Skip to main content

Abstract

A method of designing rocket nozzle wall contours to yield optimum thrust is presented. The rocket exhaust gases are treated under the assumption of isentropic, adiabatic and frictionless flow. Nozzle length and ambient pressure appear as governing restrictions under which the thrust is maximized. The solution of this extremal problem yields flow properties required along a suitably chosen control surface, and the nozzle contour is constructed by the method of characteristics to yield this required flow field. A typical numerical example is given. For the propellant combination used in the example, it is inferred from available experimental data that the expanding exhaust gases are in chemical equilibrium. The varying gas properties associated with chemical equilibrium are accounted for in the thrust optimization method. The low altitude performance of such a contoured nozzle is discussed.

Zusammenfassung

Es wird eine Methode zum Entwurf der Profile von Raketendüsenwänden für optimalen Schub beschrieben. Dabei wird angenommen, daß die aus der Rakete ausströmenden Gase einen isentropischen, adiabatischen und reibungsfreien Fluß aufweisen. Die Länge der Düse und der in der Umgebung herrschende Druck treten als beherrschende Einschränkungsfaktoren auf, unter deren Wirkung der Schub den größten Wert erreichen kann. Die Lösung dieses extremen Problems erfordert Eigenschaften des notwendigen Flusses entlang einer geeignet gewählten Kontrolloberfläche; das Düsenprofil wird nach der Charakteristikenmethode konstruiert, um diesen erforderlichen Fluß zu liefern. Dafür wird ein typisches numerisches Beispiel angegeben. Für die dabei benützte Treibstoffkombination kann man aus verfügbaren experimentellen Daten folgern, daß die expandierenden ausströmenden Gase sich im chemischen Gleichgewicht befinden. Die mit dem chemischen Gleichgewicht verbundenen variierenden Gaseigenschaften werden bei der Methode der „Schuboptimalisierung“ berücksichtigt. Es wird die Leistung einer solchen profilierten Düse bei niedriger Höhe erörtert.

Résumé

Présentation d’une méthode pour le dessin du profil d’une tuyère donnant une poussée optimale. L’écoulement des produits de combustion est supposé isentropique et adiabatique. La longueur de la tuyère et la pression ambiante apparaissent comme des limitations dans le problème de l’optimisation. Sa solution donne les propriétés de l’écoulement le long d’une surface de contrôle convenablement choisie et le profil s’en déduit par la méthode des caractéristiques. Un exemple numérique typique est donné. Dès données expérimentales existantes on peut inférer que les produits de combustion, correspondant au mélange d’ergols choisi, sont en équilibre thermodynamique. Les variations de propriété du gaz associées à l’équilibre chimique sont prises en considération dans la méthode d’optimisation. Les performances de basse altitude de telles tuyères sont mises en discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Foelsch, The Analytical Design of Axially Symmetric Laval Nozzle for a Parallel and Uniform Jet. Aeronaut. Sci. 16, 161 (1949).

    Article  Google Scholar 

  2. R. B. Dillaway, A Philosophy for Improved Rocket Nozzle Design. Jet Propulsion 27, 1088 (1957).

    Article  Google Scholar 

  3. R. P. Fraser and P. N. Rowe, The Design of Supersonic Nozzles for Rockets. Report JRL No. 28, October 1954. Imperial College of Science, South Kensington, England.

    Google Scholar 

  4. H. G. Krull and W. T. Beale, Internal Performance Characteristics of Short Convergent — Divergent Exhaust Nozzles Designed by the Method of Characteristics. NACA RME56D27a July 24, 1956 (Declassified May 2, 1958).

    Google Scholar 

  5. G. Guderley and E. Hantsch, Beste Formen für achsensymmetrische Über-schallschubdüsen. Z. Flugwiss. 3, 305 (1955).

    MATH  Google Scholar 

  6. G. V. R. Rao, Exhaust Nozzle Contour for Optimum Thrust. Jet Propulsion 28, 377 (1958).

    Article  Google Scholar 

  7. V. N. Huff, A. Fortini and S. Gordon, Theoretical Performance of JP-4 Fuel and Liquid Oxygen as a Rocket Propellant I-Frozen Composition. NACA RME56A27, April 1956.

    Google Scholar 

  8. V. N. Huff, A. Fortini and S. Gordon, Theoretical Performance of JP-4 Fuel and Liquid Oxygen as a Rocket Propellant II-Equilibrium Composition. NACA RME56D23, September 1956.

    Google Scholar 

  9. F. S. Simmons and A. G. DeBell, A Photographic Technique for Measuring Temperatures in Luminous Rocket Exhaust Flames. Paper No. SB-39 presented at Annual Meeting of Optical Society of America, October 1957.

    Google Scholar 

  10. Boa-Teh Chu, Wave Propagation and The Method of Characteristics in Reacting Gas Mixtures with Application to Hypersonic Flow. Brown University, Providence, R. I., WADC TN—57-213, May 1957.

    Google Scholar 

  11. W. D. Hayes and R. F. Probstein, Hypersonic Flow Theory, Advances in Applied Mechanics, Vol. V. New York: Academic Press, 1957.

    Google Scholar 

  12. R. Sauer, General Characteristics of the Flow Through Nozzles at Near Critical Speeds. NACA TM. 1147. June 1947.

    Google Scholar 

  13. H. S. Seifert and J. Crum, Thrust Coefficient and Expansion Ratio Tables. Los Angeles, Calif.: The Ramo-Wooldridge Corp., 1956.

    Google Scholar 

  14. A. Mager, On the Model of the Free, Shock-Separated Turbulent Boundary Layer. Aeronaut. Sci. 23, 181 (1956).

    MATH  Google Scholar 

  15. L. Green, Jr., Flow Separation in Rocket Nozzles. J. Amer. Rocket Soc., 23, 34 (1953).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

F. Hecht

Rights and permissions

Reprints and permissions

Copyright information

© 1959 Springer-Verlag Wien

About this chapter

Cite this chapter

Rao, G.V.R. (1959). Contoured Rocket Nozzles. In: Hecht, F. (eds) IXth International Astronautical Congress/IX. Internationaler Astronautischer Kongress/IXe Congrès International D’astronautique. Springer, Vienna. https://doi.org/10.1007/978-3-7091-4745-0_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-4745-0_18

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-4595-1

  • Online ISBN: 978-3-7091-4745-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics