial wall response to wall stress, which can be found in familial aneurysms or in smokers, for example. An integrated patient-specific risk assessment strategy that would include imaging parameters along with personal and heritable risk factors is becoming increasingly suitable.


  1. 1.
    Lozano R, Naghavi M, Foreman K, Lim S, Shibuya K, Aboyans V, et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2095–128.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Lederle FA, Johnson GR, Wilson SE, Ballard DJ, Jordan WD Jr, Blebea J, et al. Rupture rate of large abdominal aortic aneurysms in patients refusing or unfit for elective repair. JAMA. 2002;287(22):2968–72.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. Lancet. 1998;352(9141):1649–55.Google Scholar
  4. 4.
    Fillinger MF, Marra SP, Raghavan ML, Kennedy FE. Prediction of rupture risk in abdominal aortic aneurysm during observation: wall stress versus diameter. J Vasc Surg. 2003;37(4):724–32.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al. Management of abdominal aortic aneurysms clinical practice guidelines of the European society for vascular surgery. Eur J Vasc Endovasc Surg. 2011;41(Suppl 1):S1–S58.PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Brown LC, Powell JT. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann Surg. 1999;230(3):289–96; discussion 96–7.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Darling RC, Messina CR, Brewster DC, Ottinger LW. Autopsy study of unoperated abdominal aortic aneurysms. The case for early resection. Circulation. 1977;56(3 Suppl):II161–4.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G, et al. A comparative study of aortic wall stress using finite element analysis for ruptured and non-ruptured abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2004;28(2):168–76.PubMedPubMedCentralGoogle Scholar
  9. 9.
    Lederle FA, Johnson GR, Wilson SE, Chute EP, Littooy FN, Bandyk D, et al. Prevalence and associations of abdominal aortic aneurysm detected through screening. Aneurysm Detection and Management (ADAM) Veterans Affairs Cooperative Study Group. Ann Intern Med. 1997;126(6):441–9.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sakalihasan N, Limet R, Defawe OD. Abdominal aortic aneurysm. Lancet. 2005;365(9470):1577–89.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Nicholls SC, Gardner JB, Meissner MH, Johansen HK. Rupture in small abdominal aortic aneurysms. J Vasc Surg. 1998;28(5):884–8.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Stonebridge PA, Draper T, Kelman J, Howlett J, Allan PL, Prescott R, et al. Growth rate of infrarenal aortic aneurysms. Eur J Vasc Endovasc Surg. 1996;11(1):70–3.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Vardulaki KA, Prevost TC, Walker NM, Day NE, Wilmink AB, Quick CR, et al. Growth rates and risk of rupture of abdominal aortic aneurysms. Br J Surg. 1998;85(12):1674–80.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Santilli SM, Littooy FN, Cambria RA, Rapp JH, Tretinyak AS, d’Audiffret AC, et al. Expansion rates and outcomes for the 3.0-cm to the 3.9-cm infrarenal abdominal aortic aneurysm. J Vasc Surg. 2002;35(4):666–71.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Limet R, Sakalihassan N, Albert A. Determination of the expansion rate and incidence of rupture of abdominal aortic aneurysms. J Vasc Surg. 1991;14(4):540–8.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Stenbaek J, Kalin B, Swedenborg J. Growth of thrombus may be a better predictor of rupture than diameter in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2000;20(5):466–9.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Martufi GLLM, Sakalihasan N, Panuccio G, Hultgren R, Roy J, Gasser TC. Local diameter, wall stress and thrombus thickness influence the local growth of abdominal aortic an-eurysms. J Endovasc Ther. 2016;23(6):957–66.PubMedCrossRefPubMedCentralGoogle Scholar
  18. 18.
    Liljeqvist MHR, Gasser TC, Roy J. Volume growth of abdominal aortic aneurysms correlates with baseline volume and increasing finite element analysis-derived rupture risk. J Vasc Surg. 2016;63(6):1434–1442.e3.CrossRefGoogle Scholar
  19. 19.
    Kurvers H, Veith FJ, Lipsitz EC, Ohki T, Gargiulo NJ, Cayne NS, et al. Discontinuous, staccato growth of abdominal aortic aneurysms. J Am Coll Surg. 2004;199(5):709–15.PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sakalihasan N, Heyeres A, Nusgens BV, Limet R, Lapiere CM. Modifications of the extracellular matrix of aneurysmal abdominal aortas as a function of their size. Eur J Vasc Surg. 1993;7(6):633–7.PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Busuttil RW, Abou-Zamzam AM, Machleder HI. Collagenase activity of the human aorta. A comparison of patients with and without abdominal aortic aneurysms. Arch Surg. 1980;115(11):1373–8.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Dobrin PB, Schwarcz TH, Baker WH. Mechanisms of arterial and aneurysmal tortuosity. Surgery. 1988;104(3):568–71.PubMedPubMedCentralGoogle Scholar
  23. 23.
    Sakalihasan N, Delvenne P, Nusgens BV, Limet R, Lapiere CM. Activated forms of MMP2 and MMP9 in abdominal aortic aneurysms. J Vasc Surg. 1996;24(1):127–33.PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Defawe OD, Colige A, Lambert CA, Munaut C, Delvenne P, Lapiere CM, et al. TIMP-2 and PAI-1 mRNA levels are lower in aneurysmal as compared to athero-occlusive abdominal aortas. Cardiovasc Res. 2003;60(1):205–13.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Defawe OD, Colige A, Lambert CA, Delvenne P, Lapiere Ch M, Limet R, et al. Gradient of proteolytic enzymes, their inhibitors and matrix proteins expression in a ruptured abdominal aortic aneurysm. Eur J Clin Investig. 2004;34(7):513–4.CrossRefGoogle Scholar
  26. 26.
    Aimes RT, Quigley JP. Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 1995;270(11):5872–6.PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Busti C, Falcinelli E, Momi S, Gresele P. Matrix metalloproteinases and peripheral arterial disease. Intern Emerg Med. 2010;5(1):13–25.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer. 2002;2(3):161–74.PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Thompson RW, Parks WC. Role of matrix metalloproteinases in abdominal aortic aneurysms. Ann N Y Acad Sci. 1996;800:157–74.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Choke E, Cockerill GW, Dawson J, Wilson RW, Jones A, Loftus IM, et al. Increased angiogenesis at the site of abdominal aortic aneurysm rupture. Ann N Y Acad Sci. 2006;1085:315–9.PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Holmes DR, Liao S, Parks WC, Thompson RW. Medial neovascularization in abdominal aortic aneurysms: a histopathologic marker of aneurysmal degeneration with pathophysiologic implications. J Vasc Surg. 1995;21(5):761–71; discussion 71–2.PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Paik DC, Fu C, Bhattacharya J, Tilson MD. Ongoing angiogenesis in blood vessels of the abdominal aortic aneurysm. Exp Mol Med. 2004;36(6):524–33.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Reeps C, Pelisek J, Seidl S, Schuster T, Zimmermann A, Kuehnl A, et al. Inflammatory infiltrates and neovessels are relevant sources of MMPs in abdominal aortic aneurysm wall. Pathobiology. 2009;76(5):243–52.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Sakalihasan N, Pincemail J, Defraigne JO, Nusgens B, Lapiere C, Limet R. Decrease of plasma vitamin E (alpha-tocopherol) levels in patients with abdominal aortic aneurysm. Ann N Y Acad Sci. 1996;800:278–82.PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Pincemail J, Defraigne JO, Cheramy-Bien JP, Dardenne N, Donneau AF, Albert A, et al. On the potential increase of the oxidative stress status in patients with abdominal aortic aneurysm. Redox Rep. 2012;17(4):139–44.PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Darling RC 3rd, Brewster DC, Darling RC, LaMuraglia GM, Moncure AC, Cambria RP, et al. Are familial abdominal aortic aneurysms different? J Vasc Surg. 1989;10(1):39–43.PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Verloes A, Sakalihasan N, Koulischer L, Limet R. Aneurysms of the abdominal aorta: familial and genetic aspects in three hundred thirteen pedigrees. J Vasc Surg. 1995;21(4):646–55.PubMedCrossRefGoogle Scholar
  38. 38.
    Verloes A, Sakalihasan N, Limet R, Koulischer L. Genetic aspects of abdominal aortic aneurysm. Ann N Y Acad Sci. 1996;800:44–55.PubMedCrossRefGoogle Scholar
  39. 39.
    Derubertis BG, Trocciola SM, Ryer EJ, Pieracci FM, McKinsey JF, Faries PL, et al. Abdominal aortic aneurysm in women: prevalence, risk factors, and implications for screening. J Vasc Surg. 2007;46(4):630–5.PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Brown PM, Zelt DT, Sobolev B. The risk of rupture in untreated aneurysms: the impact of size, gender, and expansion rate. J Vasc Surg. 2003;37(2):280–4.PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Powell JT, Worrell P, MacSweeney ST, Franks PJ, Greenhalgh RM. Smoking as a risk factor for abdominal aortic aneurysm. Ann N Y Acad Sci. 1996;800:246–8.PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Lindeman JH, Abdul-Hussien H, van Bockel JH, Wolterbeek R, Kleemann R. Clinical trial of doxycycline for matrix metalloproteinase-9 inhibition in patients with an abdominal aneurysm: doxycycline selectively depletes aortic wall neutrophils and cytotoxic T cells. Circulation. 2009;119(16):2209–16.PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Nyberg A, Skagius E, Englund E, Nilsson I, Ljungh A, Henriksson AE. Abdominal aortic aneurysm and the impact of infectious burden. Eur J Vasc Endovasc Surg. 2008;36(3):292–6.PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Cheuk BL, Ting AC, Cheng SW. Detection of C. pneumoniae by polymerase chain reaction-enzyme immunoassay in abdominal aortic aneurysm walls and its association with rupture. Eur J Vasc Endovasc Surg. 2005;29(2):150–5.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Marques da Silva R, Caugant DA, Lingaas PS, Geiran O, Tronstad L, Olsen I. Detection of Actinobacillus actinomycetemcomitans but not bacteria of the red complex in aortic aneurysms by multiplex polymerase chain reaction. J Periodontol. 2005;76(4):590–4.PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Nakano K, Nemoto H, Nomura R, Inaba H, Yoshioka H, Taniguchi K, et al. Detection of oral bacteria in cardiovascular specimens. Oral Microbiol Immunol. 2009;24(1):64–8.PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Vorp DA, Raghavan ML, Webster MW. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg. 1998;27(4):632–9.PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, et al. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg. 2003;38(6):1283–92.PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Vollmar JF, Paes E, Pauschinger P, Henze E, Friesch A. Aortic aneurysms as late sequelae of above-knee amputation. Lancet. 1989;2(8667):834–5.PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Biasetti J, Hussain F, Gasser TC. Blood flow and coherent vortices in the normal and aneurysmatic aortas: a fluid dynamical approach to intra-luminal thrombus formation. J R Soc Interface. 2011;8(63):1449–61.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Biasetti J, Spazzini PG, Swedenborg J, Gasser TC. An integrated fluid-chemical model toward modeling the formation of intra-luminal thrombus in abdominal aortic aneurysms. Front Physiol. 2012;3:266.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Hans SS, Jareunpoon O, Balasubramaniam M, Zelenock GB. Size and location of thrombus in intact and ruptured abdominal aortic aneurysms. J Vasc Surg. 2005;41(4):584–8.PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Li ZY, U-King-Im J, Tang TY, Soh E, See TC, Gillard JH. Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg. 2008;47(5):928–35.PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Thubrikar MJ, Robicsek F, Labrosse M, Chervenkoff V, Fowler BL. Effect of thrombus on abdominal aortic aneurysm wall dilation and stress. J Cardiovasc Surg. 2003;44(1):67–77.Google Scholar
  55. 55.
    Touat Z, Lepage L, Ollivier V, Nataf P, Hvass U, Labreuche J, et al. Dilation-dependent activation of platelets and prothrombin in human thoracic ascending aortic aneurysm. Arterioscler Thromb Vasc Biol. 2008;28(5):940–6.CrossRefGoogle Scholar
  56. 56.
    Sarda-Mantel L, Coutard M, Rouzet F, Raguin O, Vrigneaud JM, Hervatin F, et al. 99mTc-annexin-V functional imaging of luminal thrombus activity in abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2006;26(9):2153–9.PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Houard X, Rouzet F, Touat Z, Philippe M, Dominguez M, Fontaine V, et al. Topology of the fibrinolytic system within the mural thrombus of human abdominal aortic aneurysms. J Pathol. 2007;212(1):20–8.PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Martinez-Pinna R, Madrigal-Matute J, Tarin C, Burillo E, Esteban-Salan M, Pastor-Vargas C, et al. Proteomic analysis of intraluminal thrombus highlights complement activation in human abdominal aortic aneurysms. Arterioscler Thromb Vasc Biol. 2013;33(8):2013–20.PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Fontaine V, Jacob MP, Houard X, Rossignol P, Plissonnier D, Angles-Cano E, et al. Involvement of the mural thrombus as a site of protease release and activation in human aortic aneurysms. Am J Pathol. 2002;161(5):1701–10.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Nchimi A, Courtois A, El Hachemi M, Touat Z, Drion P, Withofs N, et al. Multimodality imaging assessment of the deleterious role of the intraluminal thrombus on the growth of abdominal aortic aneurysm in a rat model. Eur Radiol. 2016;26(7):2378–86.PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Vorp DA, Lee PC, Wang DH, Makaroun MS, Nemoto EM, Ogawa S, et al. Association of intraluminal thrombus in abdominal aortic aneurysm with local hypoxia and wall weakening. J Vasc Surg. 2001;34(2):291–9.PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Behr-Rasmussen C, Grondal N, Bramsen MB, Thomsen MD, Lindholt JS. Mural thrombus and the progression of abdominal aortic aneurysms: a large population-based prospective cohort study. Eur J Vasc Endovasc Surg. 2014;48(3):301–7.PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Remus EW, O’Donnell RE Jr, Rafferty K, Weiss D, Joseph G, Csiszar K, et al. The role of lysyl oxidase family members in the stabilization of abdominal aortic aneurysms. Am J Physiol Heart Circ Physiol. 2012;303(8):H1067–75.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol. 2004;24(7):1161–70.PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    O’Leary SA, Mulvihill JJ, Barrett HE, Kavanagh EG, Walsh MT, McGloughlin TM, et al. Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J Mech Behav Biomed Mater. 2015;42:154–67.PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Zienkiewicz OC. The finite elements method. The basis. 5th ed. Oxford: Butterworth Heinemann; 2000.Google Scholar
  67. 67.
    Leung JH, Wright AR, Cheshire N, Crane J, Thom SA, Hughes AD, et al. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. Biomed Eng Online. 2006;5:33.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Raghavan ML, Vorp DA. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech. 2000;33(4):475–82.PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Polzer S, Gasser TC, Swedenborg J, Bursa J. The impact of intraluminal thrombus failure on the mechanical stress in the wall of abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2011;41(4):467–73.PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Auer M, Gasser TC. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans Med Imaging. 2010;29(4):1022–8.PubMedCrossRefPubMedCentralGoogle Scholar
  71. 71.
    Vande Geest JP, Schmidt DE, Sacks MS, Vorp DA. The effects of anisotropy on the stress analyses of patient-specific abdominal aortic aneurysms. Ann Biomed Eng. 2008;36(6):921–32.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical rupture risk assessment of abdominal aortic aneurysms: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg. 2010;40(2):176–85.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Maier A, Gee MW, Reeps C, Pongratz J, Eckstein HH, Wall WA. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng. 2010;38(10):3124–34.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Gasser TC, Nchimi A, Swedenborg J, Roy J, Sakalihasan N, Bockler D, et al. A novel strategy to translate the biomechanical rupture risk of abdominal aortic aneurysms to their equivalent diameter risk: method and retrospective validation. Eur J Vasc Endovasc Surg. 2014;47(3):288–95.PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Xenos M, Labropoulos N, Rambhia S, Alemu Y, Einav S, Tassiopoulos A, et al. Progression of abdominal aortic aneurysm towards rupture: refining clinical risk assessment using a fully coupled fluid-structure interaction method. Ann Biomed Eng. 2015;43(1):139–53.PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Vande Geest JP, Di Martino ES, Bohra A, Makaroun MS, Vorp DA. A biomechanics-based rupture potential index for abdominal aortic aneurysm risk assessment: demonstrative application. Ann N Y Acad Sci. 2006;1085:11–21.PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Fillinger MF, Raghavan ML, Marra SP, Cronenwett JL, Kennedy FE. In vivo analysis of mechanical wall stress and abdominal aortic aneurysm rupture risk. J Vasc Surg. 2002;36(3):589–97.PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Heng MS, Fagan MJ, Collier JW, Desai G, McCollum PT, Chetter IC. Peak wall stress measurement in elective and acute abdominal aortic aneurysms. J Vasc Surg. 2008;47(1):17–22; discussionPubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Khosla S, Morris DR, Moxon JV, Walker PJ, Gasser TC, Golledge J. Meta-analysis of peak wall stress in ruptured, symptomatic and intact abdominal aortic aneurysms. Br J Surg. 2014;101(11):1350–7. discussion 7PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Erhart P, Hyhlik-Durr A, Geisbusch P, Kotelis D, Muller-Eschner M, Gasser TC, et al. Finite element analysis in asymptomatic, symptomatic, and ruptured abdominal aortic aneurysms: in search of new rupture risk predictors. Eur J Vasc Endovasc Surg. 2015;49(3):239–45.PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Erhart P, Roy J, de Vries JP, Liljeqvist ML, Grond-Ginsbach C, Hyhlik-Durr A, et al. Prediction of rupture sites in abdominal aortic aneurysms after finite element analysis. J Endovasc Ther. 2016;23(1):115–20.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    Doyle BJ, McGloughlin TM, Miller K, Powell JT, Norman PE. Regions of high wall stress can predict the future location of rupture of abdominal aortic aneurysm. Cardiovasc Intervent Radiol. 2014;37(3):815–8.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Xu XY, Borghi A, Nchimi A, Leung J, Gomez P, Cheng Z, et al. High levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress. Eur J Vasc Endovasc Surg. 2010;39(3):295–301.PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Erhart P, Grond-Ginsbach C, Hakimi M, Lasitschka F, Dihlmann S, Bockler D, et al. Finite element analysis of abdominal aortic aneurysms: predicted rupture risk correlates with aortic wall histology in individual patients. J Endovasc Ther. 2014;21(4):556–64.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Malkawi A, Pirianov G, Torsney E, Chetter I, Sakalihasan N, Loftus IM, et al. Increased expression of Lamin A/C correlate with regions of high wall stress in abdominal aortic aneurysms. Aorta (Stamford). 2015;3(5):152–66.CrossRefGoogle Scholar
  86. 86.
    Georgakarakos E, Ioannou C, Kostas T, Katsamouris A. Inflammatory response to aortic aneurysm intraluminal thrombus may cause increased 18F-FDG uptake at sites not associated with high wall stress: comment on “high levels of 18F-FDG uptake in aortic aneurysm wall are associated with high wall stress”. Eur J Vasc Endovasc Surg. 2010;39(6):795; author reply –6PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Speelman L, Hellenthal FA, Pulinx B, Bosboom EM, Breeuwer M, van Sambeek MR, et al. The influence of wall stress on AAA growth and biomarkers. Eur J Vasc Endovasc Surg. 2010;39(4):410–6.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Li ZY, Sadat U, U-King-Im J, Tang TY, Bowden DJ, Hayes PD, et al. Association between aneurysm shoulder stress and abdominal aortic aneurysm expansion: a longitudinal follow-up study. Circulation. 2010;122(18):1815–22.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Martufi G, Lindquist Liljeqvist M, Sakalihasan N, Panuccio G, Hultgren R, Roy J, et al. Local diameter, wall stress, and thrombus thickness influence the local growth of abdominal aortic aneurysms. J Endovasc Ther. 2016;23(6):957–66.PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Hyhlik-Durr A, Krieger T, Geisbusch P, Kotelis D, Able T, Bockler D. Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models. J Endovasc Ther. 2011;18(3):289–98.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Teutelink A, Cancrinus E, van de Heuvel D, Moll F, de Vries JP. Preliminary intraobserver and interobserver variability in wall stress and rupture risk assessment of abdominal aortic aneurysms using a semiautomatic finite element model. J Vasc Surg. 2012;55(2):326–30.PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Rudd JH. The role of 18F-FDG PET in aortic dissection. J Nucl Med. 2010;51(5):667–8.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Kadoglou NP, Liapis CD. Matrix metalloproteinases: contribution to pathogenesis, diagnosis, surveillance and treatment of abdominal aortic aneurysms. Curr Med Res Opin. 2004;20(4):419–32.PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Jacob T, Ascher E, Hingorani A, Gunduz Y, Kallakuri S. Initial steps in the unifying theory of the pathogenesis of artery aneurysms. J Surg Res. 2001;101(1):37–43.PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Buvat I. Les limites du SUV. Méd Nucl. 2007;21:165–72.CrossRefGoogle Scholar
  96. 96.
    Reeps C, Bundschuh RA, Pellisek J, Herz M, van Marwick S, Schwaiger M, et al. Quantitative assessment of glucose metabolism in the vessel wall of abdominal aortic aneurysms: correlation with histology and role of partial volume correction. Int J Cardiovasc Imaging. 2013;29(2):505–12.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Torigian DA, Zaidi H, Kwee TC, Saboury B, Udupa JK, Cho ZH, et al. PET/MR imaging: technical aspects and potential clinical applications. Radiology. 2013;267(1):26–44.PubMedCrossRefPubMedCentralGoogle Scholar
  98. 98.
    Sakalihasan N, Van Damme H, Gomez P, Rigo P, Lapiere CM, Nusgens B, et al. Positron emission tomography (PET) evaluation of abdominal aortic aneurysm (AAA). Eur J Vasc Endovasc Surg. 2002;23(5):431–6.PubMedCrossRefPubMedCentralGoogle Scholar
  99. 99.
    Defawe OD, Hustinx R, Defraigne JO, Limet R, Sakalihasan N. Distribution of F-18 fluorodeoxyglucose (F-18 FDG) in abdominal aortic aneurysm: high accumulation in macrophages seen on PET imaging and immunohistology. Clin Nucl Med. 2005;30(5):340–1.PubMedCrossRefPubMedCentralGoogle Scholar
  100. 100.
    Truijers M, Kurvers HA, Bredie SJ, Oyen WJ, Blankensteijn JD. In vivo imaging of abdominal aortic aneurysms: increased FDG uptake suggests inflammation in the aneurysm wall. J Endovasc Ther. 2008;15(4):462–7.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Kotze CW, Menezes LJ, Endozo R, Groves AM, Ell PJ, Yusuf SW. Increased metabolic activity in abdominal aortic aneurysm detected by 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT). Eur J Vasc Endovasc Surg. 2009;38(1):93–9.PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Marini C, Morbelli S, Armonino R, Spinella G, Riondato M, Massollo M, et al. Direct relationship between cell density and FDG uptake in asymptomatic aortic aneurysm close to surgical threshold: an in vivo and in vitro study. Eur J Nucl Med Mol Imaging. 2012;39(1):91–101.PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Courtois A, Nusgens BV, Hustinx R, Namur G, Gomez P, Somja J, et al. 18F-FDG uptake assessed by PET/CT in abdominal aortic aneurysms is associated with cellular and molecular alterations prefacing wall deterioration and rupture. J Nucl Med. 2013;54(10):1740–7.PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Barwick TD, Lyons OT, Mikhaeel NG, Waltham M, O’Doherty MJ. 18F-FDG PET-CT uptake is a feature of both normal diameter and aneurysmal aortic wall and is not related to aneurysm size. Eur J Nucl Med Mol Imaging. 2014;41(12):2310–8.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Palombo D, Morbelli S, Spinella G, Pane B, Marini C, Rousas N, et al. A positron emission tomography/computed tomography (PET/CT) evaluation of asymptomatic abdominal aortic aneurysms: another point of view. Ann Vasc Surg. 2012;26(4):491–9.PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Tegler G, Ericson K, Sorensen J, Bjorck M, Wanhainen A. Inflammation in the walls of asymptomatic abdominal aortic aneurysms is not associated with increased metabolic activity detectable by 18-fluorodeoxyglucose positron-emission tomography. J Vasc Surg. 2012;56(3):802–7.PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    English SJ, Piert MR, Diaz JA, Gordon D, Ghosh A, D’Alecy LG, et al. Increased 18F-FDG uptake is predictive of rupture in a novel rat abdominal aortic aneurysm rupture model. Ann Surg. 2015;261(2):395–404.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Nchimi A, Cheramy-Bien JP, Gasser TC, Namur G, Gomez P, Seidel L, et al. Multifactorial relationship between 18F-fluoro-deoxy-glucose positron emission tomography signaling and biomechanical properties in unruptured aortic aneurysms. Circ Cardiovasc Imaging. 2014;7(1):82–91.PubMedCrossRefPubMedCentralGoogle Scholar
  109. 109.
    Timur UT, van Herwaarden JA, Mihajlovic D, De Jong P, Mali W, Moll FL. (18)F-FDG PET scanning of abdominal aortic aneurysms and correlation with molecular characteristics: a systematic review. EJNMMI Res. 2015;5(1):76.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Kotze CW, Groves AM, Menezes LJ, Harvey R, Endozo R, Kayani IA, et al. What is the relationship between (18)F-FDG aortic aneurysm uptake on PET/CT and future growth rate? Eur J Nucl Med Mol Imaging. 2011;38(8):1493–9.PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Morel O, Mandry D, Micard E, Kauffmann C, Lamiral Z, Verger A, et al. Evidence of cyclic changes in the metabolism of abdominal aortic aneurysms during growth phases: (1)(8)F-FDG PET sequential observational study. J Nucl Med. 2015;56(7):1030–5.PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Riou LM, Vanzetto G, Broisat A, Fagret D, Ghezzi C. Equivocal usefulness of FDG for the noninvasive imaging of abdominal aortic aneurysms. Eur J Nucl Med Mol Imaging. 2014;41(12):2307–9.PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Sakalihasan N, Defraigne JO, Kerstenne MA, Cheramy-Bien JP, Smelser DT, Tromp G, et al. Family members of patients with abdominal aortic aneurysms are at increased risk for aneurysms: analysis of 618 probands and their families from the Liege AAA Family Study. Ann Vasc Surg. 2014;28(4):787–97.PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    van de Luijtgaarden KM, Bastos Goncalves F, Hoeks SE, Valentijn TM, Stolker RJ, Majoor-Krakauer D, et al. Lower atherosclerotic burden in familial abdominal aortic aneurysm. J Vasc Surg. 2014;59(3):589–93.PubMedCrossRefPubMedCentralGoogle Scholar
  115. 115.
    Vande Geest JP, Wang DH, Wisniewski SR, Makaroun MS, Vorp DA. Towards a noninvasive method for determination of patient-specific wall strength distribution in abdominal aortic aneurysms. Ann Biomed Eng. 2006;34(7):1098–106.PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Svensjo S, Bjorck M, Gurtelschmid M, Djavani Gidlund K, Hellberg A, Wanhainen A. Low prevalence of abdominal aortic aneurysm among 65-year-old Swedish men indicates a change in the epidemiology of the disease. Circulation. 2011;124(10):1118–23.PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Anjum A, Powell JT. Is the incidence of abdominal aortic aneurysm declining in the 21st century? Mortality and hospital admissions for England & Wales and Scotland. Eur J Vasc Endovasc Surg. 2012;43(2):161–6.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Sandiford P, Mosquera D, Bramley D. Trends in incidence and mortality from abdominal aortic aneurysm in New Zealand. Br J Surg. 2011;98(5):645–51.PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Kotze CW, Rudd JH, Ganeshan B, Menezes LJ, Brookes J, Agu O, et al. CT signal heterogeneity of abdominal aortic aneurysm as a possible predictive biomarker for expansion. Atherosclerosis. 2014;233(2):510–7.PubMedCrossRefPubMedCentralGoogle Scholar
  120. 120.
    Padhani AR, Koh DM, Collins DJ. Whole-body diffusion-weighted MR imaging in cancer: current status and research directions. Radiology. 2011;261(3):700–18.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Jacobs MA, Ibrahim TS, Ouwerkerk R. AAPM/RSNA physics tutorials for residents: MR imaging: brief overview and emerging applications. Radiographics. 2007;27(4):1213–29.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Nchimi A, Couvreur T, Meunier B, Sakalihasan N. Magnetic resonance imaging findings in a positron emission tomography-positive thoracic aortic aneurysm. Aorta (Stamford). 2013;1(3):198–201.CrossRefGoogle Scholar
  123. 123.
    Nguyen VL, Backes WH, Kooi ME, Wishaupt MC, Hellenthal FA, Bosboom EM, et al. Quantification of abdominal aortic aneurysm wall enhancement with dynamic contrast-enhanced MRI: feasibility, reproducibility, and initial experience. J Magn Reson Imaging. 2014;39(6):1449–56.PubMedCrossRefPubMedCentralGoogle Scholar
  124. 124.
    Nguyen VL, Kooi ME, Backes WH, van Hoof RH, Saris AE, Wishaupt MC, et al. Suitability of pharmacokinetic models for dynamic contrast-enhanced MRI of abdominal aortic aneurysm vessel wall: a comparison. PLoS One. 2013;8(10):e75173.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Nchimi A, Defawe O, Brisbois D, Broussaud TK, Defraigne JO, Magotteaux P, et al. MR imaging of iron phagocytosis in intraluminal thrombi of abdominal aortic aneurysms in humans. Radiology. 2010;254(3):973–81.PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Richards JM, Semple SI, MacGillivray TJ, Gray C, Langrish JP, Williams M, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: a pilot study. Circ Cardiovasc Imaging. 2011;4(3):274–81.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    McBride OM, Joshi NV, Robson JM, MacGillivray TJ, Gray CD, Fletcher AM, et al. Positron emission tomography and magnetic resonance imaging of cellular inflammation in patients with abdominal aortic aneurysms. Eur J Vasc Endovasc Surg. 2016;51(4):518–26.PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Kitagawa T, Kosuge H, Chang E, James ML, Yamamoto T, Shen B, et al. Integrin-targeted molecular imaging of experimental abdominal aortic aneurysms by (18)F-labeled Arg-Gly-Asp positron-emission tomography. Circ Cardiovasc Imaging. 2013;6(6):950–6.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Tegler G, Estrada S, Hall H, Wanhainen A, Bjorck M, Sorensen J, et al. Autoradiography screening of potential positron emission tomography tracers for asymptomatic abdominal aortic aneurysms. Ups J Med Sci. 2014;119(3):229–35.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Reeps C, Essler M, Pelisek J, Seidl S, Eckstein HH, Krause BJ. Increased 18F-fluorodeoxyglucose uptake in abdominal aortic aneurysms in positron emission/computed tomography is associated with inflammation, aortic wall instability, and acute symptoms. J Vasc Surg. 2008;48(2):417–23. discussion 24PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Austria, part of Springer Nature 2019

Authors and Affiliations

  • Alain Nchimi
    • 1
    • 2
    • 3
    Email author
  • Thomas Van Haver
    • 1
  • Christian T. Gasser
    • 4
  • Natzi Sakalihasan
    • 2
    • 3
  1. 1.Department of Medical ImagingCentre Hospitalier de LuxembourgLuxembourgLuxembourg
  2. 2.GIGA Cardiovascular SciencesUniversity of LiègeLiègeBelgium
  3. 3.Department of Cardiothoracic SurgeryUniversity of LiegeLiègeBelgium
  4. 4.KTH Solid Mechanics, University of StockholmStockholmSweden

Personalised recommendations